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A special case of the Yang-Mills equations is investigated, for which a transverse intersection of 
separatrices of unstable closed trajectories occurs. This implies the nonexistence of real-analytic 
first integrals of the motion other than the Hamiltonian. A consequence of this fact is the absence 
of a complete set of integrals for a system describing classical Yang-Mills fields. A qualitative 
proof is given for the absence of integrals other than the Hamiltonian for the case of transverse 
intersection of the separatrices. Numerical methods are described for the construction of separa- 
trices and doubly asymptotic solutions, and for the determination of the angles between separa- 
trices. 
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81. INTRODUCTION 

The problem of integrability of the classical Yang-Mills 
equations is extremely important both for classical and for 
quantum field theory. The interest in this problem has in- 
creased after the appearance of the Refs. 1 and 2. In Ref. 1 it 
was shown that the self-duality equations determine a spe- 
cial integrable case for the classical Yang-Mills equations, 
and on the basis of this result multi-instanton solutions were 
constructed in Ref. 3. In Ref. 2 it was noted that there is no 
stochastization of the initial condition for the Klein-Gordon 
equation with a cubic nonlinearity-this is the case of a two- 
dimensional, one-component Yang-Mills field. Another in- 
teresting fact is the nontrivial analogy between a Yang-Mills 
field and an n-field. Both theories are renormalizable, both 
exhibit asymptotic freedom, and both have instanton solu- 
t i o n ~ . ~  At the same time the equations of the n-field are a 
completely integrable ~ y s t e m . ~  All these considerations led 
to the hope that the Yang-Mills equations are also complete- 
ly integrable. The present paper proves the opposite, namely 
that a system of classical Yang-Mills equations is noninte- 
grable in the sense of not having a complete set of real-ana- 
lytic integrals of the motion. 

In the classical case the integrability of a system with N 
degrees of freedom means the existence of a Hamiltonian 

( p , ~ ,  =0,1,2,3;a,b,c, = 1,2,3). HereAE areelementsofan 
arbitrary Lie algebra. In the sequel we consider the case of 
the SU (2) algebra (for which the notation is used above) such 
that A, can be identified with vectors in the three-dimen- 
sional isospin space. 

We shall reason in the following manner. Assume that 
we know a substitution satisfying the equations (1.1) and re- 
ducing them to a simpler system amenable to a detailed in- 
vestigation. If the system (1.1) has a complete set of integrals 
of the motion, any subsystem with N degrees offreedom will 
also have N constants of the motion. If the subsystem does 
not have a complete set of integrals of the motion, then the 
original system will have fewer integrals smaller than de- 
grees of freedom. Thus, the nonintegrability of the subsys- 
tem implies the nonintegrability of the whole system. We 
note that the integrability of a subsystem does not imply the 
integrability of the whole system. 

To simplify the system (1.1) we make the substitutions 

A~"=O,  a i~ j "=o ,  A ~ ~ = o ~ ~ ~ ,  x=!', Y = ~ L ,  z= j3=0  

(1.2) 
(here 0 f are orthogonal constant matrices satisfying 0 ;0 
= Pb /g2, no summation over a), which reduces (1.1) to the 

system of ordinary differential equations - 
and N - 1 constants of the motion whose Poisson brackets x+xy2=0,  y + x 2 y = 0 .  (1.3) 
vanish pairwise. In principle, this allows one to find solu- The dot denotes differentiation with respect to time. This 
tions. The integrability of the classical system implies, as a 
rule, the integrability of the corresponding quantum sys- 

system has the obvious integral of the motion 

tern6" in the sense of the existence of a complete set of com- H='12 (22+r j2+xZyZ) .  (1.4) . . 
muting operators, although this is not always the case.6b The equations (1.3) and the integral (1.4) are invariant with 

Thus, we are facing the question of integrability of the respect to the scale transformation 
Yana-Mills equations7 

where 

F,"=a,AVa-a,A,"+geabcA~A," 

where E is the energy. 
On account of this the system (1.3) has no parameters 

which allows us, in particular, to setE = 1/2 hereafter with- 
out loss of generality. 
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Reference 9 proves that the system (1.3) has no other 
integral of the motion under the assumption that it can be 
analytically continued into a strlp of finite width in the com- 
plex plane. This assumption imposes considerable math- 
ematical constraints on the fornn of the integral we are look- 
ing for. 

In Ref. 10 approximately twenty periodic trajectories 
for the system (1.3) were found numerically, and it was dis- 
covered that in the numerical integration they are unstable 
with respect to a small change in the initial data for the tra- 
jectories. In Ref. 1 1 numerical calculations of long trajector- 
ies were the basis of the conclusion that the system (5.1) is 
stochastic. The results of Ref. 11 are an indication that the 
system (1.1) is nonintegrable. 

An unambiguous criterion of nonintegrability is the in- 
tersection of separatrices. In om brief paper we stated that 
the separatrices of the system ( I  .3) intersect at a nonvanish- 
ing angle, i.e., transversally. This immediately implies the 
absence of a real-analytic integral of the motion other than 
the Hamiltonian. Thus, the system (1.3) is nonintegrable in 
the same sense as the three-body problem of celestial me- 
chanic~. '~ The nonintegrability of the system in the indicat- 
ed sense definitely implies the absence of a complete set of 
integrals for the system (1. I), i.e., the nonintegrability of the 
classical Yang-Mills field. 

In $2 we discuss a model exemplifying the construction 
of the Poincari separatrices, artd of the doubly asymptotic 
solutions with a computer. 

In $3 we give a qualitative proof of the absence of any 
real-analytic integral of the moltion other than the energy if 
the separatrices intersect transversally. 

In $4 we discuss the behavior of the integral curves of 
the system (1.3) and determine the intersection points of the 
separatrices in the PoincarC se:ction, as well as the angle 
between them. 

In $5 the doubly asymptoti~c solutions are constructed, 
and the angles between the separatrices in phase space are 
calculated. 

82. BEHAVIOR OF SEPARATRICIES IN THE POINCARE 
SECTION 

In this section we demonstrate with a simple example 
how the separatrices of an unstable solution behave in the 
absence of integrals of the motion other than the Hamilton- 
ian. We construct the Hamiltoriian to be investigated, of a 
system with two degrees of freedom, in the following man- 
ner. In the y coordinate we introduce a harmonic oscillator 
with the potential energy U ( y) := y2 and in the x coordinate 
we consider the potential energy U (x) = (x2 - 1)' with the 
manifestly unstable solution at x = 0. Moreover, we add a 
positive-definite nonlinear term of the simplest form 
U (xzy) = &x2y2, where E)O. AS a result we obtain a mechani- 
cal system with the Hamiltoniari 

with the assumption that E > 11'2. The equations of motion 
have the form 

The phase space of the system is four-dimensional with 
coordinates (x,x,y,y). The solutions of the system (2.2) are 
curves in this space. We fix the value of the energy. Each 
definite energy defines in the four-dimensional phase space a 
three-dimensional hypersurface on which the trajectories of 
the system are located. We intersect the constant energy sur- 
face with the half-plane defined by y = 0,y > 0 (the PoincarC 
section or mapI3). We choose x and x as coordinates on this 
half-plane. 

An arbitrary trajectory "pierces" the half-plane in an 
arbitrary number of points. A closed trajectory pierces the 
half-plane in a finite number of points N. After N intersec- 
tions with the half-plane (or, what amounts to the same,after 
the period Tof the trajectory) such a trajectory will intersect 
the plane at its original point, i.e., will close on itself. Thus, 
such a point A, is a fixed point of the N-th iterated PoincarC 
mapping of the half-plane into itself. 

By means of the PoincarC section the study of the behav- 
ior of trajectories which are close to closed trajectories is 
replaced by an analysis of the behavior of the points in the 
section. We place the coordinate origin in the fixed point A, 
of the ( y = O,y > 0) half-plane. The coordinates in the vicini- 
ty of this point will be denoted by (5,i).  A trajectory of the 
system (2.2) with initial point (f ,,i,) will intersect a neigh- 
borhood of the origin at the point (f2,i2). Considering the 
deviations (Ci , i i  ) small, we introduce the matrix AT : 

Thus, the matrix A T  realizes the mapping of the half- 
plane into itself in the neighborhood of the fixed point (the 
so-called monodromy matrix of the Poincart map). The 
monodromy matrix is constructed in the following manner. 
We linearize the system (2.2) near the periodic solution 
x = x,(t ), y = y,(t ) by means of the substitution x = xo + 5, 
y =yo + q, considering 6 and r] as small: 

The simplest periodic solution of the system (2.2) with 
period T = 277 is: 

(for definiteness we have set E = 1) and determines a closed 
trajectory in phase space. This trajectory intersects the half- 
plane at the point x = 0,x = 0, i.e., the point Ao(O,O) is a fixed 
point of the mapping of the half-plane into itself. 

For the solution (2.4) the system (2.3) takes on the form 

f--2E+ey,2E=O, q+q=o. (2.5) 

It is obvious that the first equation in (2.5) has growing solu- 
tions, i.e., the periodic solution is unstable. The variations r] 

and 4 correspond to a shift along the trajectory and a change 
of the time scale (or, what amounts to the same, the energy 
scale), and are unimportant in the case under discussion. 

We first set E = 0, when the solutions of the system (2.5) 
have the form 
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E=E, exp (Y%) +tz exp (--vZt), ing a closed curve. Thus, we note that if there exists a com- 
plete set of integrals (the number of integrals equals the num- 

q=ql exp (it) +q2 exp (-it). (2.6) ber of degrees of freedom) the invariant curves in the 
Poincark section are closed. 

In the basis14 (A 7) the matrix has the form What happens for E#O? TO answer this question it is 

ch z s h z l f i  
necessary to construct the separatrices. For definiteness we 

AT= ( (2.7) set E = 1. In this case the system (2.2) has again the solutions 
Y2shz chz (2.4) with T = 27~. The monodromy matrix is constructred 

where 7 = 2147~. by numerical integration of the systems (2.2) and (2.5). Its 

owing to the fact that the system (2.2) is Hamiltonian, eigenvalues are real and A = 2128.14068 ..., while p z ( l /  
T ) l d  = 1.21960 ... . The invariant straight lines have the the Liouville theorem implies det AT = 1 and the PoincarC - 

map is area-preserving.   he eigenvalues of the matrix AT are form 

determined14 from the equation (Sp = trace) t=+1.34402696E. 

h2-Sp ATh+ l = O ,  (2.8) We note that knowing the Lyapunov exponent p, the 
period T of the trajectory, and the error per step p one can 

withil ,A, = 1. It is obvious that in our case A a n d 4  are real estimate the number N,,, of mappings for which the count- 
for simplicity weshalldenotethelargerof the eigenvaluesb~ ing error will not manifestly influence the results. In our case 
A. In the case E = 0 p- 10-l2 and 

The eigenvectors of the matrix AT define a pair of 
straight lines which are invariant under the PoincarC map- 
ping of the neighborhood of A, into itself. For the matrix 
(2.7) the invariant straight lines are given by 

~ = * f 2 ~ .  (2.9) 

In a neighborhood of the point A,(O,O) these lines are asymp- 
totes of the separatrices (of the invariant curves passing 
through the fixed point A,j. 

We note that for E = 0 the system (2.2) has, in addition 
to the Hamiltonian (2.1) the integral 

11='/2[i24 ( X ~ - I ) ~ ] ,  (2.10) 

which determines the energy of the oscillations in the x di- 
rection. For a fixed value of the Hamiltonian (2.1) it is ob- 
vious that to different values of the integral I, will corre- 
spond different invariant curves in the Poincari section (see 
Fig. 1). For I, = 1/2, (2.10) is the equation of separatrices of 
the point A,(O,O)." These separatrices intersect at the points 
x = + ~2 under a zero angle, i.e., they coincide there, form- 

It should be noted that this error is underestimated, since the 
counting error in the neighborhood of the point A, grows, 
roughly speaking, "along" the separatrix according to Eq. 
(2.12) and decays in the "transverse" direction. This is a usu- 
al property of hyperbolic mappings (cf., e.g., Ref. 15). 

Starting in the neighborhood of the point A, with the 
invariant line (2.1 1, + ), we shall mark the intersection 
points of the trajectory with the Poincari section. As the 
initial data traverse a portion of this line the intersection 
points will trace out the separatrix in the half-plane. (We 
note that one can increase the numerical accuracy consider- 
ably by choosing in the vicinity of the line (2.1 1, + ) such 
initial data that for t--t - UJ the intersection points should 
not go off the line (2.11, + ). This significantly strengthens 
the guarantee given by the estimate (2.12), of a correct result. 

The separatrices of the unsable point A,(O,O) for E = 1 
are shown in Fig. 2. The angle at which the separatrices in- 
tersect is clearly not zero. We remind the reader that a separ- 
atrix is called unstable if the trajectory which intersects the 
half-plane along this separatrix, approaches the point A, as 
t-+ + UJ. 

FIG. 1. The invariant curves in the PoincarC section y = OQ > 0 for the 
system (2.2) at c = 0 and E = 1 .  The values of the integral 1, (2.10) are FIG.  2. The separatrices of the unstable fixed point A,(O,O) in the section 
marked under the curves. The curve with I, = 1/2 represents the separa- y = 0,y > 0,  for the system (2.2) at E = 1 and E = 1 .  It can be seen that the 
trices of the unstable fixed point A,(O,O). separatrices intersect transversally at the point M,. 
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Since the equations (2.1) and the integral (2.2) are invar- 
iant with respect to the substitutions t++ - t a n d w  - y, the 
stable and unstable separatrices are symmetric about the x 
axis. Similarly, on account of invariance with respect to the 
transformations tct - t and x++ - x the separatrices are 
symmetric about the x axis. 

Thus, for E # O  the separat~rices do not coincide, but in- 
tersect at a nonvanishing angle (i.e., transversally) and do not 
close. We note that the separaitrices intersect for arbitrary 
nonvanishing values of E and that at E < 1 the angle of the 
first intersection of the separat~ices is small: p-&,I6 but in 
the subsequent intersections the angle can become arbitrar- 
ily large. For E( 1 we would see by constructing the separa- 
trices that they practically coincide, but that in subsequent 
intersections in a small neighborhood of the point A, the 
angle between the separatrices is no longer small and the 
oscillations of the separatrix along itself become arbitrarily 
large. The transversal intersectl~on of the separatrices bears 
witness to the fact that at E#O the system (2.2) does not have 
in the general case a first integral other than the Hamilton- 
ian.13 This does not, however, say that as E-W, i.e., when 
the system (2.2) goes over into (1.3), one will observe an inter- 
section of the separatrices. A simple example is the system 
with the Hamiltonian 

which has obvious integrals an~d no intersection of separa- 
trices in both limiting cases (&--PO and E+ w ) and at E #O the 
separatrices intersect with unity probability and the system 
is nonintegrable. 

g3. INTERSECTION OF SEPARAlrRlCES AND THE ABSENCE 
OF AN ADDITIONAL INTEGRAL 

The phenomenon of interlsection of separatrices was 
discovered by PoincarCI3 towards the end of the last century, 
during his investigation of the three-body problem. In the 
same paper he has shown that in the case of intersection of 
the separatrices there exists no additional integral. However, 
a rigorous proof appeared only irecently in Ref. 17. Here we 
give a qualitative proof.2' 

Figure 2 shows the picture of intersection of separa- 
trices of the system (2.2) with E = 1. Figure 3 was obtained 

from Fig. 2 by a change of scale, to increase clarity. Qualita- 
tively the two pictures are equivalent. 

We assume that the system has an additional integral I,. 
Then Mo is the "first" intersection point of the separatrices. 
By definition, a point belonging to a separatrix goes over into 
a point belonging, to the same separatrix (i.e., one and the 
same phase-space trajectory passes through these points). 
The point Mo belongs to both separatrices, which means that 
under the PoincarC mapping it will go over into a point of 
intersection of the separatrices (in Fig. 3, e.g., this will be the 
point M,). The point N, is mapped into the point N2. It is 
obvious that in our case the whole region Lo is mapped into 
L,  the region L,  is mapped into L,, etc. In Fig. 3 we have 
Mi -Mi + , , N, HN, + , , L, HL, + , , and R, -Ri + , , for ar- 
bitrary i = ..., - 2, - 1, 0, 1, 2, ... and t > 0. 

Since the system is Hamiltonian, the mapping is area- 
preserving, so that the areas of the regions are equal to each 
other. Thus, the length of the regions L, (i.e., the length of 
the stable separatrix between the points Mi and Ni ) will tend 
to zero as t--+ + w , and the width (the length of the unstable 
separatrix between the same points) will tend to infinity. 

If the system has an integral I, in addition to the Hamil- 
tonian, it has a fixed value on each invariant curve, and to 
different invariant curves will correspond different values of 
the integral (see $2). Thus, the integral I, has a fixed value 
only on the curve. We denote by c, its value on the separa- 
trices, i.e., I, = c,. Then its value at the boundaries of an 
infinitely long and infinitely narrow region (L, or R, , where 
k )  1) is equal to the same constant. 

Two possibilities arise hereI9: either the integral I, is 
equal to a constant in the whole region, i.e., I, = c,, or the 
integral has a real singularity inside the region. If the second 
alternative is assumed, then what was said above about the 
mapping of regions implies that the integral has singularities 
in all the regions Li and R, . 

It is known2' that the intersection points of the separa- 
trices form a Cantor set, and thus the regions between them 
have a quite complicated structure. An integral having real 
singularities on such a set is quite an exotic object. Therefore 
the existence of such an integral seems unlikely. If one as- 
sumes that the integral has no real singularities, then it is 
equal to a constant in the region L, ( k s l )  and in all the 
regions L,and R,. Thus, the fixed value of the integral 

FIG. 3. The same as Fig. 2. For clarity it is not to scale. The solid 
line represents the unstable separatrix and the dashed line repre- 
sents the stable separatrix. Only one branch of each separatrix is 
shown. 
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I, = c, extends from the curves into a region of nonvanish- 
ing area. However, the integral which has a fixed value in the 
whole region is just the Hamiltonian. 

Thus, the fact of transversal intersection of separatrices 
implies the absence of an integral other than the Harnilton- 
ian, and having no singularities on the real axis. This is the 
strongest of the known cases of nonintegrability: the Poin- 
car6 case. The transversal intersection of separatrices is re- 
sponsible for the nonintegrability of the three-body problem 
of celestial mechanics.13 In the same sense some particular 
classical equations obtained by means of the substitution 
(1.2) are nonintegrable, as will be shown below. 

94. INTERSECTION OF THE SEPARATRICES IN THE CASE OF 
THE YANG-MILLS EQUATIONS 

The system of equations (1.2) has the obvious periodic 
solutions8 

x=+y=+F, (4- 1 ) 

where F = cn (t, 1 / a )  is Jacobi's elliptic cosine. 
We reason by analogy with $2. We linearize the system 

(1.3) near the solutions (4.1). Introducing the variables 
x = F + g + v a n d y = F + g - v w e o b t a i n  

It is obvious that the solutions (4.1) are unstable in the 
"transverse" direction. We construct numerically the mono- 
dromy matrix AT for these solutions and determine its eigen- 
values. A numerical calculation yields 

hi=129.647014. . . , h2=1/Xi. (4.3) 

In the half-plane ( y = Ojr > 0) the fixed points correspond- 
ing to the solutions (4.1) are A ,(0,1/fl) and A,(O, - 1/fl). 

The procedure for constructing the separatrices is de- 
scribed in $2. The separatrices are represented in Fig. 4. Un- 

FIG. 4. The separatrices of the fixed points A,(O,l/d) and A,(O, - 1/d) 
in the section y = 0, y >O for the system (1.2): the unstable (dash-dot) and 
stable (long dashes) separatrices of the point A,; the unstable (dotted) and 
stable (short dashes) separatrices of the point A,. 

der the transformations h - t, y~ - y, and h - t, 
x- - x the unstable separatrices become stable. It can be 
clearly seen that at the "first" intersection point 
K,(1.424932 ..., 0) the separatrices intersect transversally and 
their angle of intersection is approximately 72". If one inter- 
section point exists it follows that there is an infinity of them. 
Figure 4 illustrates this fact clearly. The oscillating tongues 
of the trajectories are long, and with each oscillation their 
length increases. This can be seen from the figure, where the 
tongues execute in each rotation a large but finite number of 
rotations around the point (0,0), after which the separatrices 
squeeze closer to one another. 

We note that in distinction from the case considered in 
82 the unstable separatrix of the point A,  intersects both the 
stable separatrix ofA , and the unstable separatrix ofA,. The 
intersection points of the separatrices of one fixed point are 
homoclynic (in Fig. 4 these are the points Mi), and those 
belonging to different fixed points are heteroclynic (the 
points Ki in Fig. 4).13." The difference between these two 
kinds of points is the following. In the case when the separa- 
trices close (Fig. 1) there is a doubly asymptotic trajectory 
passing through each point of the separatrix ("piercing" the 
Poincart section). As t-, + a~ it approaches the point A, 
intersecting the stable separatrix and winding itself mono- 
tonically to a periodic trajectory from one side. As t-t - a~ 
it approaches the periodic trajectory from the other side, 
intersecting the unstable separatrix at the same point A,. 
Doubly asymptotic trajectories exist not for all points of a 
separatrix when the separatrices intersect, but only for their 
intersection points. Through homoclynic points pass trajec- 
tories which are doubly asymptotic to the same periodic tra- 
jectory-homoclynic trajectory. Heteroclynic trajectories 
pass through heteroclynic points and are doubly asymptotic 
to two different trajectories.13 This property of the homo- 
and heteroclynic trajectories can be used to verify whether 
or not the separatrices intersect, and to calculate the angle 
between them (see $5). 

We note that the separatrices of an unstable periodic 
trajectory are two-dimensional surfaces on the three-dimen- 
sional hypersurface E = const. The doubly periodic soh- 
tions are situated on these separatrices. The homo- and he- 
teroclynic trajectories are the lines of intersection of a stable 
and an unstable separatrix, respectively. The separatrices in 
the Poincart section are the intersections of the phase-space 
separatrices with a half-plane. The homo- and heteroclynic 
points are the intersections of a half-plane with the corre- 
sponding trajectories. 

85. DETERMINATION OF THE HOMO- AND HETEROCLYNIC 
TRAJECTORIES 

One can use of the already mentioned symmetry of the 
equations (1.2) and Hamiltonian (1.3) to determine the 
homo- and heteroclynic trajectories. 

Under the substitution &+ - t, x++ - x a point of the 
phase space (x,x,y,y) with coordinates M (O$,O,j) goes over 
into itself. Under this substitution the unstable separatrix 
goes into the related stable separatrix. If there exists a point 
M (O,a,O,y) situated on the stable separatrix, then the separa- 
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trices intersect at this point. Thms, to determine the intersec- 
tion point of the separatrices it suffices to determine a value 
x = a  such that a doubly asymptotic trajectory passes 
through it as t+ + w approaches a periodic solution. Here, 
as in the preceding constructions, the knowledge of the mon- 
odromy matrix allows one to monitor the accuracy of the 
computations. If the separatrices intersect at M under a non- 
zero angle, then the point M will be homoclynic. The points 
K (x,O,O$) are invariant with respect to the transformations 
I++ - t a n d w  - y. Since under this transformation the un- 
stable separatrix of the solution (4.1, + ) goes into the stable 
separatrix of the solution (4.1, -- ), the intersection of separa- 
trices gives rise to heteroclynic solutions. In the table are 
listed the coordinates of the points K, and M, and the angles 
of intersection of the separatrices in a plane perpendicular to 
the trajectory. 

In the vicinity of doubly asymptotic trajectories, singly 
asymptotic trajectories (i.e., trajectories which are asympto- 
tic to a closed trajectory only as, t+ + oc on the stable separ- 
atrix and as t+ - w on the unstable separatrix) are situated 
on the stable and unstable separatrices. Knowing them al- 
lows one to determine the angle between the separatrices. 
These trajectories intersect the plane perpendicular to the 
doubly asymptotic trajectory in the points 2, and 2,. The 
angle between the straight lines passing through these points 
and through the point of intersetction of the doubly asympto- 
tic trajectory with the plane orthogonal to it is the angle we 
are looking for (accurate to within a small neighborhood). 

We have determined in a similar manner the angles of 
intersection of the separatrices for the system of equations 

obtained by the same substitut:ion (1.2) for z = f (see Refs. 
8,10,11). The integral of the system (5.1) has the form 

The variational equations of the trajectories 

are 

(here we have utilized the substitutions x = F + { + r] and 
y = F + { - q, z = 6 ) .  It is clear that 6, r] ,  and 6 in (5.4) are 
independent of each other. Therfore the monodromy matrix 
(a square 6 x 6 matrix) decomposes into three 2 X 2 matrices. 
The eigenvalues along the trajectory are equal to unity, as 
usual. The eigenvalues in the transverse direction in the 
z = 0 plane are the same as in the two-dimensional case (4.3). 
The other two eigenvalues are idso real and have the values 

Thus, along the direction z there is also instability of the 
trajectories. In this case the separatrices of the periodic solu- 
tions (5.3) are three-dimensional manifolds on the five-di- 
mensional hyperplane E = const. The intersection of separ- 
atrices is now determined by two angles, and at the point K, 

TABLE I. Theangles ofintersection of the separatrices of the system (1.2) 
at the homoclynic points M, and at the heteroclynic points K, ; y = 0, 
j = ( 1  - i2)lI2. 

(see Fig. 4) the angles are 72" and 106". The fact that the 
intersection of separatrices is transversal is a proof of the 
absence of two additional integrals of the motion for the sys- 
tem (5.1). Thus, the system (5.1) has only one integral, the 
energy. 

96. CONCLUSIONS 

The observed transversality of intersection of separa- 
trices of the unstable periodic trajectories (4.1) proves the 
absence of one additional integral of the motion for the sys- 
tem (1.3) and of two additional integrals for the system (5.1). 
This confirms the conjecturelo that the system (1.3) is sto- 
chastic and the conclusion" that the system (5.1) is stochas- 
tic. 

In the present paper it was shown that there are no real- 
analytic integrals; this is the strongest case of nonintegrabi- 
lity, that in the sense of PoincarC. This result does not ex- 
clude the possibility that some special cases of the 
Yang-Mills equations may turn out to be completely integra- 
ble (see, e.g., Ref. 2), although a transition from them to a 
larger number of degrees of freedom will yield a nonintegra- 
ble system. 

From the absence of an additional integral and the pres- 
ence of intersection of the separatrices follows immediately 
the complicated behavior of the trajectories, i.e., stochasti- 
city. However, this subject goes beyond the framework of the 
present paper, since it requires a more detailed considera- 
tion. 

The method of numerical calculations described in the 
present paper rests on a knowledge of the characteristics of 
the trajectories (Lyapunov exponents, eigenvectors of the 
monodromy matrix, the period) and allows one to derive 
results with any arbitrarily prescribed and controllable ac- 
curacy. This indicates the high reliability of the results ob- 
tained. 

We are grateful to E. B. Bogomol'nyi and Ya. G. Sinai 
for their interest in the present work and for a useful discus- 
sion, to V. E. Zakharov and S. V. Manakov for calling this 
problem to our attention, and to S. P. Novikov and E. I. 
Rashba for helpful discussions. 

"From the form (2.7) of the matrix A' it is easy to see the following. When 
this matrix acts upon a point with coordinates (bl,v2(,) of the straight 
line (2.9, + )this point goes over into the point ( g 2 , a 2 ) ,  of the same line, 
with 6, >g, .  Thus, along the line (2.9, + ) the points "move away" from 
the fixed point A,. This is why one says that the separatrix with the 
asymptote (2.9, + ) is unstable. Conversely, for the points of the line 
(2.9, - ) 4, <g,,  and this straight line defines a stable separatrix of the 
fixed point A,. 

"A proof of this kind was communicated to us by Ya. G. Sina?. 
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