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The nonparabolicity coefficients of the conduction band and of the light-hole band are deter- 
mined for three directions in the vicinity of k = 0 from the multi-oscillation electroreflectance 
spectra of germanium by using the theory of Aronov and Ioselevich [Sov. Phys. JETP 47, 548 
(1978); 54, 181 (1981)l. It is shown that the use of the one-electron approximation over estimates 
the nonparabolicity coefficients by approximately three times compared with the exact exciton 
theory. An independent method of determining the band parameters of a semiconductor (the 
Luttinger parameters), which determine the dispersion law E (k), is proposed. The obtained Lut- 
tinger parameters agree well with the values obtained from cyclotron resonance. 

PACS numbers: 71.25.Rk, 71.25.Cx, 78.20.Jq 

1. INTRODUCTION 

The electroreflectance (ER) spectra of semiconductors 
in a strong electric field should contain an oscillating part 
connected, in accord with the Keldysh-Franz theory, with 
the modulation of the reduced density of states beyond the 
absorption edge. These oscillations are the result of interfer- 
ence between the wave functions of the electrons and holes, 
which appear in interband optical transitions. Their analysis 
can yield important information on certain parameters of 
the solid. Thus, the reduced effective masses were obtained 
in Ref. 1 for several critical points in the Brillouin zone of 
germanium, and the nonparabolicity coefficients of the ger- 
manium energy bands in the vicinity of the center of the 
Brillouin zone were determined in Ref. 2 for the [ I l l ]  direc- 
tion from the change of the period of the oscillations with 
changing photon energy. A shortcoming of these studies, 
however, is the use of the one-electron theory, although the 
period and amplitude of the oscillations should be in- 
fluenced by the Coulomb interaction of the excited electron- 
hole pair. Recently Aronov and Io~elevich~.~ obtained with 
the aid of a quasiclassical method the dielectric tensor for 
semiconductors with degenerate band and for the photon 
energies above the fu~damental absorption edge in an elec- 
tric field, with account taken of the exciton. This theory 
makes it possible to calculate the ER spectra more accurate- 
ly than before. 

The present paper is devoted to a determination of the 
nonparabolicity coefficients of the energy bands of germain- 
ium for three direction in the vicinity of k = 0, using a theory 
that takes into account the Coulomb interaction of the elec- 
tron and hole. Analytic expressions are obtained that con- 
nect the nonparabolicity coefficients with the Luttinger 
band parameters, and the values of these parameters are ob- 
tained. 

2. EXPERIMENT 

[I l l ] .  The experimental procedure was described earlier in 
Ref. 2. 

Figure 1 shows the experimental ER spectra for three 
electric-field directions. The ER spectrum in a semiconduc- 
tor with a degenerate valence band is a linear combination of 
the spectra for the bands of the light and heavy holes. Since 
the two types of oscillation corresponding to the two types of 
hole have different periods, their sum contains "beats" in 
definite sections of the spectrum shown by the arrows in Fig. 
1). Owing to degeneracy, the equal-energy surfaces are cor- 
rugated near the top of the valence band. The sections of 
these surfaces are given in many textbooks. Participating in 
the ER effect are simultaneously two bands between which 
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The ER spectra were recorded at room temperature for FIG. 1 .  ER svectra for three electric field directions. The solid line for - ~ - - - - ----. . -. 

n-type 30 n.cm germanium samples for transitions at the %'11[110] shows the spectrum recorded ~ i t h  a light-wave polarization vec- 
tor e1)[001], and the dashed-with e1([110]. The two other spectra are 

center, S+ - 7 and 7+ - r; ( E ~  + independent of polarization. The arrows mark the positions of the 
at three orientations of the electric field, [loo], [110], and "beats." 
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FIG. 2. Sections of equal-energy surfaces for interband optical transitions 
from the heavy-hole band to the conduction band of germanium. The 
arrows indicate the directions along which the electric field was applied. 
The dashed curves shown for comparison are circles. The numbers are the 
transition energies in MeV. 

optical transitions take place. Since the conduction band is 
spherical and the electron mass is low, the corrugation of the 
equal-energy surface in the interband transitions becomes 
much smaller than that of one valence band. Figure 2 shows 
the intersections of the equal-energy surfaces with the (1 10) 
plane for transitions between the heavy-hole band and the 
conduction band. The distance from the center of the Bril- 
louin band to an equal-energy line is proportional here to the 
product of the masses of the electron and the heavy hole. 
Despite the insignificant difference between the equal-ener- 
gy surfaces in Fig. 2 and the spheres shown dashed in the 
figure, the ER spectra feel this difference. It can thus be seen 
$om Fig. 1 that more frequent beats are observed for 
%'I([111], for in this direction the ratio of the reduced masses 
of the heavy and light holes is a maximum. The noticeable 
approach of the beats at very weak anisotropy of the equal- 
energy surfaces for interband transitions, is evidence of the 
high sensitivity of the ER spectra to the values of the reduced 
effective masses. 

3. COMPARISON WITH THEORY 

To compare the oscillating part of the ER spectra with 
theory we used an asymptotic expressionS that takes into 
account the band nonparabolicity and takes for the light and 
heavy holes the form 

AR - ( w ,  $) - ( h o )  - Z ( f i o - E g ) - i  exp 
R 

which is valid at E>E, f 2fi0, where E, is the energy of the 
critical point, fiO = (e2%'2fi2/2p11 )1'3,p11 is the reduced mass 
of the electron and hole in the field direction, r is a pheno- 
menological_parameter that takes +the scattering into ac- 
count, p(o,%') = pop, (o) + p,,, (a,%') is a phase that de- 

pends on the optical constants of the system and on the 
electron-hole interaction force, and Cis  the interband non- 
parabolicity coefficient defined by the equation 

E,  ( k )  -En (k) =Eg+ ( l i 2 / 2 p )  k 2 - C ( k 2 )  '. (2) 

The phase pop, (a), which depends on the optical con- 
stants of the semiconductor and of the surrounding medium, 
can be taken into account with the aid of the Seraphin coeffi- 
cients a and 0. An expression for the generalized Seraphin 
coefficients of an air-metal-semiconductor medium was ob- 
tained in Ref. 6: 

a-iB=K exp[icpopt(o) ] =- (2n,n,D)-', (3)  
Ea-Ea 

h Es-Ea (4) 

where E, , n, , E, , and n, are the dielectric constants and the 
refractive indices of the semiconductor and of the refracting 
medium respectively; E, and dm are the dielectric constant 
and the thickness of the sputtered metallic layer. For exam- 
ple, for an aluminum film 40 A thick and for Ziw = 0.8 eV we 
have K = 0.005 and pop, (a) = - 0.3. 

The oscillations of the dielectric constant beyond the 
absorption edge are due to interference of the part of the 
electron and hole wave function that diverges from the cen- 
ter and the part reflected from the potential barrier produced 
by the electric field. It was found that in first-order approxi- 
mation in the field only a small fraction of the electron-hole 
pairs that have spread out and then gathered again at a point 
contributes to the interference. In this case the phase of their 
wave function is the classical action calculated on the "re- 
turning" trajectory and is of the form 

where R,, =p,,e4/2&; is the exciton Rydberg. The first 
term in (5) is due entirely to the electric field and determines 
the phase of the oscillations in the one-electron approxima- 
tion. The second term is due to the lowering of the potential 
energy of the electron-hole pair on account of the Coulomb 
interaction, and the last term is a correction that corre- 
sponds to the motion of an electron and hole at short dis- 
tances from each other, where the Coulomb interaction can- 
not be described quasi-classically. In the absence of 
degeneracy we have 

where T ( x )  is the gamma function. It can be seen that the 
influence of the Coulomb interaction on the period of the 
oscillations manifests itself in the appearance of an addi- 
tional phase parameter that depends on the energy: 
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TABLE I. 

Allowance for this phase, i.e., allowance for the Coulomb 
interaction of the electron and hole compared with experi- 
ment, leads to deformation of the oscillations and to a de- 
crease of the obtained nonparabolicity coefficients by ap- 
proximately three times compared with the "one-electron" 
case. 

To determine the nonparabolicity coefficients, we com- 
pared the theoretical spectra obtained with the aid of (1) with 
the experimental ones for three electric-field directions. To 
decrease the number of independent adjustment parameters, 
all the spectra were2btained for several values of the field, 
and the spectra for 8'11 [110], which depend on the polariza- 
tion of light, were obtained also for different polarizations. A 
computer was then used to fit simultaneously the theoretical 
and experimental spectra for equal fields but different polar- 
izations. All the parameters were varied until full coinci- 
dence was reached, except for the ratio of the contributions 
ofthe heavy- and light-hole bands. The resultant ratios of the 
contributions were then substituted in the spectra corre- 
sponding to the experimental spectra obtained at different 
fields but with like polarization, and a joint fitting again car- 
ried out. The nonparabolicity coefficients turned out to be 
the same in both cases, thus attesting to the uniqueness of the 
chosen parameters. 

4. DISCUSSION OF RESULTS 

The nonparabolicity coefficients obtained with coincid- 
ing theoretical and experimental spectra are given in Table 
I.The remaining parameters are listed in Table 11. For all 
spectra, Eg = 798 meV and pop, = - 0.76. 

It can be seen that the broadening parameter for the 
light holes must be chosen larger than for the heavy ones. 
This indicates that the thermalization time is shorter for the 
light than for the heavy holes. 

According to the published data, the nonparabolicity 
coefficients are most frequently determined with the aid of 
magneto-optical effects. For the nonparabolicity of the con- 
duction band, magnetoreflectance yielded a value 
p, = (520 f 100) eV-' (Ref. 7), and magneto-absorption 

yielded p, = (740 f 220) eV-' (Ref. 8) or p, = 600 eV-' 
(Ref. 9). It is much more difficult to obtain by these methods 
information on the nonparabolicity of the light-hole band, 
since the number of maxima in the magnetoreflectance and 
magneto-absorption spectra, corresponding to transitions 
from the light-hole band, is as a rule small because of the 
large energy intervals between them. The only value of the 
light-hole-band nonparabolicity coefficient, obtained in a 
study of magneto-absorption9 for the [I101 direction, was 
p,, = 1400 eV-I. The light-hole-band nonparabolicity was 
recently measured" by another method, using the oscilla- 
tions of the photoconductivity in a magnetic field under in- 
frared illumination. The nonparabolicity coefficients for 
three directions, calculated from the presented plot of the 
mass of the light hole vs energy by using the formula 

dzE,(k)  tiz AZ 
.-=-Y-- 6pL h2 ------ mu'(0) (Eu-Eg) ,  

d  kz m,' ( E )  mu* (0) muz 

(7) 

were found to bep,, = 280e~-' ,p, ,  = 420 eV--',p31 = 470 
eV-I. These are lower than calculated with the aid of Eqs. 
(A3), (A4), and (A5) using the known Luttinger param- 
eters." The nonparabolicity coefficients obtained from these 
equations were found to be p,, = (650 + 130) eV-', 
p,, = (710 + 160) eV-',p,, = (820 + 160) eV-I. These are 
close to those obtained by us in experiment. 

Knowing the nonparabolicity coefficients for three di- 
rections in the Brillouin zone, we can obtain the Luttinger 
parameters that determine the dispersion E (k) near k = 0, 
using Eqs. (A3), (A4), and (A5). The obtained values are 
gathered in Table 111. which gives for comparison the Lut- 
tinger parameters obtained from cyclotron resonance. The 
good agreement with the published data indicates that the 
high sensitivity of the ER oscillations to the values of the 
effective masses can be used to obtain the Luttinger band 
parameters by an independent method. 

The authors thank V. N. Ovsyuk for a number of help- 
ful remarks. 

APPENDIX 

We obtain equations that connect the nonparabolicity 
coefficients with the Luttinger band parameters, and make it 
possible to determine these parameters from the experimen- 
tal nonparabolicity coefficients. We denote the nonparaboli- 
city coefficients of the light-hole bands for the directions 
[loo], [110], and [ I l l ]  by p,, , p , , ,  andp,,, respectively. 

In the nonparabolic case the expansions of the energy in 
powers of k for the conduction and valence band are of the 
form 

TABLE 11. 
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TABLE 111. 
- - -- 

iYk2 ti2 
Ec ( k )  =EE + - - pc (-1 'k', 

2mc 2mo 

The theoretical values of the nonparabolicity coefficients of 
the valence band for the three directionsp,, ,p2,, andp,, can 
be obtained by solving the secular cubic equation that deter- 
mines the electron energy spectrum E (k  ).12.13 This equation 
is expressed in terms of the parameters L, M, N, and A, where 
R = E (k  ) - fi2k 2/2mo, andL, M, andNareconstants, deter- 
mined from cyclotron resonance, in terms of which one can 
express the sums of the products of the matrix elements for 
direct optical transitions between the valence bands. The 
band parameters L, M, and N are connected with the Lut- 
tinger parameters, which are more convenient for theoreti- 
cal calculations, by the following relations: 

1121 

13.0*0.2 
4.4*0.1 
5.3k0.2 

T I  
72 

T 3  

tiz 1 ti" 
y - 1  - L + 2 M ) ,  - 1 
2mo 3 2mo 6 y z  = - - ( L - M ) ,  

The cubic equations for the three directions, and the nonpar- 
abolicity coefficients, take respectively the forms: 

for the [I00 direction] 

Our data 

for the [I101 direction 

12.8*2.9 
4.0k0.3 
5.5k0.3 

for the [ I l l ]  direction 

[ (L+2M) k ,2-h]S+2(Nk2)3-3[  (L+ 2M) k2-h]  (Nk2)' 

13.1*0.4 
4.220.6 
5.5i0.5 

The heavy-hole-band nonparabolicity coefficientp,, for the 
direction [I101 is small and is neglected. 
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