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The temperature dependent part of the conductivity of metals containing impurities and placed in 
strong electric fields is investigated. It is shown that besides the usual heating of the electron 
subsystem there exists one more field effect due to the acceleration of the electrons during scatter- 
ing. The contribution of the diffusive modes of the electron-density oscillations to the resistance is 
then suppressed, and the corresponding correction to the conductivity vanishes, A u  a E - 2 .  Si- 
multaneously eliminated are the divergences that take place as T 4  in two- and one-dimensional 
systems. The situation is analyzed in which heating the electron subsystem and suppression of the 
contribution of the diffusive mode take place simultaneously. It is shown that the correction to the 
conductivity is a nonmonotonic function of the electric field and can reverse sign. 

PACS numbers: 72.15.Qm, 71.55.D~ 

1. INTRODUCTION 

The electric conductivity of metals is calculated as a 
rule only in the linear approximation in the electric field. 
This approximation is valid if the electrons are not heated or 
accelerated over the electron mean free path. Since the relax- 
ations of the electron momentum and of their energy is 
usually characterized by different lengths I, and I,, we have 
two inequalities: 

1 el El,<R/t, kT, (1) 

lelEl.<kT, (2) 

where e is the electron charge, T is the momentum relaxation 
time, and T is the temperature of the system in equilibrium. 
At low temperature the energy dissipation from the electron 
subsystem becomes very small, and condition (2) may be- 
come violated at relatively low electric field strengths. In a 
more rigorous treatment of the conditions under which the 
electron subsystem heating sets in, the balance is considered 
of the power generated by the electric field and dissipated in 
the electron-phonon intera~tion.'-~ This question is dis- 
cussed in greater detail in Sec. 3. 

In the foregoing arguments we neglected the accelera- 
tion of the electron during the very act of scattering, i.e., we 
assumed the inequality 

1,Bl. (3) 

(I, is the scattering length, i.e., the characteristic size of the 
scattering object), which coincides with one of the conditions 
for the applicability of the quasiclassical Boltzmann equa- 
tion for a description of kinetic processes in metals (see, e.g., 
Ref. 4 as well as the discussion in Ref. 5). If the inequality (3) 
does not hold, we are no longer justified in using the Boltz- 
mann equation to calculate the electric resistance, and must 
resort a more adequate procedure, say the one proposed in 
Ref. 5. We must then re-examine the conditions under which 
the approximation linear in the electric field is valid. Obvi- 
ously, we need besides (1) and (2) one more conditions that 
follows from the following requirement: the quasiparticle 

must not acquire over the scattering length I, an energy 
higher than k T  or fi/r, i.e., 

l el El,<kT, Rlt. (4) 

In impurity-containing metals, at the low-temperature 
limit kT(fi/r,  a unique resistance mechanism appears and is 
due to interference between the electron-impurity and elec- 
tron-electron  interaction^.^ It is due to scattering of the elec- 
trons by the diffusive modes of the electron-density oscilla- 
tions. The wavelength of the diffusive mode plays in this case 
the role of the scattering length 

1 , ~  zv (TRTIA) -'Iz. (5) 

With decreasing temperature this value increases, and this 
can lead to violation of condition (4). One should expect here 
the appearance of nonlinear field effects of a type different 
from ordinary electron-subsystem heating already discussed 
in the literature. 

We shall show that conditions (2) and (4) can be violated 
simultaneously, and both field effects must be considered in 
this case simultaneously. We are not always able, however, 
to use the results of Refs. 1 and 2, for at temperature 
T <  fiTD/r&,(TD is the Debye temperature and E, is the Fer- 
mi energy) the energy dissipation due to electron-phonon 
interaction can no longer be described by the Boltzmann 
equation. An analysis using a quantum kinetic equation is 
needed in this case.' 

We emphasize that in impurity-containing metals the 
resistance at low temperatures is determined principally by 
the scattering of the electrons by static defects, whereas in- 
elastic processes such as electron-phonon or electron-elec- 
tron interaction lead to the appearance of small tempera- 
ture-dependent corrections. It is easily understood that in 
practice it is practically impossible to observe any nonlinear 
field effects in the residual resistance. When temperature- 
dependent contributions are studied, however, we encounter 
an entirely different situation, and should expect strong de- 
viations from Ohm's law; these will be considered below. 
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mass operator. To avoid excessive complication of the calcu- 
lation, we neglect below Fermi-liquid effects and assume a 
contact electron-impurity interaction potential: 

u(r) = I L R  (r)  . (11) 
FIG. 1.  Diagram for mass operator corresponding to scattering of elec- 
trons by static defects. A complete calculation would lead only to a renormalization 

of the quantities in the final answer, without changing the 
result qualitatively. The procedure in such a calculation can 

2. DISRUPTION OF DIFFUSIVE MODES IN A STRONG be understood from Refs. 5 and 8. The wavy line in Fig. 2 
ELECTRIC FIELD corresponds to the retarded Coulomb function 

We consider first nonlinear field effects due to accelera- - 1 

tion of electrons in an electric field over the scattering 
length. We assume satisfaction of the conditions 

1 2  

4ne2 (zqu)  ' / 3 - i t o  
l e l E ~ u l T ~ 1 ,  (6) =- 

x2 ( ~ q u ) ~ / 3  ' 
I ~ ( E T u / T ( ~ T ) ' " B I .  (7) . . 

To calculate the current in such a regime, we use the system ( t q v )  2 / 3  
n T  ( ~ 9  W )  =nr (ql 0 )  ( t q V )  7 

of equations derived in Ref. 5 with the aid of the Keldysh 
technique7 

( E - E ~ - E , ) G ~ = ~ ,  (8) 4ne2 
V = , x2=8ne2N ( O ) ,  

rF-QA 'i 

(Ev )  - a n ( E )  - a [ q ~ + 2  a r c t g s ]  = -. 
d E  d E P  r (9) 

where N (0) is the electronic density of states on the Fermi 
Here G,(P,E) and Z , ( ~ , E )  are nonequilibrium retarded 
Green functions and the mass operator, 

A=-2 Im G,, I'=-2 Im Z,, 

~ = E - E ~ - R ~  Z,, n ( ~ )  = ( I f  eRe)-' ,  (lo) 

$= (kT) -', v=de,/dp, 

F and L? are "kinetic" Green functions and mass operator 
written in accord with Ref. 5. The definition used by Kel- 
dysh7 differs by a factor i. In the derivation of (8) and (9) the 
electric field was assumed small in the sense of inequality (6). 
No corrections containing explicitly the large parameter (7) 
appear in these equations. They do appear however, as non- 
local terms in the calculation of the mass operator. 

We assume the presence of only two types of interaction 
in the system, electron-electron and electron-impurity. The 
latter determines the residual resistance, whose calculation 
calls for the use of the mass operator shown in Fig. 1. At low 
temperatures the electron-electron interaction interferes 
strongly with the electron-impurity interaction, and this 
leads to the appearance (in the approximation linear in E ) of 
negative corrections to the re~istance.~ Corresponding to 
this process is the diagram shown in Fig. 2 for the retarded 

surface. The numbers on the diagram correspond to the ma- 
trix indices of the Keldysh technique in the triangular repre- 
sentation. Near the left-hand Coulomb vertex are given two 
variants of index arrangement. It  is easy to verify that the 
expressions corresponding to diagrams with any other ar- 
rangement of the indices are either equal to zero or are small 
to the extent that the impurity density c is low. 

We show now how we arrived at the index arrangement 
shown in Fig. 2. The extreme left ( I)  and extreme right (2) 
indices are fixed, since we are interested in the retarded mass 
operator 81, = 2,. We move along the electron line from 
right to left. On passing through the cross (electron-impurity 
vertex) the index must change, i.e., the index on the left of the 
extreme-right cross is 1. Since G,,=O, the index before the 
second cross on the right must be 2. Using this reasoning, we 
arrange uniquely the indices on the entire electron line all the 
way to the right-hand Coulomb vertex. Now we have two 
possibilities. We can place on the Coulomb line the index 1 
or 2. If the index is 1, the indices on the electron lines on both 
sides of the vertex must coincide, but if the index is 2, the 
indices on the electron lines must be different.7 We write first 
the index 1. We can then continue to arrange the indices 
from the left from the Coulomb vertex, in the same manner 

FIG. 2. Diagram for mass operator Z?corresponding to electron scattering by diffuse modes of electron-density oscillations. The wavy line corre- 
sponds to the Coulomb function (12). 
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as we did from the right. It turns out then that only retarded 
Green functions G,,=G, are located on the entire electron 
line to the right of the left Coulomb vertex. Consequently 
each rung of the right-hand ladder of impurity dashed lines 
is determined by the small integral 

We neglect the contribution of such diagrams. Thus, only 
the index 1 can be placed on the Coulomb line near the right- 
hand vertex. Since U, ,=O, the index 2 should be placed near 
the left-hand vertex. As a result, on the section between the 
right-hand Coulomb vertex and the first left-hand cross we 
find an electron line with ends marked by the indices 2, and 
all the vertices are nondiagonal relative to the Keldysh in- 
dices. It is easy to verify that on this line it is possible to place 
only in some one spot the Green function 

To the left of this function will then be located only the func- 
tions G, , rG, ,  and to the right G,,G,. To avoid the ap- 
pearance of a rung of the type (13) in either ladder, the func- 
tion G,, must be placed directly to the right or to the left of 
the left Coulomb vertex. The result is the index arrangement 
indicated in Fig. 2. The kinetic equation (9) contains also the 
mass operator 

z I , Q = - i ~ ~ .  (15) 

The diagram for I;?, is obtained from Fig. 2 by interchange 
the indices next to the extreme-right cross. 

When the nonequilibrium mass operator is calculated 
in the momentum representation, nonlocal field terms ap- 
pear.' The reason is that the Green functions depend in this 
case not only on the difference of the coordinates, but also on 
their sum: 

Here X = (x + x ')/2, 6 = x - x ', while A, = (A,, q,) is 
the 4-vector-potential of the electric field and depends on the 
4-coordinate X. The nonlocal terms appear in the calculation 
of the Fourier transform of the convolution of two functions 
f (XJ ') and ~ ( X J  ') of the type (16) 

Equation (17) is a generalization of Eq. (2.11) of Ref. 5 to 
include the case of arbitrarily large electric fields. We as- 
sume here that A, depends on X linearly, i.e., the field is 
constant and uniform. 

We obtain now the explicit form of the expression for 
X? (Fig. 2) with allowance for the nonlocal corrections. This 
calls for finding the Fourier transform of a convolution of 

the type (17), Rut containing a large number of functions. 
The operator 17 must be understood in this case as follows. 
We take all possible arrangements of the pair of differential 
operators d /dp and d /& on the Green functions that make 
up the electron line on Fig. 2. These operators must act only 
on different Green functions, and the sign is determined by 
their relative placement: plus if the operator d/dp is to the 
left of the operator d /a&, and minus in the opposite case. The 
operator ZZ does not act on the electron functions in the 
closed loops-the corresponding contributions are zero. It is 
necessary to retain in the expression for I;? only the follow- 
ing arrangements of the operators d /ap and d /&. The deri- 
vative d /de acts on the function S that enters in G,, [see (14)] 
adjacent to the left Coulomb vertex. This can be taken to be 
the equilibrium function 

S  ( F )  = I - 2 n ( ~ ) ,  

for when account is taken of the integration of the electron 
momentum over the angles, the nonequilibrium corrections 
to S in the corresponding rung of the ladder vanish. The 
derivative d /dp acts only on the Green functions that enter 
in the left ladder, or on the Green function placed between 
two ladders. It is easily understood that each differentiation 
of the ladder Green functions increases the order of the dif- 
fusive pole. The field corrections turn out in this case to be 
large in terms of the parameter (7). When differentiating the 
Green function contained between the ladders, it suffices to 
retain only the first derivative, since the higher derivatives 
are small in terms of the parameter (6). All other arrange- 
ments of the operators d /dp and d /de make contributions 
that are small in the impurity density. 

We obtain thus for the retarded nonequilibrium mass 
operator the equation 

x e x p ( - i e E @ )  [ s ( ~ ) - S ( e - o )  ] / ( I - C , ) ,  q= ( q ,  o ) .  (18) 

Here 

It is understood that the operator d/d& in (18) acts only on 
the function S (E)-S(E - 0). The electric current is given by 

AA ( p )  = i  (G,ZZrQ-G,2ZaQ). 

Equation (19) is obtained from Eq. (3.7) of Ref. 5 if it is recog- 
nized that in the considered case the nonequilibrium part of 
the spectral function A (p)  is determined exclusively by the 
nonlocal field corrections.' For convenience, we have re- 
tained in (19) also the equilibrium part of the function A ( p), 
which drops out in the integration over the angles of the 
vector p. The nonequilibrium correction 
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fiF=A ( p )  6S 

is obtained by iteration from the kinetic equation (9). The 
first iteration corresponds to allowance, in the collision inte- 
gral, for only the scattering of electrons by static defects (see 
Fig. 1): 

2rl ) an(E) (Ev) . (20) A ( p )  6Sl  ( p )  = 2 ~  qA+2 arctg - - r d e  

By calculating the corresponding contribution to the current 
we can find the standard equation for the residual resistance. 

We take now into account the processes shown in Fig. 2, 
and obtain the second iteration correction: 

(Ln denotes the principal value of the logarithm). In the 
weak-field limit q)a, i.e., when an inequality inverse to (7) is 
satisfied, we have 

F ( q ,  a) =ia/3q2.  

Substituting this result in (26) and performing the remaining 
integrations, we obtain the known expression for the Cou- 
lomb part of the resistance of an impurity metal.6 

Of greater interest to us now, however, is the opposite 
limiting case, when inequality (7) holds, i.e., q(a. Then 

d S  F ( y ,  a )  =-ia!a2. 
A ( p ) 6 ~ , ( p )  =-A~S,~Q-A~S,~~'+~-E;ZA. (21) (27) 

de ap In the derivation of (27) with the operator d / d ~  acting 
on a real function, it is possible to act as with a real number. 

Here = - Im ':' and 6r is the to the We transform the integral with respect t o o  in (25) by parts in 
imaginary part of the diagram Fig. 1; this correction is due to a way as to obtain the second derivative of the integrand with 
the fact that the Green function is changed the respect to We then (26) in (25) and obtain the 
Coulomb process by an amount correction to the electric current in a sample of unit volume, 

6G,=GFZZrQ. (22) due to Coulomb processes (Fig. 2), in the strong field limit: 

The third term in (21) appears when account is taken of the 6j = - 
nonlocal corrections to the mass operator 0 Q. When calcu- E" (28) 

lating the second term in (19) it is necessary to consider sepa- 
rately the terms of zeroth and first order in - ieE(d /dp) (d / 

Here B, is a positive number defined by the integral 

d ~ )  in (18). The contribution of the linear term to the current 
cancels exactly the contribution of all the terms in (21). 
(When using the Kubo formula, this circumstance corre- 
sponds to cancellation of all the diagrams that do not contain 
a dividing ladder,' which follows from the electron-number 
conservation law.) Thus, to find for the total electric current 
the correction due to the Coulomb interaction, it suffices to 
consider the expression 

It is assumed here that in Eq. (1 8) for the mass operator 2: 
are retained only terms of zeroth order in - ieE(d /dp) (d / 
a&). Strictly speaking, it it necessary to retain in (23) also only 
the terms odd in - 1%. However, we incur no error by 
retaining all the terms during the intermediate stages of the 
calculations, since they drop out of the final answer upon 
integration over the angles of the vectors p and q. 

We substitute (18) and (12) in (23) and recognize that the 
operator exp [ - ieE(d /dq) x (d /a&)], which acts on the a 
function of q, means a shift by the vector - ieW / d ~ .  Inte- 
grating with respect to p, we obtain 

where q = q + ia, a = e W  / d ~ .  Integrating over the angles of 
the vector q, we find 

where 
(25) 

This result is easy to generalize to the case of quasi-two- 
dimensional and quasi-one-dimensional systems, in which 
one or two dimensions are smaller than the length of the 
diffusive mode. In this case the vector q must be regarded as 
two- or one-dimensional, respectively. In the strong-field 
limit the function (27) retains the same form regardless of 
dimensionality. After simple calculations we obtain 

in the two-dimensional case and 

in the one-dimensional case. 
The physical meaning of the results (29)-(3 1) can be un- 

derstood in the following manner. In strong electric field, 
when the condition (7) is satisfied, the electron motion is 
determined by the drift. No diffusive modes of correspond- 
ing length can be formed, and their contribution to the elec- 
tron scattering is suppressed. The degree of this suppression 
is determined by the square of the parameter in (7), since the 
current is an even function of the electric field. The current 
corrections necessitated by the Coulomb mechanism tend 
therefore to zero as E -' with increasing electric field. It is 
interesting that the electric field, suppressing the diffusive 
modes, eliminates simultaneously also the divergences that 
take place at T 4  in two- and one-dimensional  system^.^ 
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3. HEATING OF ELECTRON SUBSYSTEM 

In the low-temperature region T<TD the nonlinear 
field effects can be due also to heating of the electron subsys- 
tem. The difference between the "electronic" temperature O 
and the lattice temperature Tis determined from the balance 
of the energy generated by the electric field and dissipated 
from the electron subsystem into the phonon subsystem. 
In many cases there is realized in metals and in degenerate 
semiconductors the so-called energy-control system, where- 
in the interelectron collisions determine the energy distribu- 
tion among the electrons, but do not influence the momen- 
tum relaxation. The relation between the relaxation times in 
the energy-control regime are the following: 

Here 7, ' is the frequency of the electron-electron collisions, 
the frequency of the electron-phonon collisions, and 7- ' 

the frequency of the impurity-impurity collisions that cause 
the momentum relaxation. At temperatures T < k T i / ~ ,  the 
condition (32) is satisfied, since 

This statement, which is valid for pure metals, requires addi- 
tional examination in the case of metals with impurities. The 
point is that at low temperatures, alongside the "pure" elec- 
tron-phonon interaction processes (Fig. 3a), a substantial 
role is assumed by electron scattering by the vibrating im- 
purities (Figs. 3b-d). The contribution of the pure processes 
(- T 3 / T i )  dominates at temperatures T >  cTD, when the 
contribution of the impurity electron-phonon interaction is - - 
-cT2/Ti .  At temperatures T<cTD the situation is less 
obvious, since it is now necessary to take into account also 
the contribution of numerous interfering electron-impurity 
and electron-phonon  interaction^.'*'^ The leading processes 
in this case are those shown in Fig. 3e-3g. Summing the 

FIG. 3. Diagram for the mass operators corresponding to different elec- 
tron-phonon interaction processes. A wavy line denotes here a phonon 
Green function. 

contribution corresponding to them with the contribution of 
the processes shown in Fig. 3b-3d, we can verify that they 
cancel one another and make a zero contribution to the ener- 
gy relaxation. A similar cancellation takes place also in the 
electric resistance,' as well as in the polarization operator 
that determines the damping and the renormalization of the 
long-wave phonons. lo It would be necessary now in principle 
to consider the weaker processes shown in Fig. 2, in which 
the Coulomb line is replaced by a phonon line and the ver- 
tices are replaced by pure and impurity (Fig. 3) electron- 
phonon vertices. It can be easily verified, however, that the 
arrangement of the Keldysh indices does not change in such 
diagrams, which will therefore include only retarded (D,) or 
advanced (D,) phonon Green functions that do not contain 
the temperature of the phonon subsystem. This means that 
only momentum relaxation, but not energy dissipation, 
takes place in such processes. These processes do depend, 
however on the electron temperature and are in this sense 
inelastic. 

Thus, in the entire low-temperature region, energy ex- 
change between the electron and phonon subsystems is de- 
termined by pure electron-phonon interaction processes 
(Fig. 3a). If relation (32) is satisfied, the electron subsystem 
becomes thermalized and to find the quasi-equilibrium elec- 
tron temperature O we must use the energy-balance equa- 
tion~. '-~ It must be remembered here that at T, O < cT, the 
Boltzmann quasi-classical equation no longer holds, and to 
describe the energy exchange between the electron and 
phonon subsystems we must use the more general quantum- 
kinetic equation (9). 

The power generated in the electron subsystem by the 
electric field is 

where po is the residual resistivity of the metal. The power 
dissipated from the electron subsystem in electron-phonon 
collisions 

is expressed in terms of the collision integral 

which determines the energy flux from the electron into the 
phonon subsystem. We have used here a different form of the 
collision integral, equivalent to (9). The mass operators in 
(36) correspond to the diagrams of Fig. 3a and take the form 

whereg(q) is the matrix element of the electron phonon inter- 
action in a pure metal,' 

D'(q) = * i n [ ' / ~ ~ ( ' l , + N ( q ) ) ]  [ 6 ( w - a , )  - ~ ( o + o , ) ] ,  

G* ( P )  =*i [ ' / ,T  ('I2-?z ( p )  ) I  A ( p )  , 
(38) 

N (q) and n( p) are the phonon and electron distribution func- 
tions. Under conditions when the electroil subsystem is ther- 
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malized, N(q) and n( p) are respectively Bose and Fermi func- 
tions corresponding to the phonon (T)  and electron (0) 
temperatures. The spectral function 

takes into account the finite lifetime of the electrons. The 
phonon damping in the considered temperature region can 
be neglected. 

After carrying integration with respect to the momen- 
tump and the energies E and o in (35) and (37) we obtain for 
P2, in the case of three-dimensional systems, the expression 

The power-balance condition P, = P2 leads to an equation 
that describes the quantities E, 0 ,  and T. Transforming to a 
dimensionless electron-phonon interaction constant 

Z=g (PF) (0) (41) 

this equation take place at temperatures O, T<cTD the form 

We have generalized here Eq. (40) to include the one- and 
two-dimensional cases (d = 1,2, and 3 is the dimensionality 
index). It is assumed also that the leading role is played by 
scattering from acoustic phonons, i.e., g2(q) cc q; 

At temperatures 0 ,  T ,cTD (but O, Tg T,) we obtain 

We have assumed here that in quasi-two-dimensional and 
quasi-one-dimensional systems one or two dimensions be- 
come smaller than the wavelength of the phonon. In this case 
the electron momentum on the Fermi surface remains three- 
dimensional. If, however, the dimensionality of the Fermi 
momentum is also lowered, it is impossible to obtain a uni- 
versal relation such as (42) or (44), and the balance equations 
for systems with different dimensionalities take the form 

It is interesting to note that in the one-dimensional case 
of (45) the right-hand side contains a dependence of r, and 
the power transferred from the electrons to the lattice de- 
creases steeply at a low defect density [(TE,)-I-c(1 1. 

Equation (42) is valid if O(cTD, consequently 

On the other hand, a noticeable heating of the electron sub- 
system means that @ST, i.e., 

Comparing (46) and (47), it can be understood that at T<cTD 
there exists a range of electric-field intensities at which both 
inequalities (46) and (47) are simultaneously satisfied. A situ- 
ation may also arise with T<cTD but O>cT,. In this case 
Eqs. (42) and (43) must be used. The electrons are heated so 
strongly in fields 

We compare now the criterion for the start of heating 
(46) with the criterion for the start of the electron accelera- 
tion in the electric field within the scattering length (7). The 
latter can be written in the form 

It follows then from (47) and (49) that electron heating pre- 
dominates under the condition 

(T/~T~)~<c~-'kT,le~, (50) 

which can be easily reconciled with the thermalization con- 
dition (32) and with the requirement T <  cT,. 

In principle it is possible also to satisfy a relation inverse 
to (50). It is then difficult, however, to satisfy simultaneously 
the requirement T <  cTD and the thermalization condition 
(32). It is possible, of course, to go over into a region of higher 
temperatures (T> cT,). Then, at 

the diffusive-mode suppression mechanism considered in 
Sec. 2 should be observed in pure form. Unfortunately, the 
main contribution to the resistance (apart from the residual 
one) is made in this temperature range not by the Coulomb 
mechanism but by scattering of electrons by vibrating de- 
fects, or even by pure electron-phonon intera~tion,~ so that 
an experimental observation of the effect is substantially 
more difficult. Electron heating may turn out to be relatively 
weak in metallic glasses, in which there is one more relaxa- 
tion mechanism connected with the inelastic scattering of 
the electrons by two-level systems. 

In impurity metals one should more readily expect both 
effects, electron heating and suppression of diffusive modes, 
to play a substantial role simultaneously. We should then use 
the equations for the Coulomb and phonon parts of the con- 
ductivity and replace in them the thermostat temperature T 
by the quasi-equilibrium tem.perature 0 obtained for the 
electron subsystem from Eqs. (42), (44) or (45). 
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In the strong-field limit, when the conditions (50) and 
(46) are satisfied (i.e., O < cTD), 

but if O >  cTD, the decisive contribution to the resistance is 
made by scattering of electrons from the vibrating impuri- 
ties,8*" and 

AGa -E4/5. 

At O > c"~T, the "pure" electron-phonon interaction 
begins to make the main contribution to the resistance (in 
our modelp,, -(O /TD)5). The corresponding relations can 
be obtained for both the two-dimensional systems 

and for one-dimensional ones 

The overall picture of the field dependence of the con- 
ductivity is the following (see Fig. 4). (We recall that we are 
dealing with a correction to the conductivity. The leading 
contribution is connected with the scattering of the electrons 
from the static defects, and obeys Ohm's law in the entire 
considered range of the electric field strengths.) Initially, in 
weak fields, Aa is positive and does not depend on E. The 
conductivity then increases because of the electron heating. 
When the suppression of the diffusive modes in the electric 
field comes into play, however, Aa reaches a maximum and 
begins to decrease. At O 2 cTD it reverses sign and begins to 
increase in absolute value on account of electron scattering 
by the vibrating impurities. On the whole, this picture does 
not depend on the dimensionality of the considered system, 
and only the exponents of E change on different sections of 
the plot of the conductivity against the electric field. 

A sufficiently strong electric field should, in principle, 
destroy not only the diffusive modes but also the "Copper" 
ones.'' However, the critical fields at which the nonlinear 
effects appear turn out to be much stronger,I3 i.e., 
eElp > T- I. An analysis of this question can be carried out in 
analogy with an analysis of the suppression of diffusive 

FIG. 4. Correction to conductivity vs electric field strength at a fixed 
phonon-subsystem temperature (T < cT,). 

modes. Then differentiation with respect to the momentum 
transfer likewise appears in the nonlocal terms. But the sin- 
gularity does not become enhanced in the Copper channel, 
since it is connected with a small total momentum. 
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