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We consider the effect of a laser field on the beta decay of nuclei when the field intensity F is low 
compared with the characteristic field Fo determined by the decay energy Zand the electron mass, 
F(Fo = 21 (2mZ)"2/eh and the field frequency satisfies the condition h 5 1. The decay probabil- 
ity is an asymptotic expansion in powers of (F/F0)' and in small terms non-analytic at F = 0, 
similar to the expansion for the constant field, with coefficients that depend on the frequency like 
a + b ( /I)' + ..., where a,b- 1. The principal probability correction terms, being analytic in the 
charge, are determined by perturbation theory. The obtained probability structure is characteris- 
tic of processes that take place also without a field, so long as the field frequency is low compared 
with the characteristic kinetic energy of the light charged particles and the field intensity is 
insufficient to change this energy significantly in the course of evolution of the process. 

PACS numbers: 23.40.B~ 

1. INTRODUCTION 

Becker, Louisell, McCullen, Schlichter, and S~u l ly l -~  
have recently found by numerical calculation that the P-de- 
cay probability of tritium is increased 10'-lo4 times by a 
laser field if the parameter v = ea/m = eF/mw, which char- 
acterizes the amplitude F the field strength, varies in the 
range 0.3 < v < 1.0, and the field frequency1' is w = 1 eV. 
These results drastically contradict our own results,"' ac- 
cording to which, if the laser field F is weak compared with 
the characteristic field Fo = 2Z(2mZ)1/2/e [ I  is the decay en- 
ergy, see Eq. (a)], i.e., if the parameter 

x=FIF,, F0=21(2m1)'"le, (1) 

is small, ~ ( 1 ,  and the process can be regarded as multipho- 
ton, i.e., the parameter 

is large, 6) 1, the relative change of the decay probability 
should be determined by the square of the parameterx, i.e., 
W - Wo-X2 Wo, where W, and Ware the decay probabili- 
ties in vacuum and in a field. Under the conditions consid- 
ered in Refs. 1-3, the parameterx rv(m/2Z )'/'(w/21) is very 
small, in the range loF4 <X < and the parameter 
6 =(m/2Z )'/'v k 1, or moreaccurately 1 < 6 < 4. In this range 
of the parameters the decay probability should not differ 
qualitatively from the probability for the thoroughly investi- 
gated case 6) 1. 

The following qualitative arguments can also be ad- 
vanced in favor of the expected decay-probability change 
induced by the field; these arguments clarify also the mean- 
ing of the parameters,y and ,$. The decay-formation length in 
vacuum is of the order of the de Broglie wavelength of the 
electron 

The field alters the decay probability substantially as its 
work over the length of decay formation is comparable with 

or larger than the decay energy I: 

i.e., if the parameterx k 1. Atx(  1 the field has a weak influ- 
ence on the decay. 

The arguments above pertain to a constant field. Qual- 
itatively, however, they remain valid also for a slowly vary- 
ing field, i.e., a field whose characteristic variation time is 
long compared with the time2' (2mZ )'l2/eP', during which the 
field imparts to the electron the characteristic decay energy 
I: 

1/a> (2mZ)'"leF. (5) 

This condition coincides with 5 2 1. Interaction with a slow- 
ly varying field is multiphoton, for at 6 k 1 the work of the 
field over the formation length exceeds the field-quantum 
energy, e~li(2rnZ)- ' /~ k tio. 

Tacitly implied in the condition (5) is that X- 1. If the 
field is weak, i.e., ~ ( 1 ,  calculation6.' shows that the change 
of the decay probability by a constant field is A WwX2 Wo 
and corresponds to a change AZ-x2Zin the decay energy. It 
is clear therefore that a weak field can be regarded as slowly 
varying under a condition that differs from (5) in the Z is 
replaced by x '1, i.e., under the condition 6 RX or o 51. 

The effect of an alternating field on the decay should 
therefore be weak at X( 1 and 6 > X. Actually, in the present 
paper we obtain for the decay probability in the case 
x4 1 , 6 k x  the expression 

where Wo is the decay probability in vacuum, the coefficient 
c, does not depend on 6, while the coefficient 
c4({ ) = c, + c4, 6 -2 does not take into account the depen- 
dence of the probability on the field frequency. This result 
agrees with our in which we obtained for the pro- 
babilities W (ly,( ) general expressions, their limiting expres- 
sions W (ly, co ) as X+ co which are valid for a constant field, 
and expansions for the latter in powers of the smallx in the 
form (6) with constant coefficients c,,c,, ... . 
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It  was shown in Ref. 6 that the sensitivity of the decay to 
the external field is enhanced with decreasing decay energy 
I ,  because the characteristic field Fo is decreased in this case. 
We consider therefore in the present paper 0 decays with 
energy released energy small compared with the electron 
mass, I(m, similar to the tritium decay T-+He3 + e- + V ,  
and obtain an expansion of the decay probability W(X,( ) in 
powers of ~ ( 1  at arbitrary ( 2 ~ .  The main conclusion is 
that a noticeable change of the decay probability calls for 
fields F-F,. For tritium decay we have Fo-2.4X 10" 
Heaviside units, i.e., Fo is quite large compared with the 
presently attainable fields, so that the tritiump-decay prob- 
ability is little enhanced by present-day laser fields. Natural- 
ly, under the conditions of Refs. 1-3 there should be no no- 
ticeable change of the probability; see also Refs. 8-1 1. 

Our principal result is the derivation of an analytic 
expression for the decay probability when the field is weak, 
X( 1, and its frequency satisfies the condition 6 2x or w 5 I, 
and demonstration of the fact that the principal correction 
terms coincide with the result of perturbation theory with 
respect charge, and have an unexpectedly wide range of ap- 
plicability, including the constant-field limit. 

2. PROBABILITY OFB DECAY IN A LASER FIELD 

Tritium f l  decay in the field of a circularly polarized 
wave can be represented in the form 

I d 
- y )  J 2 ( z )  + E 2 - -  

mxz dz (zJ* ( z )  18' ( 2 )  1 

21 (2s,--s) *" mxz J s  ( z )  J s f  ( z )  ] 9 

It is assumed that the masses Mi and Mf of the initial and 
nuclei are so large compared with the electron mass m and 
the 0-decay energy I, 

Mi, M,>m, I ;  I=Mi-Mi--rn, (8) 

that the nuclei can be regarded as being at rest. 
If q, and I ,  are the electron 4-quasi-momentum and the 

neutrino Cmomentum, then the variables x and y used in (7), 
in the coordinate system in which the nuclei are at rest, are 
equal to 

i.e., they are equal to the "minus" component of the electron 
momentum, which is conserved in the field, and to the neu- 
tron energy in units of m. These variables are convenient 
because the differential probability L has a simple depen- 
dence on them and because of the simplicity of the invariant 
momentum volume 

The relation dlo = - dq: /2q used in the last equality of (10) 
follows from the energy conservation law 

at fixed s and q-.  The argument of the Bessel functions is 
proportional to the transverse momentum of the electron 
and is expressed in terms of x, y, and s: 

z=eaq,/oq:= [2A (s-s,) ] '", (12) 

Here s, is the minimum number of photons needed for de- 
cay with specified values q -  and I ,  in accord with the conser- 
vation law (1 1). Finally, so = (m. - m - Z)/w is the mini- 
mum number of photons necessary for decay in the field of 
the wave and corresponding to lo = 0 and qo = m. The + 
signs in the function L correspond to the right- and left-hand 
polarizations of the wave. The differential distribution of L 
does not depend on the azimuthal angle g, of the momentum 
q because the wave is circularly polarized. 

At fixed s and x the limits of integration with respect to 
y are determined from (11). Obviously, the lower limit is 
y, = 0 and the upper limit y, corresponds to q, = 0, i.e., 

The limits x , , ~  (s) of the subsequent integration with respect 
to x are determined by those value of x for which y,(s, 
x) = y,(s, x), i.e., by the zeros of the function y,(s, x): 

3. ROUGH ESTIMATE OF THE CHANGE OF THE PROBABILITY 
BY DECAY BY THE FIELD 

We show now with the aid of rough semiquantitative 
calculations that in the multiphoton case, when 

the field depends little on the decay, i.e., W differs little from 
W,. It is convenient to interchange the order of summation 
and integration in (7). Then 

=a(*)  YI&I,=) 

W=2nm2 J dx J dyCL=2nm2 j d x  dy CL, 
s>eo 0 0 0 s>a,(x,y) 

i.e., the limits of integration with respect to x and y become 
much simpler. We separate from the integration region 
(x>O, y>O) the region of free decay, i.e., of the decay without 
a field. Its boundary on thex,y plane is determined by curves 
(14) and (1 5) at s = o and m. = m. It is easy to verify that 
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B < 0 inside the free-decay region, and B > 0 outside it, i.e., in 
the induced-decay region. If x and y lie inside the free-decay 
region the main contribution to the sum over s, as will be 
shown, is made by the terms from the interval 

whose boundaries are roots of the equation z2(s) - s2 = 0. 
Inside this interval z(s) > s, and for most terms 

Since A)  1 by virtue of the condition (16). When the condi- 
tion (19) is satisfied, the square of the Bessel function can be 
replaced by the expression 

I+ cos 2$ S X  
JsP ( 2 )  = $= (zZ-s2)%-s ~ P C C O S  - - - (z2-s2) l l r  9 z 4 9 (20) 

see, e.g., Eq. 9.2.15 of Ref. 12. Then, neglecting the oscillat- 
ing term in (20) and the violation of condition (19) near the 
boundaries of the interval (1 8), we obtain 

Outside the interval (1 8) and in the vicinity of its boundaries 
the Bessel function can be approximated by the Airy func- 
tion @ (u) 

Outside the interval (18) we have u(s) > 0 and the Airy func- 
tion decreases exponentially. It is then easy to verify that 
under the condition (16) the contribution made to the sum 
overs by the section outside the interval (18) is small. 

We thus have for x and y outside the free-decay region 

and therefore the sum overs of the first term of the function 
CL differs little from the differential probability of the free 
decay. This simple result is connected with the successful 
choice of x and y as variables. 

It is clear that the sums of the second and third terms of 
the function CL overs are small compared with the sum of 
the first. In fact, the second term, which contains z - '(zJ, J:)' 
= l(J3, , + Jf - , ) - J3, is small because at larges a change 

of the index by 1 changes J, (z) little. The third polariza- 
tion term is approximated in the region (19) by the expres- 
sion 

I. ( z )  J,' ( z )  =-sin 2$ /nz ,  (24) 

which oscillates rapidly with change of s and therefore the 
sum of this term overs is small. 

Thus, the differential probability summed over s is al- 
tered little by the field ifx and y are in the free-decay region. 
A significant change of the total decay probability can be 
caused only by an appreciable probability of appearance ofx 
and y in the induced-decay field, i.e., in a region inaccessible 

without a field, and this, as we shall show, calls for a strong 
field. 

We consider now that outer region ofx and y for which 
B > 0. We can use here again for the Bessel function the ap- 
proximation (22), in which now the argument u(s) of the Airy 
function is positive for any s from the interval s, (x,y) < s < w 

and reaches a minimum at 

(25) 
The second root of the equation ul(s) = 0, which differs from 
(25) in the sign of K, is smaller than s,, i.e., it lies in the 
unphysical region. We expand u(s) near the minimum: 

Here u, = u(s,) etc., with 

If B,$ -'(I and A>1, it can be seen from (26)-(29) that the 
significant values do satisfy the condition 

In this case 
111 uC (s -se )  ,k -A-"'<l 

and the function u(s) is sufficiently well approximated by two 
terms of the expansion (26). Since the effective interval of 
values of s lies far from the lower limit of integration with 
respect to s: 

we have 

The resultant function 

m1 (1) = J a t m  ( t )  
I 

is equal to ?r/3 at x = 0 and decreases exponentially at x> 1, 
see Ref. 12. The contribution of the outer region will then be 
noticeable only if u, 5 1 in a sufficiently large range of values 
of x and y. 

For a weak field, when X( 1, the condition u, 5 1 is 
equivalent to B ~ ~ ' ' ~ ( 1  and can be satisfied only in a nar- 
row range of x and y near the free-decay region; consequent- 
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ly the change of the total decay probability is small. 
Finally, forx) 1 it follows from the condition u, < 1 that 

the probability is substantial in the region where 

i.e., the characteristic values of q - and I ,  are determined by 
the field and do not depend on I and M. The condition 
Bf -' k 1 that the probability be dependent on the frequency 
is then equivalent to the condition 

and likewise does not contain the parameters I and m. The 
independence of the probabilities of the processes in a strong 
field on the mass dimensionality parameters was noted re- 
peatedly13 and was named gauge invariance. It is connected 
with the fact that in a very strong field the process evolves 
not over a length determined by the mass parameters, see (3), 
but over a shorter length ( % / e ~ ) ' / ~  determined by the field 
itself. 

4. PROBABILITY OF fl  DECAY IN A WEAK FIELD AT 4 > 1 

We turn now to a more detailed consideration of the 
probability in a weak field. The function W depends in a 
nontrivial manner on the parametersx and 6 and on the ratio 
I /m.  For the reasons given in the Introduction, we consider 
the case of nonrelativistic decay, when Z/m ( 1. This means 
that in the region of decay formation the electron moves 
nonrelativistically, although on leaving this region it can be- 
come relativistic if6 2 (m/I )'I2> 1. In fact during the time of 
decay formation 

the electron acquires an energy --I via the decay mechanism 
and via the field an energy - e F  (2mZ ) - ' I2 = 2x1 that is small 
compared with Z if ~ ( 1 .  Subsequently, during the time of 
one period the electron acquires from the field an energy 
ea = 6 (2mZ)'12 that canbelargerthanm i f52  (m/1)'I2. This 
energy of vibrational motion in the wave is contained in the 
effective mass m. = (m2 + e2a2)'I2. Since the ratio of forma- 
tion time to the field period is 

and is very small under the conditions considered by us 
( ~ < l , g  k 1) the field does not manage to impart to the elec- 
tron during the decay-formation time the energy that it ac- 
quires subsequently. 

It is clear from the foregoing that if I /m( 1 the kinetic 
energy of the electron and the neutrino energy will be close 
to I, so that the effective values of the integration variables in 
(7) will be 

( I )  - ( z / m ) ' l l ,  y ,-Z/m<l. (37) 

We shall see also that a large number of photons will be 
absorbed in an interval of width As centered about s = s, 

Using this qualitative information, we can simplify the func- 

tion L significantly 
~nonrel- z z -Y J .  (4, (39) 

and can assume in the equations for z and s, that 

Finally, in the considered approximation 

Thus, introducing the constant f = 2rCm2, we obtain 

We replace initially the Bessel function with large index by 
the Langer approximation 

(43) 
which is the first term of an asymptotic expansion that is 
uniform in z > 0, see Eq. 9.3.35 in Ref. 12. Here @ (u) is an 
Airy function of argument 

(44) 
It can be seen that the sign of u coincides with the sign of w2, 
since k (w2) > 0 for real w2 in the interval - oo < w, < 1. Since 
the integrand varies slowly with changings, the sum is deter- 
mined by a large number of terms and can be replaced by an 
integral. If due account is taken of the boundary contribu- 
tion, see the Euler-Maclaurin formula on p. 26 of Ref. 12, the 
error due to such a substitution is exponentially small, in our 
case of order e - *" , where As is the effective number of terms 
that determine the sum. Thus, 

We use now the relation from the theory of Airy func- 
t i o n ~ ' ~  

Changing the order of the integration, we can then represent 
the probability in the form 

The limits of integration with respect to x, y, and s are ob- 
tained in the following manner. The equation t, (s,x,y) = t is 
first solved with respect to x; this yields the limits d ,,, (t,s,y). 
We obtain next the minimum t, (s,y) of the function t, (s,x,y) 
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with respect to x and solve the equation t, (sg) = t for y, 
obtaining the upper limit y2(t,s). Since the function t, (s,y) is 
monotonic in y, the lower limit is y, = 0. We obtain next the 
minimum t, (s) of the function t, (s,y) with respect toy  and 
solve the equation t, (s) = t for s, obtaining the limits s , , ~  (t ). 
Finally, we obtain the minimum of the function t, (s) with 
respect to s and designate it by 1,. 

The function h (t ) is thus an integral over a closed vol- 
ume in the space xg,s bounded by the plane y = 0 and by a 
dome-shaped surface over it. The radicand of (48) is zero on 
this surface and positive inside the volume. 

The function t, (s,x,y) is given by the relation 

t, (8, X ,  y) = [3s (Arth w-w) I", 

where A and B are given in the general case by Eqs. (13) and 
in the nonrelativistic case by Eqs. (40). The absolute mini- 
mum to is reached in the nonrelativistic case at x = 1, y = 0, 
ands = s, , the latter determined by the transcendental equa- 
tion [tan2v= - w2): 

This minimum is equal to 

The function v(6) in (50) and (51) is monotonic, equal to 
v({)~4- '41a t{>l  andtov( l )=  1.17at{= 1 (therootof 
the equation tanv = 24. Thus, the lower limit of integration 
in (25) is negative and has a large absolute value, to( - 1. 

The integral (47) with to( - 1 can be calculated by the 
asymptotic formula obtained in Ref. 6 (see also Ref. 7, p. 
100). We present here only the principal terms of this equa- 
tion: 

We shall show that the first term h (0) coincides with the 
probability Wo of decay in vacuum, and h "'(0) is the third 
derivative at zero and determines the correction of order x 
to Wo. 

It is inconvenient to calculate the derivatives of h (t ) be- 
cause of the complicated dependence of the integration lim- 
its on t. What is important, however, is that it is precisely at 
the integration limits x = x,,, (t,s,y) that the function in the 
radicand of (48) vanishes. If Eqs. (12) and (13) are used for z, 
the integral with respect to x in (48), later designated X, can 
be transformed into 

It can be seen from (13) that the last two terms in the radi- 
cand constitute a second-degree polynomial in x, which we 
designate - a ( x  - B)2 + ay.  Introducing now in place of x 
the variable u and the function x(u): 

we transform the integral into a sum of the two following 
integrals: 

The limits u,,, still depend on t and are the roots of the 
equations u = f 11 + t x ( ~ ) ] " ~ .  But if we introduce in place 
of u the variable v: 

U 
v =  

( l+ tx  ( u )  ) '" ' 

the limits of the integrals Jo and J no longer depend on t: 

The integrands, however, have a complicated dependence on 
t because of the transcendental connection between u and v, 
see (57). Since we need the first three derivatives of the func- 
tion h (t ) at t = 0, it is natural to expand the integrals J,, in 
powers oft. It is easy to obtain for Jo the expansion 

(x* ( v )  ) '"'. 
n-i -1  

The symbol (n) denotes the nth derivative with respect to u2. 
We call attention to the fact that now the integrals contain 
the functions x(u) at the point u = v. The difference between 
u and v ,  determined by (57) has led to the appearance, under 
the integral signs, of derivatives of the function x(u) at the 
point u = v. 

The expansion for J, is of similar structure. We do not 
present it here since we do not need it in the nonrelativistic 
case (I(m).  In this case 

B = I ,  yl"=O, a=m/21, (60) 

so that the integral X reduces to 

and the functions x(v) and w2 take the form 

Q 
x  ( v )  = - zo" k ( w 2 ) ,  wZ=-z ( I - v Z ) ,  (62) 

where Q = Cy /c 2)213, 

Thus, we introduce in place of s and y the variables a and q, 
which have a more convenient scale of variation: o- 1 + 6 
and q- 1, 

Substituting the function (62) in the expansion (62) we 
obtain 
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where the symbol (n) denotes now the nth derivative with 
respect to w2. We call attention to the fact that f,(z)=l, and 
the remaining fn (z) have a nontrivial dependence on z, being 
finite at zero: 

Using (61), (64), and the variables (63), we obtain for the func- 
tion h (t ) the representation 

in which 

(67) 

The upper limit 77,(t,a) of the integral with respect to 77 is 
obtained from the equation 

if the latter is solved with respect to 

y=yz(t, s) = (Urn) qz (t, o) . 
To determine h (0) and h '3'(0) it suffices to know v2(t,a) in the 
form of four terms of the expansion in t: 

Similarly, the limits a,,, (t ) of the integral with respect to a 
are obtained from the equation 

i tm(s,  x-1, y=O) = [3s  (Arth w-w) v=o=t, (70) 

ifthe latter is solved with respect tos = ({ 2/X)o (t ). It suffices 
to know the obtained two solutions at t = 0: 

It can be seen from (66) and (67) that 

This expression coincides with the probability of decay in 
vacuum. 

For h '3'(0) we obtain from (66) 

h(3) (0) =N [FoU'(O) +3FT (0) +6Fi (0) +6F3 (0) 1. (73) 

For the first three derivatives of the functions Fn (t ), the fol- 
lowing expression is valid: 

i.e., we can ignore in the differentiation the dependence of 
the limits u , , ~  (t ) on t, since the integrands p, (t,a) and their 
first two derivatives with respect to t vanish at the limits of 
the integration with respect to o: 

This follows from the representation (67) for pn ( t , ~ )  and 
from the vanishing of the function v2(t,o) at a = a,,, (t ), be- 
cause the upper limit of the integration with respect to v 
should coincide at the limits of integration with respect to 77 
with the lower one, and the latter is identically equal to zero: 

qz(t, o1,2(t) ) =q, (t, o,,z(t) ) =O. (76) 

As a result, the first three terms of h '3'(0) are determined 
completely by the function v2(t,a) and its first three deriva- 
tives with respect to ta t  t = 0 and by the values off,(O), f2(0), 
f; (0) = A. For example, 

E+1 

F.'" (0) = J do (2q2'3+6qzq21q."+r)22q~ ) I-. 
E-1 

Similarly, 

8 36 . 4 
875 

Thus, 

It follows from the foregoing that this expression is deter- 
mined completely by the behavior of the function k (w2) near 
w2 = 0, or more accurately by the first three terms of the 
expansion of k (w2) in powers of w2. Therefore expression (79) 
can be called differential. The last term 6F3(0) in h '3'(0), 
which can be written in the form 

is essentially integral: it is determined by the functionf,(z) 
and hence by k (w2) in a wide range of their variables. Thus, 

where I (z, ) denotes the integral in (80). The function I (z, ) 
tends linearly to zero asz, -0, and to a constant of the order 
of as z, -oo : 

We note thatf,(z) is finite at zero, see (65), and behaves like 
z-'I2 as z-a,. Thus, we obtain for c,({ ) at (6) 
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It turns out that the Langer approximation is not suffi- 
cient for the determination ofc2g ) at 6- 1, and terms of next 
higher order in s-2 must be taken into account in the asymp- 
totic expansion 9.3.35 of Ref. 12. We obtain then for the 
square of the Bessel function 

2m ( u )  @'(u)  
+ S1/' 

e ' 2 ( U )  (2'b$+ . . . ) 1. (84) (2'hbo+. . . ) + 
a ,  and b, in this equation are functions of w2: 

where the dots denote terms -X  and higher, and also oscil- 
lating terms, one of which is also the last term of (90). 

To calculate h, (t ), h, (t ), h,, (t ) and their derivatives, a 
perfectly suitable method is the one described above for h (t ). 
In the representation (66) and (67) of these functions, the 
entire difference reduces to a modification of p,(t,u), name- 
ly, to replacement of the functions f,(z) by 

respectively, where 

k" 
bo (w2) = - (5-3w2-5kzi2), (86) and f b, and f :b differ from f ",n that a ,  is replaced respective- 

24 w6 ly by b, and b z . Calculating now the additional terms in (9 I), 
which are numerically small in a wide range of w2 and could we get 
be neglected if the function c,(g ) obtained above were not 
close to its limiting value c,(m). As shown by the calculation - h'3' ( 0 )  +ha ( 0 )  +baa (0) -hb' ( 0 )  
above, the values of significance are w2- - 1, i.e., 3 
u - - s213. In this region 

( u )  - s h ,  @ U )  ( u )  S - ,  @I2  (u)  -sIA. (87) = - N ~ ~ { I + - - -  4 4 8 
3 1755' 55" 

fob (0) 
Therefore the terms containing a ,  and b, are of the order of - - 
s-2 -x2{ -6 relative to the principal term, and contribute to 
the function c2(6 ), or more accurately to its deviation from 8 dz (1-z/zm) 1 
c2(m), since these terms vanish as g-+m. The next terms of Tj 3 [f .(~)+ft(~)- f ~ ( ~ ) - g ( ~ ) ] }  
the expansion 9.3.35 of Ref. 12, marked by dots in (84), are of o 

orders-2 relative to the smallest retained ones and are there- (95) 
fore significant only for a correction -X 4. 

From (46) it is easy to find that since f t(0) = - 1/70, the additional "differential" term is 
cancelled by the existing term -6 -4. The previously ob- 

a dt 0' ( t )  tained integral term is also completely cancelled by the addi- 
2@ (3 @' ( u )  = - f=2"u, (88) tional integrals, since the function 

tm 

= ( t )  (21,,t-u). -2-5 J -- 
(t-t,) " 

1, 

The probability takes therefore the form 

OD 

1 1 
= -- Jatm ( t )  [ h  ( t )  +ha ( t )  +hbb ( t )  -hb' ( t )  I - - @ (to) hb (to). 

5f X 
to 

(90) 

where the functions h, (t ), h, (t ), h,, (t )differ from h (t )by ad- 
ditional factors 2 a , ~ - ~ ,  2bG-413, (2t - 2 2 / 3 ~ ) b  z ~ - ~ ~ ~  under 
the triple-integral sign in (48). We therefore have now in 
place of (52) 

defined by an integral with respect to v turns out to be identi- 
cally zero. This can be proved, e.g., in the following manner. 
As seen from Eqs. (44), (85), and (86) the functions (k 3)"', 
a ,  - b wZ/2k, (kb,)' are analytic in the complex w2 plane 
with a cut along the semi-axis 1 <w2 < m and are represented 
at Iw2( < 1 by converging power series in w2, whose coeffi- 
cients are expressed linearly in terms of the coefficients of 
the series in k 3/2  and k 3. Assuming w2 = - z(l  - v2) and 
integrating these series term-by-term with respect to v, as 
indicated in (96), we obtain for the individual functions in 
(96) the series 
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where a, and p, are the coefficients of the series for k 3/2  

and k 3, y, = (2m - 1)!!/(2m)!!, and yo = 1. We see therefore 
that for the summary function (96) we obtain a series with 
zero coefficients. Thus, the coefficient c2(f ) does not depend 
on { and is equal to its value c2 = 35/8 for a constant field. 

We shall show in Sec. 6 that the independence of c, of f 
extends also into the region 1 > f 2x4 1, and the coefficient 
c4(f) depends on f ,  so that the probabilities in an alternating 
and in a constant weak field differ in the terms -X 4. At the 
same time it is appropriate to present an exact expression for 
the decay probability in a constant field and its asymptotic 
expansion atx(  1, which will be shown to have a wider range 
of applicability than initially assumed. 

5. PROBABILITY OFP DECAY IN A CONSTANT FIELD 

The decay probability in a constant field can be regard- 
ed as the limit of the decay probability in an alternating field 
as f + ~ ,  and it therefore satisfies expression (47) in which 
to= -X - and the function h (t ) isequal, according to (66) 
and (67), to 

h (t) =NF.  (t) , Po (1) = *ji) doqo (t, 0 )  , 

1 
(98) 

To (t, 0) = - r1z3 (t, a),  
3 

since the remaining I;;, (t ) vanish because the significant val- 
ues w2 -f -2+0, see (49), and k (w2)+1. Since in the limit as 
l-t co we have 

qz(t, 0 )  =l+txY3-  (O-E)~, OI,z(t) =E=F ( l + t ~ % ) ' ~ ,  (99) 

the function h (t ) can be easily obtained: 

The obtained decay probability in a constant field can be 
expressed in terms of a product of Airy functions: 

@ and @ ' depend on z = - ( 2 ~  )-,I3. TO this end it is neces- 
sary to change over in the integral (101) to the integration 
variable T = t + x -,I3 and use the formula 

and Eq. (46) 
Forx(1 we obtain from (101) 

This expression is the nonrelativistic limit of the general for- 
mula (60) obtained in Ref. 6 for the pionp-decay probability; 
this probability coincides with the probability of relativistic 
p decay of heavy nuclei if the parameters in this formula are 
taken to be 

y=m (m+Z) - I ,  6= ( m + l )  Mi.-', x=eFMI-'. 

In the casex, 1 the decay probability is described by the 
function 

which does not depend on I .  The reason is that the decay is 
now formed over a length much smaller than (2m1)-'I2. 
Equation (104) is valid so long as 1(X((m/2~)3/2, and at 
x 2 (m/21 )3'2 it is necessary to take into account the relativis- 
tic structure of the interaction. 

Equation (103) gives a clear idea of the decay probabil- 
ity also in the region f 2 1, where according to the arguments 
of Secs. 1 and 3 the probability of the decay should differ 
from (103) only in that the dependences of the coefficients of 
the powers of x and of the oscillating terms on f are such 
that the order of magnitude of neither is changed. In Sec. 4 is 
described the regular method of determining these depen- 
dences. The principal coefficient c, turns out to be indepen- 
dent off and, as will be shown below, remains such also in 
the regionx 5; f < 1, thus suggesting that the f dependences 
of the coefficients of the powers o f x  are universal in a re- 
gion { 2x wider than initially assumed. 

6. DECAY PROBABILITY IN A WEAK FIELD AT {< 1 

The method described in Sec. 4, based on an asymptotic 
expansion of large-index Bessel functions and replacement 
of summation by integration can no longer be used when the 
minimum number of photons so is close to unity or is nega- 
tive, i.e., at f - 1 5;(w/21) =XI'{, [see (41)]. Disregarding 
here the difficult case of f very close to unity, when 
I f  - 1 1 5; (w/I )( 1, we consider the region in which f < 1 but 
1 - {- 1 .3' In this case the minimum number of photonss, is 
negative and large in absolute value, and a method of calcu- 
lating the probability can be proposed, in which expansion in 
the small parameter a = ( - so)-' is used without replacing 
the sum overs by an Integral. 

We represent the element of momentum volume (10) in 
the form 

where q and 8 are the quasimomentum and emission angle of 
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the electron. In the nonrelativistic case the momentum and when k = n + Is[, and 
, , 

the argument of the Bessel function are equal to 

(106) q= [ 2 m  (so-sou- - lo )  ]I", z = =sin 8. 
m u  

Expressing J f (z)  in (39) by the known power series, we inte- 
grate Lnon"' first with respect to the angle 0 and then with ='[ lsol (s-so) 

respect to I ,  or y in the range from y = 0 toy = (s - s,)o/m. 
Then R = 2E 

J Lnonreb sin 8 de dq dlO=8~mz(: ) '  
. --. 

( - 1 )  nxZk+7 
The decay probability is obtained by summing (107) over XC n! (2k-n)  ! (2k+1)  (2k+3)  ( 2 k f  5 )  (2k+ 7 )  ' (107) s >so. It is important to change in the resultant double series 

n=O from summation over n to summation over k = n + Is1 : 

In the terms for which O<k< - so, we expandx21 + ' in pow- land expanding the exponentials in series. 
ers of s: As a result, the representation (1 1 1) turns into an expan- 

sion in powers of the small parameter a2: 
k S 7 / 2  1 

xzk+7=;" z ( ) ( a s )  a = - r xo='lsol. 
l sol OD 

,=o W=4f (2) "' ( l - f z ) ' ' a { C  dms. ( p )  + R }  
(110) rn 

m=O 

Then 

- ~ , 2 ~ a ' C ,  ( k )  
( 2 k + l )  ( 2 k C 3 )  (2k+5) ( 2 k + 5  

where 

The sums C, (k ) differ from zero only for even r>2k. In parti- 
cular 

It  is convenient to calculate the particular values of the sums 
C,  (k ) using the formula 

with coefficients that depend only on 6: 

In the expression for S,,, (p )we have extended the summation 
over k to C O ,  neglecting the exponentially small terms 
-exp(s,). The letter R in (1 15) denotes the residue of the 
series in k, i.e., the second term in the curly brackets of (1 11). 
The terms of the series R are exponentially small, -exp(s,). 
This follows from the representation of the sum D, (so$ )by a 
Sommerfeld-Watson integral, in which the integration con- 
tour extends to infinity and the edges of the cut - co < s < s,, 
where the integral can be easily investigated. Using (1 16) and 
(1 13), we obtain for the first three coefficients 
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If a is expressed in terms o fx  and 6, then Wis represented by 3'The point 5 = 1 is the condensation point of the sequence of points 
a power series inX with coefficients that are polynomials in 6 k  ,k = 192, 3,....9 in the interval 5 2  = 0.794<5, (6, = W ,  at which the 

f -2: 
exponentially small terms are transformed, when 6 approaches 1, into 
rapidly oscillating ones: 

35 35 w=w, ~ + - X ~ + - X ~  I-- { 8 428 ( ) + } (1 18) z4exp (-X) Im f sin ( X + y ) - x 4 s i n ( X + l )  Re f f . 

This asymptotic representation, obtained for { < 1 differs 
from the representation that is valid for c> 1 [see Eq. (103) 
and the pertinent comments] only in the absence of a rapidly 
oscillating part. It can be shown that when the parameter 6 
decreases near the point { = 1 the exponentially small terms 
contained in both representations become appreciable and 
annihilate the oscillating part of the representation for 5 > 1. 
This qualitative difference between the representations for 
f > 1 and f < 1 is possibly due to the fact that at 6 = 1 a decay 
channel with emission of photons into the wave becomes 
open. 

The fact that the coefficient of y does not depend on 6 
means that in a weak field the procdHs is sensitive tb the field 
frequency not under the condition f 5 1, but under the con- 
dition { s ~ ,  i.e., w 2 I. This can be understood in such a way 
that for the process that proceeds also in the absence of a 
field the time of formation of small correction terms for the 
total probability remains of the order of I -' arid is small 
compared with the period w-' of the change of the field if 
w(I .  

We are grateful to I. S. Shapiro for discussions and re- 
marks. 

"The units used are f i  = c = 1; m is the electron mass and a is the wave- 
potential amplitude. 

2'The estimate follows from the known equation that connects the time, 
the path, and the acceleration, wherein the path is I /eFand the accelera- 
tion eF/m. 

Thus, oscillating terms accumulate near 6 = 1, whereas in the interval 
l3 = 1.139 < 4 < 6, = w there is only one oscillating term, while at 6 < 6, 
there are none at all. 
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