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Bound magnon states with nonzero angular momenta are considered for a two dimensional 
magnet within the framework of the Landau-Lifshitz equation without damping. It is shown that 
such dynamic solitons are due to a topological singularity. The topological charge of the soliton 
v = f 1, f 2, ... is introduced. It is observed that if the number of magnons is low enough there 
exist limiting frequencies of the magnetization-vector precession in the soliton: w = wO/(v(, 
where w, is the frequency of the homogeneous ferromagnetic resonance. Computer and analytic 
calculations yield the characteristics of the two-dimensional solitons. 

PACS numbers: 75.30.D~ 

1. Analysis of essentially nonlinear perturbations in 
magnets, or magnetic solitons, is attracting much attention 
of late. A special place among magnetic solitons is occupied 
by topological solitions whose magnetization field cannot be 
brought into a homogeneous state by continuous deforma- 
tion. 

We note that the two- and three-dimensional solitons 
investigated in Refs. 1-3 are precessional: the magnetization 
vector in the soliton precesses at a certain fixed frequency. 
Their analysis is therefore free of the difficulties connected 
with the stability of two- and three-dimensional static soli- 
t on~ .~ . '  

The present paper is devoted to the study of the dynam- 
ic properties of two-dimensional topological solitons in a un- 
iaxial ferromagnet. We describe the ferromagnet on the basis 
of the Landau-Lifshitz equations for the magnetization vec- 
tor M(r,t ). We introduce the angle variables 

M,=Mo cos 0,  M,+iMg=M0 sin 0 exp (icp) , 
where M, is the saturation magnetization, and the z axis is 
chosen along the easy magnetization direction. 

Using the polar coordinates r and x (x = r cosx, 
y = r sin x ), we can put for the simplest precession soliton1 

per unit length of the soliton, and p, is the Bohr magneton. 
A topological soliton corresponds thus to a nonzero 

projection of the angular momentum of the magnetization 
field, a projection uniquely connected with the number of 
spin deviations in the soliton. 

The function 0 (r) is defined by the following differential 
equation ': 

d20 1 d0 v 2  0 
--I- -- - -s in 0 cos 0 -sin 0 cos 8-t - sin 0=0, 

" ( ,r2 r dr P 0. 

( 5 )  

where I ,  is the magnetic length and coincides with the do- 
main-wall thickness in a uniaxial ferromagnet, while 
w, = 2p0 PMo/fi is the frequency of the homogenous ferro- 
magnetic resonance. It can be verified that Eq. (5) has local- 
ized solutions only at w < w,. 

In Refs. 1 and 3 this equation was numerically integrat- 
ed by the "shooting" method (see Ref. 3 for details) for the 
cases Y = 1 and v = 2. The obtained magnetization distribu- 
tion 0 (r) was used to plot the number of N of spin deviations 
in the soliton against the frequency o and the soliton energy 
E against the number of magnons. The energy E per unit 
length of the soliton is equal to 

8 = 0 ( r ) ,  cp=ot+vx+cpo, v=O, f l ,  -1-2.. . , (1) 1 v 
E = - p ~ :  J{L' [(z)' + - sin2 0 

where w is the precession frequency and the parameter v 2 r2 
plays the role of the topological charge of the soliton. In the 
case when v # 0 and where P is the anisotropy constant ( 0 > 0). 

It was found that as N-+ co the precession frequency o 
0 (0 )  =n, 0 ( m )  =0, (2) tends to zero, and the soliton energy E is proportional to 

the magnetization field (1) cannot be reduced to the ground N ' I 2 .  In the other limiting case (N-+O) the functions 
state in all of space, and the corresponding soliton is topo- w = w(N)andE = E(N)areessentiallygovernedbythevalue 
logical. of v. If v = 1, it turns out1 that as N-+O 

It is easy to verify that the value of Y determines also the 
w ( iV) + a o ,  E = 4 n a M o 2 ,  

z-projection of the angular momentum of the soliton magne- 
tization field1: 

where a is the inhomogeneous exchange constant. If v = 2 
hM0 

K,=-v- f (1-cos 0)d%=-fivN. (3) localized solutions are observed3 only at w < :w, and the 
Zpo J maximum soliton energy is E = 8?raM; (~4)- 

where On the basis of these results, and also of a preliminary 

M numerical analysis of solitons with v = 3 and v = 4, it was 
N = C ~  (I-cos 0) d2x. (4) suggested in the review6 that, first, the magnetic solitons of 

2 ~ 0  type (1) are possible only at frequencies w < w,/]vl and sec- 
N is the number of spin deviations (number of magnons) ond, that in the limit as N 4  the soliton energy is 

1303 Sov. Phys. JETP 57 (6), June 1983 0038-5646/83/061303-04$04.00 @ 1984 American Institute of Physics 1303 



E = 4 ~ J v ( a M i .  In the present paper we justify this sugges- 
tion analytically. 

2. To determine the behavior of the soliton maximum 
frequency and maximum energy, we have integrated nu- 
merically Eq. (5) at v = 3 and v = 4. The results of an analy- 
sis of the function w ( N )  are shown in Fig. 1. It is easily seen 
that the law o <ooJvJ remains valid also at v = 3,4. 

In addition, calculation of the soliton energy confirms 
the limiting formula E = 4nlvlaMi for the cases v = 3 and 
v = 4. Plots of E ( N )  as N 4  for different values of v are 
shown in Fig. 2. 

Notice must be taken, however, of the following cir- 
cumstance. In the computer calculations of both Ref. 3 and 
of the present paper, the function w ( N )  tended to the value 
odlvl as N 4  only up to N / N , Z  where 
N2 = Mol t /2p0>l /a .  The quantity aN2 is the characteristic 
number of magnons in a two-dimensional magnetic soliton 
and is of the order of the maximum number of magnons on 
an area with dimension of the order of I,,. At small values of 
N the function o ( N  ) decreases with decreasing N (see Fig. 3). 
But in this region of N the numerical analysis is difficult, 
since the derivatives of the function 8 (r) becomes large as 
r 4 .  Therefore the question of the behavior of o ( N )  at ex- 
tremely small N calls for an additional analysis. 

FIG. 1. Results of analysis of the function o i N  ). The number of the 
curve coincides with the value of the parameter v. 

3. We proceed to an analytic description of the proper- 
ties of topological solitons. We prove first that in the two- 
dimensional case localized solutions of (5) can exist only at 
w > 0. To this end it suffices to multiply (5) by ?dB /dr and 
integrate with respect to r from 0 to rn : 

f[r2ded.B +r (:)'I dr-l.2v2j sin e cos 8 d0 - dr 
dr dr2 dr 

0 0 

Carrying out the integration in the left-hand side of (7)  
and taking (2)  into account we easily find that the integrals in 
it vanish identically. Therefore 

. - - 
1 J sin2 or dr= - (1-cos 0) r dr. 
2 0 00 " S 

Since both integrals in (8) are positive, it follows from this 
equation that the frequency of a two-dimensional soliton 
cannot be negative. This property of two-dimensional soli- 
tons distinguishes them from one-dimensional ones, whose 
precession frequency can be negat i~e .~  

We proceed to an analysis of the dependences of o and 
ofE on the number Nof bound excitons. At large N ( ( N s N , )  
the solitons with all the values of v recall a cylindrical mag- 
netic bubble: in the cylindrical part of radius R d o ( N /  
N2)'12>10 the density of the spin deviations reaches practical- 
ly the maximum value Md,uo, after which the magnon den- 
sity in a layer of thickness lo decreases exponentially to zero. 
Therefore 

E = ~ ~ R E B = ~ ~ ~ , E ~ ( N / ~ N , ) " ' ,  (9)  

where E B  = 2 Bl0M i is the energy of a Bloch domain wall 
per unit area. 

The precession frequency of the magnetization vector 
in the soliton is determined with the aid of the relation6 

fro =dE/dN. (10) 

From (9),  ( lo ) ,  and the definition of N, it follows that 

FIG. 2. Plot of E  (N) at different v:  curve I-v = 2, curve 2-v = 3, curve 
3 - v = 4 , E o = a M i .  o=oo (2N21N)'", N B N , .  (11) 
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FIG. 3 .  Behavior of the function o = o ( N )  in a large interval of 
N. curve I-v = 2. curve 2-v = 3, curve 3-v = 4. 

The distinguishing features of topological solitons 
manifest themselves at small N (N(N,). Small Ncorrespond 
to a small localization radius R of the soliton (R (I,). There- 
fore a small parameter (R 1 appears in the theory and 
permits an analytic investigation of the properties of the 
magnetization field. 

If it is assumed that R410, it is easy to verify that the 
anisotropy energy is less significant in the analysis of the 
soliton structure than the exchange energy. To verify this, 
we estimate the corresponding terms in Eq. (5). The ex- 
change energy gives rise to the first term of (5), the term with 
the parentheses. Its order of magnitude is estimated at 

d28 1 de 1:v, 
2-, lo2---- I '  

d f  
sin 0 00s 0 - ($) 

r dr r2 

The anisotropy energy gives rise to the second term of 
(5), with unity order of magnitude. This is also the maximum 
order of magnitude of the last term of (5). Consequently, in 
the principal approximation in terms of the small parameter 
(R Eq. (5) can be repaced by 

d28 1 de v 2  -+---- sin 8 cos 0=0. 
dr2 r dr rZ 

(12) 

Equation (12) is gauge invariant: if the function 8 = f (r) 
is a solution of (12), the function 8 = f (Ar), where A is a 
constant, is also a solution of the same equation. 

This equation describes formally the static (w = 0) field 
of the magnetization in an isotropic ferromagnet. The soli- 
ton solutions of this equation were investigated in Refs. 7 
and 8. Its solution 8 = 8,(r), which satisfies the required 
boundary conditions, is known and can be written in the 
form 

Here R plays the role of the soliton dimension. 
The function (13) decreases at large distances (r%R ) in 

power-law fashion: 

The solution of (5) at r)l, decreases exponentially: 

Thus, at r 2 I, the last terms of Eq. (5 ) ,  which were left 
out in the course of its reduction and of the transition to Eq. 
(13), become significant. At rsl,, however, the value of 0 is 
small and Eq. (5) that defines it can be linearized: 

A solution of this equation, which decreases as r 4  a,, is 
expressed in terms of a Macdonald function 

We note that at r(lo the function (16) behaves at v+O 
like 

K p  (Zo/r (I-o/mo)'h)'vl. (17) 

The relation (17) appears, generally speaking, outside 
the region where (1 5) is valid. However, a comparison of (1 7) 
and (14) leads us to the following conclusion. If we define the 
parameter R by the condition R(1, we can, by an appropri- 
ate choice of the constant C in the solution (16), make the 
functions (13) and (16) equal in the interval R4r(lo with 
accuracy equal to that of Eqs. (14) and (17). This choiceofthe 
constant C leads us to the equation 

We see first of all that in the interval R(rgl,, where the 
limiting expressions (14) and (17) are "joined together," 
tan(0 /2 )g  1 and Eq. (16) coincides with the solution of Eq. (5) 
in practically the entire interval r)R. The asymptotic form 
(17) is thus fully justified. We obtain thus Eq. (18), which 
describes with good accuracy, relative to the parameter R / 
I,, the localized solution of the nonlinear equation (5) at all 
values of r. 

The solution (1 8) is characterized by a free parameter R 
that should be fixed by the value of one of the integrals of the 
motion. The corresponding integral is the number of mag- 
nons N, which we now proceed to calculate. It is easy to see 
that in the principal approximation in R /Io the number N is 
proportional to R '. If lv( > 1, we can calculate it in fact by 
using the solution (13), since the difference between (13) and 
(28) is small in terms of the parameter R /I,. As a result we 
obtain 
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At I Y I = 1 Eq. ( 13) is valid only over distances r smaller than 
the magnetic length I,. At these distances we can neglect the 
magnetic anisotropy and use Eq. (12). At distances r>l, the 
inhomogeneity of the magnetization is described by Eq. (5) 
and falls off exponentially. To calculate N at (vl = 1 we can 
therefore use Eq. (18). Calculation yields 

where e is the base of the natural logarithms and y --, 1.78 is 
Euler's constant. 

It follows from (19) and (20) that the condition R '<It is 
equivalent to the requirement N<N,. But since we are inter- 
ested in the limit as n-&, the condition obtained is quite 
satisfactory to us. 

Analyzing (9) and (lo), we arrive at the conclusion that 
at Iv1 > 1 the parameter R is indeed determined uniquely by 
the number of magnons, with n a R '. At Iv 1 = 1 the function 
N (R ) is more complicated, since Eq. (20) contains the fre- 
quency o ,  whose dependence on Nor R must be determined 
from a few additional conditions. By way of such a condition 
we can use, e.g., the identity (8). 

Having the solution (18), we proceed to calculate the 
soliton energy E and the precession frequency w as functions 
of N. In the principal approximation in the small parameter 
R /I, the contribution to the total energy of the soliton is 
made only by the inhomogeneous-exchange energy, for the 
calculation of which it suffices to use the solution (13): 

E=4naMo2 I v I =4hooNz 1 v 1 .  (21) 

Since (21) does not depend on N, it is valid also at N = 0, 
and coincides with the known formula for the limiting ener- 
gy of a singular soliton in a two-dimensional uniaxial ferro- 
magnet.'s9 

To find theo(N) dependence it suffices to use relation (8) 
which we rewrite, taking the definition (4) into account, in 
the form 

If now we use the solution (18) to calculate the integral 
in the left-hand side of (22), it turns out that in the principal 
approximation in R /lo this integral is also proportional to N: 

Comparing (22) and (23), we obtain the sought o ( N  ) de- 
pendence at NgN,: 

o=oo/lv 1 .  (24) 

Knowing the limiting energy (21) of the soliton and using 
(lo), we obtain 

This formula expresses the soliton energy as a function 
of the number of magnons at sufficiently small N, accurate to 
terms of order (N /NJ2 or (R 

Equations (24) and (25) answer the question of how the 
distinguishing features of topological solitons manifest 
themselves as N 4 .  

There remains, however, the question of the anomalous 
behavior of the curve o = w(N), obtained by numerical cal- 
culation, at extremely small N (Fig. 3). It follows from the 
numerical calculation that as N-+O the precession frequency 
o vanishes if Ivl# 1. The magnetization distribution that en- 
sures a nonzero energy E = 4?ralv) M ;, is transformed into 
a singular function as N 4 .  This may possibly indicate the 
existence of static singular solutions of Eq. (5) for lvJ > 1, 
mentioned in Ref. 9. If such a singular solution (N = 0, 
w = 0, E = 4 ~ a J v l M ; )  exists, it cannot be, by virtue of the 
obtained relations (24) and (25), the limiting one with respect 
to solitions of a magnetization-field with finite values of N 
and w. 
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