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The feasibility of transforming the frequency of coherent radiation by means of high-energy 
electron beams is discussed. A free-electron laser whose principal cavity axis is collinear with the 
electron beam is considered. It is shown that the gain at the lasing frequency grows in proportion 
to the intensity of a laser beam having half the frequency and directed at an angle to the principal- 
cavity axis. 

PACS numbers: 42.60.Da, 42.55.Bi 

1. INTRODUCTION 

Following the experimental demonstration, by the 
Stanford group, that coherent radiation can be generated 
by using high-energy electron beams and spatially periodic 
magnetic fields, many theoretical papers were published 
(see, e.g., the reviews3s4) devoted to free-electron lasers 
(FEL). An intensive search is under way for possibilities of 
enhancing the gain and the electron-energy conversion effi- 
ciency. Success in solving these concrete problems will de- 
termine whether the FEL will become as widely used as ordi- 
nary lasers or will be used only in those exceptional cases 
when the technique of ordinary lasers provides no alterna- 
tive. 

The gain of the previously considered FEL systems is 
limited by the energy scatter of the electron beam and cannot 
be increased above this limit. The known reason3v4 is that the 
gain is determined by the electron-beam spontaneous 
linewidth, which cannot be less than the relative width of the 
electron energy spectrum. This pertains, in particular, to 
systems such as the optical in which the gain 
over a given electron path length in the magnetic deflecting 
system can be increased, but not above the limit determined 
by the energy spread of the electron beam. In this paper is 
analyzed an FEL system that permits a substantial enhance- 
ment of the radiation gain of the same electron beam by addi- 
tional bunching the electrons in the field of an external-laser 
beam. 

2. SCHEMATIC DIAGRAM OF FEL SYSTEM WITH FORCED 
MODULATION OF THE ELECTRON BEAM 

Just as in an ordinary FEL, the electron beam passes 
along an undulator axis (z axis in Fig. 1). The undulator is 

assumed to be three-dimensional, deflecting the electron 
along thex axis with a spatial period A,, and along they axis 
with a period A,, . Under certain conditions it is possible to 
use also an ordinary helical undulator (cf. Ref. 3), for which 
A,, = A,, . A plane polarized generated-radiation beam is 
passed along the undulator axis. The length A, of this radi- 
ation should correspond to the conditions of resonant inter- 
action with the electron oscillations along they axis: 

h,=hwi127?Bz~ (1) 

where fl, is the electron velocity component along the elec- 
tron-beam axis in units of the speed of light c, and y, 
= (1 - f l  f )-'I2 is the relativistic factor and determines the 
Doppler frequency shift of the radiation emitted along the 
undulator axis. 

We note that condition (1) is the same as in an ordinary 
FEL for the resonant value y,. It is assumed also that the 
energy spread is small enough and satisfies the lasing condi- 
tions at the wavelength A,, i.e., 

where y is the relativistic factor for the total velocity and N ,  
is the number of undulator periods over the total length of 
the undulator L = N,A,, . This part of the system does not 
differ from the traditional FEL and, at sufficient gain, could 
ensure lasing at a wavelength A, in the cavity. 

The new element is the presence of a second radiation 
beam propagating at a small angle a to the z axis (Fig. 1). We 
assume that the wavelength A, of this radiation is chosen 
such as to ensure resonant interaction with the electron os- 
cillations along the x axis. At small values of the angle a( 1 

FIG. 1.  Schematic diagram of free-elec- 
tron laser frequency converter: l-un- 
dulator, 2, 3--cavity mirrors, e--elec- 
tron beam. 
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the corresponding synchronism condition can be written in 
the form4.' 

1,=1,2 (l+~"~)/2y,p.. (3) 

The presence of an intense radiation beam A, leads to 
modulation of the electron density with a spatial period A, 
by virtue of the usual mechanism of resonant (quasiresonant) 
interaction of the electrons with the field of the undulator 
A, and with the field of the wave (see, e.g., Ref. 3). This 
modulation can affect also the generation of radiation A, at 
zero angle to the electron-beam axis, if the relation A, = kA, 
is maintained, where k is an integer. We can thus expect 
enhancement at the wavelength A, as a result of the coher- 
ence of the radiation of the density-modulated electron 
beam. We shall investigate below in detail the case of the 
harmonic k = 2, i.e., the case 

3. DETERMINATION OF THE GAIN FROM THE ELECTRON 
EQUATIONS OF MOTION 

To determine the gain at the wavelength A, in the con- 
sidered system it is necessary to solve the generally speaking 
complicated problem of self-consistent motion of electrons 
in the fields of two waves and of the undulator. For a qualita- 
tive demonstration of the feasibility, in principle, of the pro- 
posed frequency-conversion scheme we simplify the prob- 
lem, assuming the wave intensity to be bounded. It is then 
correct to use a linear approximation in the field E, and a 
quadratic approximation in the field E,. It is assumed that 
these fields satisfy the inequality I, )I,. We assume satisfac- 
tion of the condition for the applicability of the classical ap- 
proach to the description of the fields and of their interaction 
with the electrons3: 

We shall assume also that the intensity Is exceeds the inten- 
sity of the electron-beam spontaneous emission in the undu- 
lator field, and the latter emission can be neglected when the 
electron motion is considered. 

As already noted, both waves are plane-polarized and 
can be represented in the form 

cos a+y sin a )  -oat+@, 

Ha=[e,xE,] + [ e , a ]  sin a= [ (e, cos a+e, sin a) x E,] , 

where ex ,  e,, , and e, are unit vectors along the axes x ,  y, and z, 
respectively; o, = 2?rc/A, and o, = 2m/A, are the field 
frequencies; 0, and $,, are the initial phases. 

It is known3 that at the customarily employed undula- 
tor magnetic-field intensities and at limited radiation-field 
intensities the electron trajectory is determined mainly by 
the undulator field and depends little on the radiation fields. 
We assume on this basis that the velocity of the electrons 

passing through the undulator of the setup depends on their 
velocity as follows: 

2nz 2x2 P (2) =pZerf expm cos - + e,p,, sin - , 
hwz hwi 

wherej3, = K2 / y  andp,, = K, /yare the amplitudes of the 
transverse components of the electron velocity and are de- 
termined by the undulator fields. The constants K, and K2 
are the normalized amplitudes of the undulator magnetic 
field: 

K,  = 
lel  HwIhwi . K2= 1 el HWAW* 
2nmc2 2nmcz ' (8) 

We note that the longitudinal velocity 0, depends in general 
on z. The mean longitudinal velocity at relatively small de- 
viations K, 4 1 and K2 4 1 is equal to 

F.=p [I- (KI2+KZ2) /4y2@2]. 

Since the field E, is assumed to be weaker than E,, it 
can be disregarded when the modulation effect in the field 
E, is determined. It can be assumed in this case that the 
electron motion is described by the synchrotron-oscillation 
equations, as in ordinary FEL (Ref. 3): 

dp /d~=-Q,~  sin ((Do+@), dcDld~=p. (9) 

Here @+Go is the relative phase shift of the wave Ea and the 
electron: 

cP=2nz (hw2-1+ha-L cos a )  -mot, 

(Do=qo+q(y), 

where pCy) is the relative initial phase and depends on the 
coordinate y (we recall that the electron beam and the radi- 
ation beam Ea are not collinear); 7 is the relative time: 

T=c~/IV&,~, (I2) 

N, is the number of periods of length A, in the undulator;~ 
is the electron energy mismatch over the field Ea : 

y, is the resonant electron energy and satisfies the synchro- 
nism condition 

9, is the synchrotron-oscillation frequency: 

We note that expressions (9)-(15) differ from those giv- 
en in Ref. 3, since they pertain to the case of noncollinearity 
of the electron-beam axis and the wave vector of the wave 
(a#O). 
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To simplify the calculations we assume next that the 
field Ea and the mismatchp are limited by the condition 

In this case the solution of the system (9) is represented in the 
form of a series in powers of ,f2 5 :  

where 

@d)=po7, 
1 

7 cos 0, - - ~ i n ( p ~ ~ + Q ) ~ )  + 
Po Po 

2 + - cos a. sin (l.c0r+@o) 
Po 

5 1 7 
--sin 2 0 0  + - sin(2poz+ 20,) - -- cos 2m0 

8Po 8Po 4 

-- I sin 0. ~ o s ( p ~ r + @ ~ )  -7 . 
Po I 

Herep, is the initial value of the mismatch (at T = 0): 

From the solution (17) and the definition (10) we easily 
find thez(t ) dependence, which is determined by the interac- 
tion with the field E, : 

We now take into account the interaction of a phased 
beam of electrons with the generated wave (5). This interac- 
tion changes the wave intensity, which can be determined in 
terms of the work of the electron current in the field of the 
wave (5) with allowance for the phasing (19). For the contri- 
bution of one electron we can write 

wherepis determined by the function (7) withz(t ) in the form 
of the solution (19) in the assumed approximation. Retaining 
in (20) the terms that oscillate weakly under the synchronism 
condition, we rewrite this equation in the more explicit form 

dy ~ l e l E , ~ K ~  rnCz - = sin $, 
d t  27 

where rC, is the relative phase between the field E, and the 
electron: 

and rC,, is the initial phase. 
We use next the fact that the phase @ (') + @ '3) can be 

regarded as a correction to the principal phase [see (19)l. 
This gives grounds for reducing (21) to the form 

mC2 -- - - c ' e l E 6 0 K i  [sin (*+$(1)) + ($(2)+9(3)) cos ($(i)+$)l. 
at . 2y 

(23 
This equation can be integrated without additional physical 
assumption and in quite trivial a manner. After integration 
with respect to time from zero to t,,, = NlA,l//3zoc, the 
result should be averaged over the initial phases in accord 
with the fact that the electrons are uniformly distributed 
over the time of entry into the undulator (the beam is not 
bunched beforehand). 

We recall that the employed solution (7) is valid under 
the initial conditions t = 0, z = 0, @ = 0, tC, = $,. The solu- 
tions for different electrons that do not enter the undulator 
simultaneously will have different phases @, and $(,. Aver- 
aging over these phases will mean averaging over the time of 
entry of the electrons into the undulator. It must be taken 
into account here that the connection between the changes of 
the initial phases should be the same as between the frequen- 
cies of the considered waves, in accord with Eq. (4). Without 
loss of generality it can be assumed that the relative phase 
pCy) [see (1 l)] pertains to the plane z = 0, and this connection 
can be written in the form 

g0=200-2~ (y). (24) 

As a result, averaging over the electron entry time into the 
undulator reduces to integration with respect to one of the 
phases. 

It can be seen from the structure of (23) that the first 
term in the square brackets vanishes on averaging over the 
phase $, between the limits 0 and 477. The second term in the 
square brackets of (23) can be represented in the form 

(Q)(2)+Q(s)) cos [$(I)+ 2(Do--%q(y)] 
x(hl  -L+~.-') (hlOz-t+ha-t cos a)-'. 

Since the function Q>") contains only odd powers of func- 
tions harmonic in @,, the term containing @ also vanishes 
after averaging over @,. The problem reduces thus to aver- 
aging the function 2 0  (3) cos[tC,"' + 2@, - 2pCy)l. The con- 
crete result of this averaging depends in the general case both 
on the initial mismatch ( 18) with respect to the field Ea and 
on the mismatch with respect to the field E,, the latter being 

Here y,, is the resonant electron energy that satisfies the 
synchronism condition (I), which can be represented in the 
form 

Integration of (23) with respect to T from 0 to 1 and 
averaging over @, from 0 to 2 7 ~  leads to the following expres- 
sion for the radiation-energy increment per electron at the 
wavelength A, : 

Herep; 37 ( , ~ ~ ~ , v ~ , p )  is the gain function: 
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 sin(^^-^^) (vo-2yo) cos (vo-po) - 1 $(PO, Yo, (P) =cos 2(P - 
Yo-Po Po (vo-~lo)~ 

cos (~0-2p.~) -I sin vo 

4Po (YO-2Po) +-I ~ V O  

+sin 2,[ - 
cos(vo-~o) - (YO-2po) 

sin (vo-po) 
Yo-Po Po (281 

5 1 
I--, 

+ -  sin (vo-2po) 1 -- ( 4poI1o + ~;;i ) sin "- 4po ( ~ ~ - 2 ~ ~ )  2v0 

We recall that L?, is defined by (1 5), and the mismatches po 
and yo by (18) and (25) respectively. 

Actually (27) is the sought solution and yields the incre- 
ment of the generated-wave intensity I, within one pass 
through the undulator in the presence of a modulating field 
of intensity I, and half the frequency of the generated radi- 
ation. Since the resultant expression is unwieldy, we contin- 
ue the analysis for the particular case when the synchronism 
conditions are satisfied simultaneously for both fields, i.e., 
Yr1 = Yr2 = Yr. 

4. ANALYSIS OF THE GAIN FUNCTION 

We consider the particular case when the mismatches 
are connected by the relation 

v0=2po. (29) 

In this case (13) and (15) cease to depend on the angle a, in 
view of the equality 

1 -La/& (1 -cos a) = 3 L w ~ / 2 h w t .  

As a result, (28) becomes a function of one variable 

q p o ,  YO, T)IP:=F(P~, ~ ~ ) I P O ~ ?  
(30) 

F(po, (P) =2 sin (po-2q) (3 sin po-po cos 2p0-2po). 

Normalizing the wave-energy increment to the wave 
flux sIs and summing the contribution i(y)/e from the beam 
electrons, we obtain the gain G, , equal to the relative incre- 
ment of the wave intensity per pass through the undulator: 

I I a A W z  hw:i (y) 'lK' N,4Nz --;- P (pr, q) , 
(3 1) G,=n4 --- 

( I ,  Wo)  17* siAy5 PO 

where I, is the intensity of the wave of the modulating field 
at the wavelength A, = Us; A,, is the wavelength of the 
generated field; i(y) is the current of a beam of sufficiently 
small size along they axis (see below); s = max (s, ,s) ,s, is 
the maximum electron-beam cross-section area; s is the cross 
section area of the generated-radiation beam; i, = mc3/e is 
the Alfven current; K, and K2 are the undulator constants (8) 
with respective periods A,, and A,, and with N, and N2 
periods, respectively, over the undulator length; Wo = (c/ 
8~)(2n-mc~/e)~ = 1. 19.1010 W is a numerical constant equal 
to the intensity of a field whose intensity is equal to the am- 
plitude of the undulator field at K2 = 1. We note that the 
gain function (30) depends on the relative phase between the 
fields (5) and (6),  which depends in turn on y. To determine 
the effective gain of the wave in an electron beam of finite 
size along they axis, expression (3 1) must be averaged over 

the coordinate y with allowance for the corresponding de- 
pendences of the electron current density, of the wave inten- 
sity I,, and of the gain function (30) on y. 

The increase of the gain on account of the modulation of 
the electron density in the field E, can be described by the 
ratio of the gain (3 1) to the gain of the wave E, in the usual 
FEL regime with the same undulator and at the same cur- 
rent. According to Ref. 3 the gain of a plane-parallel wave in 
a planar undulator with reduced field amplitude K ,  is given 
by 

where f (po)/pi is the normalized gain function of the FEL: 

Po 
f (po) = cos po-If - sin pa. 

2 (33) 

It can be seen from a comparison of (3 1) and (32) that the field 
E, increases the gain by x times, where 

The unusual dependence, a I; of the wave gain (3 1) 
on its intensity should be no surprise. In contrast to the ordi- 
nary FEL, here the electron beam is modulated by an exter- 
nal field, so that the absolute increment of the generated- 
radiation intensity differs from zero even in first order in the 
field E, (27). 1, appears in the denominator of the derived 
relative gain (3 1) only as a result of the normalization of this 
absolute increment. At the same time, such a dependence is 
evidence of the possibility of obtaining large gains (31) at 
I, >I,. The lower bound of I, is imposed only by the condi- 
tion considered above that the classical description of the 
field E, be applicable. According to (3 I), therefore, it is pos- 
sible formally to obtain values G >  1, and this result is not 
contradictory. A large gain leads, naturally, to a broadening 
of the emission spectral line, but this broadening will not 
decrease the gain. In contrast to the ordinary FEL, the gain 
(3 1) does not depend on the electron emission spectrum in 
the region of the wavelength A,, since the electron density is 
modulated by the second field. At large values of the gain, 
the result (31) ceases to be valid for another reason: it was 
derived in the given-field approximation. At large gains it 
would be necessary to take into account the change of the 
field E, upon integration of the expressions (21) and (22). 
This, however, would lead generally speaking to even larger 
gains per undulator pass. 

A general idea of the gain function (30) can be obtained 
from the curves in Fig. 2. It can be seen that, just as in the 
case of the FEL gain function (33) (see Ref. 3), the depen- 
dence on the mismatch is resonant. The gain curves (30) are 
not much narrower than the curves (33), and it can therefore 
be assumed that the requirements that the electron beam be 
monochromatic remain practically the same as in the case of 
ordinary FEL. Without going into a detailed analysis, we 
note that in the general case the gain function (28) contains 
an additional degree of freedom connected with the param- 
eter vo. This makes possible the choice of even more conven- 
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FIG. 2. The gain function F ( U , , ~ ) / ~ ;  [see (30) vs the mismatchp, (18) at 
various values of the phase shift between the modulating and the generat- 
ing waves]: 1 - p = 0; 2 - a, = 7~14. 

ient regimes. In particular, a variant is possible with zero 
mismatch of the field E, bo = 0). In this case the mean value 
of the field intensity I,  should not be changed by interaction 
with the electron beam. 

The curves of Fig. 2 illustrate also the dependence of the 
gain of the phase difference pb) between the waves. In the 
scheme considered, the phase shift is not strictly fixed, so 
that when the wave E, is generated by a sufficiently narrow 
electron beam the field phase will assume the value corre- 
sponding to the maximum gain. From the form of the func- 
tion (30) and from Fig. 2 it follows that the condition (31) 
hardly requires averaging over the coordinate y if the beam 
size in the y direction is small enough and satisfies the in- 
equality 

Aye< (n12) (hala). (35) 

For relatively wide beams, the requirement (35) necessitates 
a choice of small values of the angle a. We note that it is also 
possible to set formally a = 0. The ensuing difficulties are 
purely practical and due to the need for establishing collin- 
earity of the generated-radiation cavity and the intense wave 
of half the frequency. 

The maximum value of the gain function (30) (see Fig. 2) 
differs from the maximum value of the gain function (33) by a 
coefficient ~ 2 .  To estimate x we can therefore use the sim- 
plified expression 

in which we put for simplicity also K, = K2 and 
N, = N2 = N. As typical values (cf. Ref. 8) one can assume 
y /N = 2J, = 6 cm and I, = W/cm2. Substitution of 
these values in (36) leads to x > 2 in the case I ,  = lo3 W/ 
cm2. At I, = 10' W/cm2 we have x > 20 all the way to val- 
ues of I, comparable with I, .10V3. Obviously, the consid- 
ered gain-enhancement mechanism can be particularly ef- 
fective in pulsed FEL (cf. Ref. 8), for in this case the time of 
amplification of individual radiation pulsed is limited and 
during a considerable part of this time the intensity I, re- 
mains at a low level. It was shown that it is precisely under 

these conditions that large enhancement of the gain (x> 1) 
can be achieved. We recall (see Ref. 8) that in the pulsed 
regime the FEL emission spectrum constitutes a set of indi- 
vidual lines with widths of the order of So, = 2 ~ / 7  in a las- 
ing band Am, = 2?r/Tmin, where 7 is the duration of the cur- 
rent macropulse ( - msec), and Tmin is the duration of the 
electron-current micropulses ( -  10-'0-10-1' sec). It is as- 
sumed here that the width of the cavity modes is less than 
Sw, . In the considered pulsed frequency-conversion regime 
the spectrum of the generated radiation retains the same 
character if the following two additional conditions are sat- 
isfied: the modulating field Ea must be monochromatic 
enough (with linewidth not larger than Sw,); the configura- 
tions of the fields Ea and E, inside the electron beam must be 
similar enough for the phase difference of these waves to be 
determined only by the corresponding geometric ray path 
difference, accurate to p(x,y,z) < ~ / 2 .  When account is taken 
of the temporal structure of the electron beam, the last con- 
dition is equivalent to the condition that the radiation be 
generated in the form of individual spectral lines of width 
Sw, (see above) in the lasing band Aw,. This width of the 
lasing band remains unchanged up to gain values Gs of the 
order of 2LCav /cTmin > 1, where LC,, is the cavity length. 

In conclusion, I thank A. N. Safronov for performing 
the numerical calculations. 
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