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The effect of interelectron interaction on the conductivity of disordered electron systems is inves- 
tigated in the case of a weak coupling constant. Summation of the ladder diagrams in the Cooper 
interaction channel in the case of a two-dimensional conductor leads to the appearance of correc- 
tions to the conductivity which are proportional to In In(To/T). In the three-dimensional case the 
corrections are of the form T " 2 / l n ( ~ d ~ ) .  The relation between the various temperature-depen- 
dent contributions to the conductivity of disordered electron systems is discussed. 

PACS numbers: 72.10.Di 

1. Interest has increased lately in the singularities of 
kinetic phenomena in two-dimensional disordered metals 
and semiconductors. The unusual properties of two-dimen- 
sional conductors, particularly the temperature dependence 
of the conductivity, are the result of the quantum character 
of the interaction of the electrons with the impurities and of 
the associated localization phen~menon,'-~ as well as the 
results of the electron-electron in te ra~t ion .~-~  The electron- 
electron interaction in these studies was taken to be the 
screened Coulomb interaction. In addition, in Refs. 7 and 8, 
in an investigation of the magnetoresistance of disordered 
electronic systems, the electron-electron interaction in the 
Cooper channel (particle-hole channel) was described with 
the aid of an effective coupling constant. This approach, in 
the case of a negative effective coupling constant, corre- 
sponds to allowance for the influence of superconducting 
fluctuations on the condu~tivity.~-~' The experimental in- 
vestigation of the magnetoresistance of disordered conduc- 
tors is the subject of many studies, see, e.g., Refs. 12 and 13. 

The present paper is devoted to the study of the influ- 
ence of electron-electron interaction in a Cooper channel on 
the temperature dependence of the conductivity. The analy- 
sis is carried out, with a two-dimensional disordered system 
as the example, for the case of a positive coupling constant. It 
turns out that the contribution of a definite class of diagrams 
leads to temperature-dependent corrections a In ln(TJT) to 
the conductivity (at Iln(TJT )I > I), where To is a temperature 
of the order of the Fermi energy. 

At the end of the article are presented the results of a 
similar calculation for a three-dimensional disordered elec- 
tron system, and it is also shown that all the results can be 
used verbatim for the case of a negative coupling constant by 
formally replacing To by the corresponding superconduct- 
ing-transition temperature T,. 

2. Consider the influence of the electron-electron inter- 
action on the conductivity of the disordered electron system. 
We simulate the disorder by scattering of the electrons from 
impurities with short-range and isotropic interaction poten- 
tial. It is convenient to describe the electron-electron inter- 
action in a Cooper channel with the aid of an effective propa- 
gator LaSv6 (q,flk), a graphic solution for which is shown in 
Fig. 1. The propagator is denoted by a wavy line, and the 

thick circle corresponds to the effective coupling constant g. 
A solid line denotes the Green's function of the normal met- 
al, averaged over the impurity positions: 

1 
G,,B ( p ,  E ~ ) = ~ ~ , B [ ~ S * - - $  (P) I-', &=en +--sign e n .  (1) 

2.t 

Here a and Q are the spin indices and E,  = (2n + 1) T. The 
shaded three-point vertices C(q,w,,w,) (copperons) denote 
the sum of ladder diagrams that are produced when account 
is taken of the interaction of electrons with impurities. It is 
convenient to write the vertex C(q,o,,w,) in the form14 

v is the electron-velocity vector, and the angle brackets de- 
note averaging over the Fermi surface; 9 is the Heaviside 
theta function; i3 is related to o as 2 is to E in (1). 

For g > 0 the propagator L,,, (q,n, ) takes the form15 

(q, Q k )  

1 T [ n -  
v To 

where Y is the single-spin density of states on the Fermi sur- 
face (v = m/2r in the two-dimensional case); To is defined 
by the equation To = E, exp( l/vg); E, is the Fermi energy; 
$(x) is the logarithmic derivative of the gamma function; 

a,=d (qv) 2>/4nT=DqZ14nT, 

where D is the diffusion coefficient of the conduction elec- 
trons. 

By analogy with superconductivity, the interaction de- 
scribed by the propagator (q,Ok) at g > 0 will be called 
fluctuation electron-electron interaction. We must empha- 

FIG. 1 .  Diagramatic equation for the effective propagator. 
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size that it differs from the Coulomb interaction. The fluctu- 
ation interaction takes in fact account of the Coulomb inter- 
action in Cooper-channel diagrams in all orders of 
perturbation theory in the ladder approximation. Then, 
however, the exact dynamic screened Coulomb interaction 
considered in Ref. 4 and 5 in first-order perturbation theory 
is replaced by a model interaction described by a positive 
coupling constant, so that both Coulomb and electron- 
phonon interactions can be taken into account. 

We proceed to calculate the static conductivity, which 
is expressed in standard fashion in terms of the operator of 
the electromagnetic response Q (o,). Calculating Q (w,) and 
carrying out the analytic continuation into the upper half- 
plane of the complex frequency w, = - iw, we obtain the 
conductivity a = Q (o)/( - iw), o-0. 

In first order in the fluctuation interaction, and with 
account taken of the averaging over the impurities, Q (w,) is 
determined by the ten diagrams shown in Fig. 2. At the ver- 
tices of the diagrams are the factors ev, where e is the charge 
of the electron, and the shaded rectangles are ladders made 
up of impurity strokes: 

We consider the calculation of the diagrams for the 
electromagnetic response, using as the example the first dia- 
gram of Fig. 2. For the diagonal component of the tensor 
Qii (o,)=Q (a,) we have 

where summation over repeated indices is implied. The 
block of Green's functions 1(~,,R,,o,,q) is defined by the 
expression 

FIG. 2. Diagrams that determine the contribution made to the conductiv- 
ity by the fluctuation electron-electron interaction. 

and is already averaged over the spin states. As a result of 
simple calculations we obtain for the block I(E, ,R, ,o,,q) a 
rather cumbersome expression, which in the case of small 
mean free paths ql( 1 of interest to us, where I = u,r, takes at 
R,, w, E, ( 7 - I  the form 

u p 2  
Qkr O v ,  0) = -- 2nvz3[o 6 (E~(E , , -Q~)  ) 

2 
+e(-&,~,+v)o(-&n(~rt-Qh))-~e(-~n~n+v)ff(&v (c,,--Qk) ) I .  

(7) 
Owing to the presence of 0 functions in this expression, we 
can rearrange its terms in such a way that the sum over E,  is 
represented by two sums with finite and infinite limits 

The first sum is independent of the external frequency w, 
and is consequently cancelled out by analogous contribu- 
tions from the remaining diagrams. Calculating the second 
sum, we obtain 

ISdkI 0, 1 0" =o (a,) *I , + ---- + - + a ' )  -qf(? + =+ a.)] : [ (: 4nT 2nT 

(9) 
The function D (a, ,o,,q) must now be continued ana- 

lytically in the frequency w, into the upper half-plane. The 
contributions to the electromagnetic response functions, 
analytic in the upper frequency complex half-plane and cor- 
responding to D,(R, ,o, ,q) and D2(Rk ,w,,q), will be denoted 
by Q iR(w) and Q TR(w). 

Since the function O(R,) in the expression for 
D,(R,,w,,q) does not contain w,, the analytic continuation 
is effected by the simple substitution a,--+ - iw,. Putting 
next w < T, we obtain 

where a = 2e2vD is the residual conductivity. 
(10) 

In the considered temperature region we have ln(T,/ 
T), 1; consequently, when integrating over the momentum, 
only the dependence of the numerator of the integrand in (10) 
on q is of significance. The remaining sum over k will be 
replaced in accordance with the condition R, r( 1 by an inte- 
gral with upper limit (rT)- ' ,  and we obtain ultimately with 
logarithmic accuracy 
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The analytic continuation of D,(R,,w,,q) turns out to 
be more complicated because the 0 functions in (9) limit the 
region of summation over k to finite limits that depend on 
the frequency w,. When calculating the sum over k in 
Q ;'(w,) and in the subsequent analytic continuation of this 
function in w,, we follow Ref. 14. To this end we represent 
Q ;'(a,) in the form 

where 

The prime on the summation sign means that the term with 
k = 0 is taken with a factor 1/2. 

The analytic continuation of the last term in (12) is car- 
ried out just as above (w,+ - iw), after which we can expand 
in terms of w/T. To calculate F(w,,q) we transform the sum 
into a contour integral 

where the contour Cis  shown in Fig. 3. The integral along 
this contour reduces, by change of variable, to an integral 
along the real axis, as a result of which the dependence on w, 
goes over from the integration limits into the argument of 
the function f (x ) ,  after which the analytic continuation is 
carried out directly by the substitution w, - iw, and we get 

Expanding the obtained expression in terms of the pa- 
rameter w/T and integrating by parts, we obtain 

FIG. 3. Integration contour used in the analytic continuation of Q ;(w,).  

Finally, calculating the remaining integral with respect 
to q in (12), we get 

114 .I 
Q,  (o)=--- + 8K(q=O) 

In ( T , / T )  ln2 ( T o / T )  

where 

From a comparison of expressions (1 1) and (17) it can be seen 
that the contribution of the considered diagram to the con- 
ductivity stems from the term Q iR(w), and allowance for the 
term Q yR(w) together with Q iR(w) is an exaggeration of the 
accuracy. 

Examination of the second diagram of Fig. 2 shows that 
its contribution d2' to the conductivity coincides with the 
contribution a"' of the first. It can be shown that the contri- 
butions of the third and fourth diagrams are also equal to 
each other. They are smaller than a(" by a factor of three and 
are of opposite sign, i.e., 5(3' = = - (1/3)u(". 

We proceed to calculate diagrams 5-8 (see Fig. 2). In 
view of the vector character of the current vertices ev, to 
obtain an nonzero result the Green's functions of both sides 
of the four-point vertexr (q,o,,w,) must be expanded in pow- 
ers of q * v. Leaving out the intermediate calculations, which 
are similar to the preceding ones, we present only the expres- 
sion for the conductivity due to the fifth diagram: 

The sixth diagram reduces to a similar expression, while the 
seventh and eighth make twice as large a contribution to the 
conductivity, i.e., - d7' = - a"' = 2d5) = 2 ~ ' ~ ' .  Gather- 
ing them all together, we find that at temperatures T4T0 
[ln(To/T)> 11 we obtain, accurate to terms of order [ln(TJ 
T)]- '  that the contribution made to the conductivity from 
diagrams 1-8 and corresponding to the change of the density 
of states as a result of the electron-electron interaction, is of 
the form1' 

The ninth diagram, when calculating fluctuation con- 
ductivity of a film above the temperature of the supercon- 
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ducting transition, contains an anomalous Maki-Thompson 
and is the principal one in a wide range of 

temperatures D T,.'.l4 In the case of a nonsuperconducting 
amorphous film, in analogy with the preceding, it is possible 
to obtain for the contribution of the ninth diagram to the 
conductivity the following expression: 

here A is the cutoff parameter of the integral at the lower 
limit, which is introduced in analogy with the theory of su- 
perconducting fluctuations." For a two-dimensional elec- 
tron system, the important role in the integration with re- 
spect to q in (21) is assumed by the region of small momenta. 
The logarithmic divergence at the lower limit is eliminated 
by cutoff at A-(Tr,)-', where r, is the electron phase- 
relaxation time.8 In this case, the integral builds up in 
expression (18) for the function K (q) in the region of small 
t(1 and the i/ function can be expanded in powers of a, and 
it, after which integration in (2 1) leads to the result 

We note the following circumstance. The contribution 
(20) to the conductivity was obtained accurate to terms of 
order In-'(TJT), therefore at first glance the retention of eTa lnPZ(T,JT) with it is not valid. In the numerator of 
(22), however, there is a large logarithm ln(Tr,), which can 
make eT comparable with ofs. In addition, we recall that 
the result (22) was obtained in the approximation with ln(TJ 
T))1. However, in analogy with Ref. 7, the region of its 
applicability can be expanded by replacing (1?/24)/1n-'(To/ 
T )  by the function B(T,JT), which is tabulated in Ref. 7. 

In the remaining diagram 10 of Fig. 2, which corre- 
sponds to the Aslamozov-Larkin process,' we obtain after 
calculating the blocks of the Green's functions and after ana- 
lytic continuation in the frequency14 

m 
a " dt  

ozAL = -,s dxx 1---;-- [$' (1 + 
 EFT) - w 

sh nt 

The region t 5 1, x )  1 turns out to be significant in the eva- 
luation of the integrals in (23); therefore, neglecting the de- 
pendence of the $ functions on t, we obtain 

In the calculation of ofs we have already neglected the 
contributions of this order, therefore in the considered tem- 
perature region allowance for the term a;"= is an exaggera- 
tion of the accuracy. 

Thus, the influence of the fluctuation interelectron in- 
teraction on the conductivity of a two-dimensional disor- 
dered electronic system is determined by expressions (20) 

and (22), which correspond to a change, due to this interac- 
tion, of the density of states and to the fluctuation process of 
Maki and Thompson. 

3. We discuss now the influence of the fluctuation inter- 
action on the conductivity in three-dimensional disordered 
electronic systems. The corresponding corrections are deter- 
mined by the same diagrams of Fig. 2, but the integrations in 
(lo), (19), (20), and (23) must be carried out with allowance 
for the fact that the electronic spectrum is three-dimension- 
al. In the integration with respect to q the expression corre- 
sponding to ofs diverges formally at large momenta. This 
divergence is due to the fact that the expressions employed 
for the propagator and the vertices were obtained for mo- 
menta a < 1 -I, and by taking this circumstance into account 
it is easy to eliminate this divergence by subtracting the cor- 
responding quantity taken at T = 0. This yields 

0 . 9 1 5 e V  ' 1 2  1 
AasDS ( T )  =asDS (T) -(raUS ( 0 )  = 

2,-h (T) III(T,IT) 

(25) 
The Maki-Thompson contribution, which corresponds 

to the ninth diagram, has no singularities in the three-dimen- 
sional case and can be obtained from expressions (12) and 
(16) with account taken of the integration over the three- 
dimensional electron momentum q. Since it cannot be as- 
sumed beforehand that t is small, we expand the numerator 
and denominator of the integrand in (16) in Taylor series in 
powers of it. Integrating the obtained series with respect to t 
and confining ourselves to the first nonvanishing term in the 
expansion in reciprocal powers of the large ln(TdT), we ob- 
tain 

(26)  
where B,, are Barnoulli numbers. 

An analysis of the convergence of this series shows that 
it suffices, with good accuracy, to retain its first term, after 
which we obtain 

Calculation of the Aslamazov-Larkin contribution, 
which corresponds to the tenth diagram, is carried out in 
analogy with that for the first diagrams and leads to the 
result 

Thus, for a three-dimensional disordered electronic 
system the contributions from the Maki-Thompson and As- 
lamazov-Larkin processes, in the temperature region T< To, 
turn out to be of the same order of magnitude. They are, 
however, small compared with the cond~ctivity (25) correc- 
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tions due to the influence of the fluctuating interaction on 
the density of states. 

4. In conclusion, we compare the results with other 
temperature-dependent corrections to the conductivity and 
discuss the situation as a whole. The foregoing analysis of the 
influence of the fluctuation interaction on the conductivity 
of two-dimensional and three-dimensional disordered elec- 
tronic systems has shown that the decisive corrections are 
those connected with the change of the density of states un- 
der the influence of the electron-electron interaction in the 
Cooper channel, gS. In the two-dimensional case, at large 
T ~ ,  the Maki-Thompson contribution ofTmay also turn out 
to be significant. 

It must be noted that summation of all the ladder dia- 
grams of the interaction in the Cooper channel is most signif- 
icant in the considered problem. In Ref. 16 were calculated 
the analogous corrections to the conductivity in first-order 
perturbation theory in the coupling constant. As seen from 
(20) and (22), we can confine ourselves to first-order pertur- 
bation theory only in the case of extremely weak coupling 
constantg([v ln(To/T)]-'. In the opposite case, as shown in 
the present paper, allowance for all the diagrams in the 
Cooper channel leads to a considerable change in the form of 
the singularity of the temperature-dependent corrections to 
the conductivity: in place of ln(Tr), as in Ref. 16, the contri- 
bution qfs turns out according to (20) to be proportional to 
In ln(To/T). In addition, in first order ing it is impossible in 
principle to calculate the Maki-Thompson contribution. 

It is of interest to compare the conductivity corrections 
due to the fluctuation interaction with the contribution 
made to the conductivity by the interaction in the diffusion 
channel, 68.4.5 As shown in Refs. 17 and 18, it is convenient 
to represent the expression for Sofas a sum of contributions 
from the interaction with a totaI spin ofthe electron and hole 
j equal to 0 and 1 : 

601?-'= (3a,1=' eZ/4nZtt) 1n (Ta)  , 

whereR := ' is a constant that depends on the magnitude and 
the character of the electron-electron interaction. It can be 
seen from (29) that the correction Sai'O is larger and in- 
creases more rapidly with temperature than @ (at In(Td 
T )) 1). We note, however, the following circumstances: 1. 
The contributions So: = O  and Sai= ' can cancel one another 
to a considerable degree. 2. The value of 6@ in the presence 
of strong spin-orbit scattering is universal: 6 8  = S d Z 0 .  3. 
The quantity A J,= ' can sometimes be determined indepen- 
dently. 4. The corrections to the conductivity on account of 
the interaction in the Cooper channel and in the diffusion 
channel depend differently on the magnetic field H: the con- 
tribution 8' ceases to depend on the temperature at 

The corresponding contribution to the magnetoresistance is 
considered in Ref. 8, and the corrections to the state density, 
proportional to In ln(HTo), were obtained in Ref. 19. At the 
same time, So'= O does not depend at all on H in the region of 

classically weak magnetic fields, while in SoJ' the tem- 
perature dependence is suppressed20 at yp,H- T (y is the 
gyromagnetic ratio and p, is the Bohr magneton). Since 
usually H,,, <T/Y/L,, a study of the temperature depen- 
dences of the conductivity in different magnetic fields makes 
it possible to separate the contributions SoJ=O, &a*= ' , and 
ODS. 

For all the reasons above, the contribution ofs + eT 
of the interaction in the Cooper channel should be taken into 
account even at ln(TJT)> 1, which is a sufficient condition 
for the validity of expressions (20), (22), and (25). The same 
arguments remain in force also in the three-dimensional 
case, where the temperature dependence of of' differs from 
f l  (25) in that the former does not contain the factor 
In-'(To/T) (Ref. 4). 

The fluctuation propagator of a Cooper pair in a super- 
conductor coincides with (3) at Tc < T if To is replaced by T,. 
Therefore, in a superconductor, likewise, at temperatures 
Tc (T4.r-' the contribution made to the conductivity by the 
electron-electron interaction in the Cooper channel and cor- 
responding to the usual superconducting fluctuations14 is 
described by the same expressions (20), (22), and (25) with 
ln(T,,/T) replaces by In(T,/T). We point out that in this case 
the signs of the corrections 8' and dL are reversed, while 
the sign of flT remains unchanged. 

FIG. 4. Qualitative form of the temperature dependence of the resistance 
of a disordered superconductor (lower curve) and of a normal metal (upper 
curve). SpD-contribution made to the resistance by the interaction in the 
diffusion channel4,'; SpL--correction to the resistance from the localiza- 
tion effect2; SpDS = S8Su-Z-resistance contribution obtained above 
and due to the change of the density of the single-electron states as a result 
of the electron-electron interaction in the Cooper channel; SpMTand SpAL 
- M a k i - T h o m p s ~ n ~ ~ ~ ' ~ ~ ' ~  and Aslamazov-Larkin9.l4 contributions. The 
dashed circle separates the critical region. We note that in the two-dimen- 
sional case SpD-Spr, and in the three-dimensional case SpD>Sp'. For a 
superconductor in the temperature region T, -'(T- T, (T, in the two- 
dimensional case, the predominant contribution to the resistance is SpMT 
(!GpMT($ lapAL I ) ,  whereas in the three-dimensional case these contribu- 
tlons turn out to be of the same order of magnitude. 
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The qualitative form of the dependence of the resistance 
on the temperature for normal and superconducting disor- 
dered conductors is shown in Fig. 4. The downward se- 
quence of the designations of the corrections to the resis- 
tance corresponds to the hierarchy of these quantities in this 
temperature region. In recent experiments on thin alumi- 
num films2' it was observed that the resistance depends on 
temperature in just this manner, and there was also a quanti- 
tative agreement with the results cited above. 
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