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A quasiclassical approac:h is developed for the description of quantum-electrodynamics processes 
in a Coulomb field at high energies. An expression for the amplitude of coherent scattering of 
high-energy photons is obtained in simple form that makes it possible to determine the depen- 
dence of the total cross section of the process on the charge of the Coulomb center. 

PACS numbers: 13.40 -- f, 41.70. + t 

Coherent scattering of a phonon in a Coulomb field via 
virtual electron-positron fields (Delbriick scattering1) is one 
of the few nonlinear quantum-electrodynamics processes 
that are directly observable in experiment (see Refs. 2 and 3). 
The most favorable is the situation when o)m (w is the pho- 
ton frequency, m is the electro~~ mass, and f i  = c = 1). 

A survey of the numerous attempts at a theoretical de- 
scription of the process can be found in Ref. 2, but only 
Cheng and W U ~ - ~  have made substantial progress in the so- 
lution of the problem, by summing in a definite approxima- 
tion the diagrams of the perturtjation theory in terms of the 
parameter Za [Z  le I is the charge of the nucleus, a = e2 = 1/ 
137 is the fine-structure constant, of the interaction with the 
Coulomb field. It turned out (see Refs. 4 and 5) that 
allowance for the corrections in terms of e is the electron 
charge] changes the result radically at Za - 1 compared 
with the first nonvanishing perturbation-theory approxima- 
tion. 

In the present paper the amplitude of the photon scat- 
tering at w)m is obtained by a method that differs substan- 
tially from that developed by Cheng and Wu. The approach 
is based on the use of an integral representation obtained by 
us7 for the Green function of an electron in a Coulomb field, 
and on an explicit allowance for the classical character of the 
motion of high-energy charged particles. The method pro- 
posed can be used also to solve other problems in a Coulomb 
field. In the case considered here this approach leads to a 
much simpler expression for the amplitude of the process 
and makes it possible to calcula.te its total cross section. 

Let an initial photon with momentum k, = wv, pro- 
duce at the point r l  a pair of virtual particles that is trans- 
formed at the point r, into ,a photon with momentum 
k, = ov, (Ikll = Ik21 = w). The main contribution to the 
amplitude is made by the particle-pair energy E, -E, - w. We 
put A = k, - k,, and then the uncertainty relation gives 
7-w(m2 + A for the lifetime of the virtual pair (i.e., for 
the length of the loop, and p = l/A for the characteristic 
impact parameter. It follows therefore that in the momen- 
tum-transfer region 

m2/o<A<o  (1) 
we have the rat iop/~(  I, i.e., the angles between the vectors 
k,, k,, r, and - r,  are small. The contribution made to the 
total cross section by momentum transfers that do not satisfy 
condition (1) is suppressed as m2/w2. It must also be borne in 
mind that in scattering by atoms the point-charge approxi- 

mation is valid if rc - '(A (R - I ,  where R is the radius of the 
nucleus, rc is the screening radius of the nucleus 
(rc -(ma)-'Z - ' I 3  in the Thomas-Fermi model). This re- 
striction ensures at w 2 100 MeV satisfaction of the condi- 
tion (I), and we shall therefore consider below (except in the 
Appendix) only this momentum-transfer region. The mo- 
mentum-transfer regiond 5 m2/w was investigated in Ref. 6 
and called for a special treatment. In our approach we can 
describe the process in unified manner at all momentum 
transfers that satisfy the condition. To illustrate this, we cal- 
culate in the Appendix the amplitude at A = 0. 

In the Furry representation, the amplitude of the Del- 
briick scattering is 

where el and e, are the photon polarization vectors, 
2 = e, y, = - (e-y), y are Dirac matrices, and G is the 
Green function of an electron in a Coulomb field. The inte- 
gral with respect to E, and E, passes under the real axis in the 
left half-plane and over it in the right half-plane of the com- 
plex variable E. 

It is convenient to carry out the calculation in terms of 
helical amplitudes. We choose the polarization vectors in the 
form e',;) = ([AX v,,, ] + iA)/d, where h = [v, x v,]/ 
I [vl x v,] I .  There exist two independent amplitudes 
MI = M + +  = M-- and M 2 =  M + -  =M-+.  In terms of 
linear polarization, by virtue of parity conservation, the am- 
plitude differs from zero only when the polarization vectors 
of the initial and final phonon both lie in the scattering plane 
(MII ) or are perpendicular to it (M,). In this case 

, - &Mil - M, ). We represent the S M I =  i(MII + Ml),  M - 
function in (2) in the form 

With the first term in (3) it is possible to deform the contour 
of the integration with respect to E, and E, in (2) by taking the 
analytic functions of the function G into account (see, e.g., 
Ref. 7), in such a way that the integrals with respect to E, and 
E, encircle the right- and left-hand cuts, respectively. In ad- 
dition, when the contour with respect to E ,  is deformed the 
discrete spectrum makes a contribution that can be neglect- 
ed at w)m. With the second term in (3), the contours of 
integration with respect to E ,  and E, will encircle respectively 
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the left- and right-hand cuts; the quantity w - E ,  + E, turns 
out to be large, and the contribution of this term can be 
neglected. Carrying out these transformations and making 
the substitution E,+E, we have 

Here SG is the discontinuity of the Green function on the 
cut, SG (E) = G '+'(E) - G (-'(E), where G ' * '(E) defines the 
Green function in the upper and lower half-planes of the 
complex variable E, respectively. Expression (4) corresponds 
to the noncovariant-perturbation-theory diagram that 
makes the main contribution at w%m. By virtue of the mo- 
mentum conservation law M (Z = 0) a S(k, - k,), i.e., for the 
case considered by us we have A # 0,M (Z = 0) = 0. It  is con- 
venient to subtract from the integrand of M in (4) its value at 
Z = 0. It is precisely for this difference that it is correct to 
state that the angles between the vectors k,, k,, r, and - r,, 
which make the main contribution to the integral, are small. 
We assume hereafter that this subtraction had been made; 
we shall carry it out explicitly in the final answer. 

The characteristic value of the angular momentum 
I-pw -w/A turns out according to (1) to be large, and the 
quasiclassical approximation can be used. For the Green 
function G [see Eq. (19) of Ref. 71 this means that the contri- 
bution to the sum over 1 is made by 1% 1, and the quantity 
v = [l - (Za),] ' I 2  in the expression for G can be expanded 
in terms of the parameter (Za)'/l 2. In the region (1) it suffices 
to use the zeroth approximation, i.e., the substitution v-I. 
The sum over lcan then be calculated with the aid of Eq. (24) 
of Ref. 7, and we obtain an expression for the quasiclassical 
Green function of an electron in a Coulomb field: 

where 

n= ( ~ ~ - r n ~ ) ' ~ ,  n,, ~ = r , ,  ,/r1, ,, 
Y=X [2rlr2 (lSnln,) 1'"lsh xt, 

J, and J, are Bessel functions. We note that in the descrip- 
tion of the momentum-transfer region A 5 m2/w we must 
retain in the expression for the Green function the first term 
of the expansion in terms of the parameter (Za),/12. The 
corresponding corrections are given in the Appendix. In 
expression (5 ) ,  x, and x, are real and vary from 0 to w . The 
jump SG (E)  is determined by (5) if we use in it the upper sign 
and integrate with respect to t from - co to w . It is conven- 
ient to change over to the variable xt  in the integral with 
respect to t, make the substitution r,+ - r, in (4), and 
change from integration with respect to E ,  and E, to integra- 
tin with respect to x ,  and x,. We next make in (4) the follow- 
ing change of variables: r, = Ru,r, = R /u,x,,, =p,,,/R. 
The integral with respect to R takes then, at the accuracy 
required, the form 

The integration with respect to R can be extended here from 
- w to w (the contribution of negative R has a power-law 

smallness in the parameter m/o), and the integral can be 
calculated in elementary fashion. We calculate the trace and 
expand the integrand in (4) in powers of the small angles. It is 
convenient here to direct the axis of the spherical system 
along v, + v,. Taking the smallness of the angles into ac- 
count we have d o  ,,, ~8 ,,,d8 ,,,dp ,,, = d 281,2, with 
el,, .(v, + v,) = 0. The Bessel functions depend on the vec- 
tors 8, and 8, only in the combination (8, - 8,l. We make 
the change of variables 8 = 8, - 8,,E, = 8 ,v  + O2/v, after 

G(*' (r2, rl I E) which the integral with respect to d 2( can be evaluated. An 
analysis of expression (4) shows that the main contribution to 

ix2 dt =* -J -erp{=ti[2~a~t+x (r2+r1)cth x t l ) ,  the integral is made by large positive t, and t ,  [the integration 
4n I, sh2 xt in the expressions for SG (E ,) and SG ( - E,) is carried out with 

x respect to t, and t,, respectively, cf. (5)]. 
~ { [ ~ ~ ~ + r n *  T(r, n l - n t h  We introduce the variables x ,  = 4 exp t,, x, = 4 exp t, 

Y and carry out the expansion with allowance for the fact that 

(7, n,+n2) r z a x  cth xtlo(l- (yn2) (mi) ) I} , x,,, $1. It is convenient to integrate in the expression for M, 
by parts with respect to x, and x,, so as to leave in the pre- 

(5) exponential factor only the Bessel functions J,. We obtain 
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We make the change of variables i e l n v / z  

d~xe"*~l, (ax) I, (bx) = - I" ($) exP [ -i (a2+ b 2 )  ] 
2c 4c ' - 

and carry out inversion in the space of the vectors 0 (8-+1/8 ), 
after which the Bessel functions cease to depend on 8 and the 
integral with respect to d 28 is eissily evaluated. In the subse- 
quent calculation of the amplitude M, we make the substitu- 
tions 

after which we integrate first with respect to E and then with 
respect to x, using the relations (Ref. 8, pp. 732 and 744 of 
Russ. original) 

i sign c 
~dxe 'cxl~ (x) = (+I) 'A 7 

0 

and the relations obtained from them by differentiation with 
respect to the parameter. In the calculation of the amplitude 
M2 we make the change of variables 

~ ,=e ' /~ /x ,  ~ ~ = e - ' / ~ / x ,  pi=Et, p2=E/t 
and integrate with respect to x and then with respect to E, 
using (7). We obtain ultimately for the amplitudes 

32ao 

0 0 0 

2 (Za) cos (2Zaz) Sz = 
2B 

d (t+l/t) 
3B2 sin2 (Zat), 

(g+d ch r )  + - 2 sin2 (Zaz) Za sin (2Zat) te-'+ 
f; 

dD5 d3 d2 

- 
We obtain now the asymptotic form of the amplitudes ~ ~ ( ~ > ~ l  (2.)' J dr  cos (2Zaz) z 

A2 (cht-- M, and M2 at m(A (o. In this limit, the main contribution sh 7 shr).' 
to M, is made by the region of integration with respect to t in 0 

(8) near to = exp(r/2). Assuming to = exp(r/2)(1 + x), we (10) 

have D Z ~ ( X ~  + B cosh*(~/2)]"~. In the remaining func- The integral with respect to r in (10) is calculated with the aid 

tions we can put t = 60, after which the integrals with re- of the relation (Ref. 8, p. 376 of Russ. orig.) 

spect to x and v are calculated. We obtain 1 
Jdxe-ps ( - (11) 

2ao gdz sin2 (Zaz) M , ( A > ~ )  xi, / 0 

A ch4(z/2) ch t where $(x) = d 1Ilr (x)/dx. We obtain ultimately 

The asymptotic forms (9) and (12) agree with the result of 
The calculation of the contribution made to the asymptotic Cheng and Wu (see Ref. 4). 
form of the amplitude M2 by the term proportinal to D -' in We obtain now the asymptotic forms of the amplitudes 
S, [Eq. [8)] is carried out similarly. In the remaining terms of M, and M2 at m2/o(A (m. To calculate the asymptotic 
S2 we assume B = 0. After straightforward but awkward cal- form ofM, we divide the region of integration with respect to 
culations we get T into two: from 0 to T, (M, ,) and from ro to oo (M,,), where 
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r0 is such that B - " 2 ~ ~ , ( 1 .  We then assume D z B  sinhr in 
the integrand of MI, and obtain after elementary transfor- 
mations 

Using (1 1) we have 

where C = 0.577 ... is the Euler constant. We expand in the 
expression for MI,  with allowance for the smallness of r. In 
this case 

D= [B(t+l/t) B 2 ~ 2 ]  Ih. 

After integration we obtain 

Adding (14) and (15), we ultimately obtain 

In the limit considered, the contribution to the amplitude M2 
is made by small 7-23 -'I2, and the principal term is the first 
one [ cc (Za)2] in S2. Expanding in powers of r and transform- 
ing to the variablex = rB lI2/(t + l/t ), the integrals with re- 
spect to v and t become elementary and we have 

1 2ao 
(Za) ' .  

+ 2 ( x ' + 1 ) "  

The asymptotic forms (1 6) and (17) agree with the results of 
Cheng and Wu (see Refs. 5 and 6). 

For an unpolarized initial photon the differential scat- 
tering cross section is 

and does not depend on the photon frequency. Expression (8) 
for the amplitudes M, and M, was found to be very conven- 
ient for numerical calculations, since all the integrals in it 
converge rapidly. Figure 1 shows a plot of go-'do/dx 
(0, = (Za)4re2/16.rr,re = a /m,2 /16~= ;  1.58 mb) vs the mo- 
mentum transferA for Z = 1 (curve I), Z = 47 (curve 2), and 
Z = 92 (curve 3). The muon contribution can become notice- 
able only at large momentum transfers. The corresponding 
amplitudes are obtained from (8) by the substitution m j m ,  . 
At Z = 92 this contribution increases the differential cross 
section for A = 10, 20, and 30 MeV by 2, 6.5, and 12.4% 
respectively. The differential cross section obtained by us 
agrees with the results of the numerical calculations carried 
out by Willutzki3 using the equations of Ref. 4 for uranium 
and gold, and with the experimental values obtained for 

FIG. 1.  Differential scattering cross section vs A at Z = 1 (curve I) ,  
Z = 47 (curve 2), and Z = 02 (curve 3). 

these cross sections in Ref. 3. Figure 2 is a plot of the total 
cross section (in units of go) vs the charge of the Coulomb 
center. The only result obtained so far for the total cross 
section of the process at w)m is that of Ref. 9 [see Eq. (29) 
there] and is of the form 

0 = 2 ~  (7/8) Z ~ o = i 9 . 4 ~ o .  

Since the Born approximation was used in Ref. 9, this result 
must be compared with that shown in Fig. 2 at the point 
Z = 1, where oz54ao .  This discrepancy is due to the fact, 
indicated in Ref. 5 (see also Ref. 2), that the approach used in 
Ref. 9 is incorrect. It follows from Figs. 1 and 2 that the 
Coulomb corrections decrease the cross section substantial- 
ly. If the initial photon is not polarized, partial polarization 
of the final photon in the scattering plane is produced. The 
corresponding Stokes parameters are 

Figure 2 shows the dependence of the Stokes parameter 6, on 
A. It can be seen that the degree of polarization increases 
with increasing A and approaches an asymptotic value ob- 
tained by substituting in the definition of 6, the expressions 
for MI  and M, from Eqs. (9) and (12). At a fixed value of A, 
the value of 6, increases with increasing Z. 

The authors thank B. N. Baier and V. S. Fadin for a 
helpful discussion. 

FIG. 2. Dependence of the total scattering cross section on the Coulomb- 
center charge. 
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FIG. 3. Dependence of the Stokes parameter on A at Z = 1 (curve I), 
Z = 47 (curve 2), and Z = 92 (curve 3). 

APPENDIX 

In the momentum transfer region A 5 m2/o it is neces- 
sary to take into account the corrections to the quasiclassical 
Green function (5). The exact Green function in a Coulomb 
field [see Eqs. (19) and (20) of Ref. 771 contains sums over I, in 
the form 

where 

and P; are derivatives of Legendre polynomials. The transi- 
tion to the quasiclassical approach consists of an approxi- 
mate calculation of these sums with allowance for the fact 
that the contribution is made by 1)l. Substituting v-1 in 
(Al) we obtain [with the aid of Eq. (24) of Ref. 71 in the zeroth 
approximation 

Here g, is the angle between n, and n,: cos(g,/ 
2) = [(l + n,n2)/2]'I2. In the momentum-transfer region de- 
fined by the condition (I),  the main contribution was made 
by small angles between n, and - n,, i.e., $=(r - p)4 1. 
For such angles $, the Legendre-polynomial combination 
P;(n,.n,) + Pi - ,  (n,-n,) is approximately equal to 
( - I)'+' lJ,(l$). Using the integral representation for J,' ly) 
we obtain 

OD 

1 "  s:' =- dlP'l0 (lp)-I dB cos (218-y sin 0 ) .  
x 

We have replaced the summation over 1 by integration. Since 
y> I ,  contributions are made by 1 -y and 6 4  1, and the inte- 
gral with respect to 6 can be replaced by S (21 - y). We obtain 
ST)--  - &y2J,,ly$/2), which agrees with (A /2) at $41. The 
calculation of S $' at these angles is similar. 

If cos(g,/2)- 1, the argument of the Bessel function in 
(A2) is large and we can use the corresponding asymptotic 
expansion. We now obtain these asymptotes by the method 
used by us the corrections to S 2 )  and S g). The principal term 
of the expansion of P, (cosg, ) at sinq - 1 and 1) 1 is of the form 

Using also the integral representation for J,, ly), we get 

- - Lctg(d2) I' j dl  (i) jde sin [ 1 ( 2 0 - ~ ) - ~  sin o - - . 
sin cp 

0 " I 4 

(A41 
Here $ = P - g,, and we have retained only the term in 
which cancellation in the argument of the sine function is 
possible. Summation over I was replaced with integration. 
We put 6 = I$ + x and expand the argument of the sine 
function in powers of x ,  retaining the quadratic terms. After 
integration with respect to x we have 

ST) z- - [ 2 1 " j 
n sin cp y sin(cp/2) 

2 y sin ($ /2)  

It can be seen that a contribution is made by 1 z& cos ($/2) 
in the interval dl- sin ($/2)]1'2. We ultimately get 

Obviously, Eq. (A6) is the leading term in the expansion of 
S$" from (A2) at y cos(g,/2)> 1. The corrections to S$" and 
S$) are similarly calculated, and it is necessary to retain the 
next terms of the expansion in (1/1) in (A3) and in ex- 
p( - irv)J,,ly). If we put S, = S$" + S ; )  + ... and 
SB = S?) and SB = Sgl  + S ; )  + ..., we obtain at y cos (p/ 
2 ) s  1 

( Z a )  ' [ y cos (qJ/2) ] " [ s:) - cp cos @-neiB 
sin cp 8n 

+ (rq sin @+ineiB) [1+3 cosZ(cp/2) ] - 
4y sin cp sin (cp/2) y sin sin@ (cp/2) I 

s;' NN - cp -'" (A71 
(Za )2  [ 2 n y  cos [ cp sin p+ineip 
sin cp 

( c p  cos $-nei6) [ 3 f  cosZ(cp/2) ] + --- - 
4y sin cp sin ((p/2) y sin (cp/2) 

wherep = y cos (q/2) + ~ / 4 .  Substituting the corrected val- 
ues of S, and S, in Eqs. (19) and (20) of Ref. 7 we obtain the 
quasiclassical Green function with the corrections taken 
into account. 

As already noted, the contributions to the sum are made 
by the large I--@ cos ($/2), with A1 /I( 1. Introducing the 
impact parameter p = I /x and denoting x ,t, and x2t2 by t, 
and t ,  [these are the integratin variables in the expressions 
for the Green functions, see (541, we have 
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At momentum transfers of the order of A 5; m the value of R 
is of the order of the length of the loop: R-o/m2 and 
Sp = Ip, -p,J - l/m. It is clear from geometric consider- 
ations thatp-R$. Comparing the last relation with (A8) we 
have $- l/sinh t. For the quantity Sp from (A8) we obtain 
Sp -pit, - tl 1 .  I t  follows from the foregoing relations that 
$It, - t,J -m/w, i.e., at $- 1 contributions are made by the 
values It, - t, 1 -m/w and sinh t - 1. For angles $4 1 we 
have sinh t- l/$> 1, a fact used in the calculation of the 
amplitudes in the region (1). 

We proceed now to calculate the amplitude M, at zero 
momentum transfer (A = 0), which we denote by M,. The 
amplitide M, vanishes at A = 0 by virtue of the conservation 
of the angular momentum projection along the direction of 
motion of the initial photon. We subtract from Mo the terms 
that do not depend on Za .  For the case considered by us this 
corresponds to renormalization of the amplitude M,. The 
expression for Mo is obtained from (4) by the substitution 
k,-+k,; in addition, 6 can be replaced by & and averaging 
carried out over the polarizations: 

The trace is then easily calculated. We make the change of 
variables r ,  = Rv,r, = R /v and x , ,  =p,,,/R, and then the 
integral with respect to R is calculated just as before. It is 
proportional to (vl(n2/v - n,v)). The meaning of this func- 
tion is that when the z axis is chosen along the direction of 
the incident photon we have z, - z, > 0, where z, (z,) is the 
coordinate of the point of pair creation (annihilation); this is 
equivalent of time-ordering of these events. At the angles 
$4 1 that contributed to the transfer region (I), this 9 func- 
tion separated the contributions of the positive values oft ,  
and t,. According to the foregoing physical picture, it is con- 
venient, when calculating M,, to divide the region of integra- 
tion with respect to $ in two. We choose $o such that m/ 
w($,(l. In the region $ > $,the integrals with respect to t,, 
t,, and v and with respect to the azimuthal angle between the 
projections of n, and n, on a plane perpendicular to k, are 
evaluated by the stationary-phase method. Inasmuch as 
$> $, the contributions are made by It, - t, 141, while the 
parameter Za enters in the phase of the integrand for M in 
the combination Za(t,  - t,), the contribution to this region 

is proportional to (Za),, which corresponds to the Born dia- 
gram. The corrections to the Green function (5) need be tak- 
en into account only in this region. After simple calculations 
we obtain for the contribution of the angles $ > $,, 

For small angles ($ < $,) it is convenient, just as in the 
calculation of the asymptotic form of the amplitude Ml at 
m2/w(A (m, to divide the region of integration with respect 
to T = t, - t2 into two: JTJ < r0 and I T )  > r0, where m/ 
W $ ~ ( T ~ (  1. In the region I T [  > r0 the calculations are carried 
out exactly as in the derivation of (14). For this contribution 
we have 

In the region 171 < r0 the integrals with respect to (t, + t2)/2, 
v, and the azimuthal angle are calculated by the stationary- 
phase method. For this contribution we obtain 

($, 2 8 a o  m &I, =-i- a)' In----- +5+91]. (Al l )  9mAZ [ 2w$,r0 2 28 

Adding Ma', M f), and M f) we obtain for M,, 

Expression (A12) agrees with the result of Ref. 10. We em.. 
phasize that the method described here can be used to calcu- 
late the amplitudes in the entire momentum-transfer region 
A 5 m2/o. 
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