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It is shown that the thermal fluctuations of the surface of liquid helium leads to a shift in the 
hydrogen-like levels in the transverse motion of electrons located above the helium. The corre- 
sponding rise of the resonance-transition frequencies at T- 1 K is =: 1.5 GHz for 4He and =: 300 
MHz for 3He. The dependence of the effect on the temperature uncovers the possibility of experi- 
mental observation. 

PACS numbers: 68.10.Cr, 67.40. - w, 67.50.Dg 

1. The possibility of localization of electrons over the 
surface of liquid helium was predicted more than ten years 
ago.'.' Subsequent intense study of localized electrons (a de- 
tailed bibliography is contained in Ref. 3) revealed the basic 
features of its dynamics and kinetics. Nevertheless, in the 
problem of the localization of electrons over a dielectric with 
relative permittivity E close to unity, there still remains a 
number of unsolved questions. One of them, which has a 
fundamental nature, is the question of the energy spectrum 
of the localized electrons. 

The motion of an electron along the normal to the sur- 
face and near it takes place in the potential of electrostatic 
image forces, which has an attracting character, while the 
penetration of the electron inside the dielectric is prevented 
by the high potential barrier at the surface (1.2 eV for 4He 
and 0.9 eV for ,He). In the one-dimensional potential well 
that is formed, a discrete set of stationary states is generated. 
Since the mean distance (z), of the electron from the surface 
(thez axis is directed normal to the surface, the liquid fills the 
half-space z < 0, and n is the number of the level) significant- 
ly exceeds the interatomic distance under these conditions, 
which is a consequence of the closeness of E to unity 
( E ~  = 1.0572 for 4He and E, = 1.04276 for ,He), the micro- 
scopic structure of the liquid surface has little effect on the 
spectrum. In particular, in the description of the motion of 
the electron we can use the macroscopic expression for the 
potential energy of an electron in the field of image  force^.^ 

U, ( 2 )  =-eZ (8-1)  /4 ( E + ~ ) z = - Q e a / z ,  (1) 

and the motion of the electron in the plane of the boundary 
can be considered to be free. Such a simple model, with infi- 
nitely high walls at zc0, gives the following well-known hy- 
drogen-like spectrum for motion along the normal:, 

En=--Q2me'/2h2nZ (2) 

(m and e are the mass and charge of the electron) with effec- 
tive Bohr radius y-' = fi2/me2Q. For 4He y-' = 76 A, 
El = 0.003 eV, while (z) ,,2,3 are equal to 114, 456 and 
1026 A, respectively; for 3He the characteristic distance is 
increased by Q4/Q3 = 1.33 while the energy is decreased by a 
factor (Q4/Q3)' = 1.78. 

The actually observed transition frequencies between 
the stationary  level^,^.^ while close to those predicted on the 

basis of (2), do differ significantly from these theoretical val- 
ues. For example, for the frequencies of transitions from the 
ground state with n = 1 to excited states with n = 2, 3, the 
calculation by Eq. (2) yields for 4He v12 = 1 19.7, v,, = 141.8 
GHz while direct measurement5 gives v12 = 125.9 f 0.2 and 
v,, = 148.6 + 0.3 GHz. For ,He, the calculated values 
amount to 67.6 and 80.1 GHz, and the mea~ured,~,' 
69.8 & 0.15 and 82.55 + 0.2 GHz. 

Divergences of this sort cannot of course be regarded as 
surprising if we consider that in such an idealized picture 
many factors, although secondary, have still not been taken 
into account. The essential problem from this viewpoint is 
the character of the transition layer between the liquid and 
the vapor, which determines the change in the potential (1) 
over short distances from the surface. Unfortunately, no 
definite data on the structure of the liquid-vapor boundary 
have yet been obtained. Therefore, a number of  author^^.'-^ 
have attempted to make the spectrum (2) more precise by 
choosing some modification or another of the polarization 
potential (1), with a more realistic behavior near the surface. 
With a suitable choice of matching parameters, it is possible 
to reach an excellent agreement of the transition frequencies 
with the experimental values. 

Another factor correcting the spectrum (2) is the pres- 
ence of the vapor of the liquid over the liquid surface. De- 
tailed consideration of this question has been given in a work 
recently published.'' Two corrections appear in the spec- 
trum (2) for motion of the electron along the normal. One of 
these is connected with the polarizability of the vapor and, as 
could be expected, lowers the energy levels and the transi- 
tion frequencies. A second correction is connected with the 
effect of quantum refraction of the electrons by the atoms of 
the vapor and gives a uniform upward shift for all the hydro- 
gen-like levels. The predicted transition-frequency shifts be- 
come significant in certain temperature ranges (rather nar- 
row in view of the strong dependence of the vapor 
concentration N on the temperature), when the mean dis- 
tance between the molecules of the vapor falls between the 
values of the characteristic distances of the electron from the 
surface in those states between which there occurs the transi- 
tion (z) , (N - 113 (  (z) m .  Thus, for 4He at N = 10" cm-,, 
calculation gives v,, = 126.9 and v,, = 148.9 GHz. Upon 
decrease in the temperature, the effect rapidly disappears. 
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Finally, the liquid surface is by no means a plane. In 
addition to the quantum fluctuations, which are less impor- 
tant in view of their small amplitude (of the order of interato- 
mic distances), the boundary of the liquid is continually un- 
dergoing thermal fluctuations. These latter are not at all 
small (at not too low temperatures) and, as has previously 
been noted by Widom," lead to logarithmic divergences, 
both for short and long wavelengths, in the calculation of the 
mean square deviation of the surface from its equilibrium 
form 7. On the short wavelength side, cutoff of the loga- 
rithm takes place, obviously, at atomic distances. The diver- 
gence on the longwave end, as has been shown in Ref. 12, is 
eliminated when account is taken of the force of gravitation; 
in this case the logarithm is cut off at the capillary constant. 

The effect of the fluctuating distortion of the shape of 
the liquid surface on the behavior of electrons localized over 
it has been considered previously in a number of papers, 
principally from the point of view of scattering of electrons 
by ripplons--elementary excitations of the liquid ~u r f ace .~  
This effect determines the imaginary increment of the ener- 
gy spectrum of the electrons and, together with the scatter- 
ing of them by the atoms of the vapor, is the reason for the 
broadening of the transition lines of the hydrogen-like spec- 
trUm.8.~3.~4 As for the level shift under the action of interac- 

tion of the electrons with the curved and vibrating surface, 
there is only one reliable result here,I3 which pertains to the 
effect of the electron-ripplon interaction on the motion of the 
electron along the surface in the presence of the applied elec- 
tric field. In a long paper,' along with other questions, the 
actual corrections to the energy spectrum of the electron 
under the action of fluctuation deformations of the surface 
were calculated. However, as has been noted in Ref. 13, in 
the analysis of the polarization interaction with the curved 
surface contains an error due to not taking the perturbations 

, in the boundary condition into account. Moreover, the role 
of short-wave surface oscillations was not analyzed in proper 
fashion. For these oscillations ky-'> 1 (k is the wave number 
of the ripplon), and it is in just this case that one should 
2xpect the greatest effect.I3 

In the present paper we shall show that the fluctuations 
of the liquid surface produce a shift in the hydrogen-like 
levels of the transverse motion (2), the magnitude of which 
falls off slowly with decrease in temperature (proportional to 
T)  and depends on the number of the quantum level n. The 
corresponding increase in the frequencies of the transitions 
between them, although it does not allow us to correct the 
spectrum (2) to the degree that the calculated values coincide 
with the experimental observations, turns out to be not small 
and, most importantly, to depend on the temperature, which 
makes its experimental observation a possibility. 

2. Let us recall briefly the character of thermal fluctu- 
ations of the liquid surface (the question is discussed in detail 
in Ref. 12). The shape of the surface can be specified by the 
function f ( p), which represents the height of its rise above 
the equilibrium level (the plane z = 0) at the point p = (x, y). 
The probability of the fluctuation of the surface with a given 
flexure is determined by the minimum amount of work nec- 
essary to create the given configuration 6 ( p):'5 

In turn, R,, is equal to the increase in the mechanical (po- 
tential) energy AE,,,, of the curved surface relative to its - 
equilibrium value. The excess mechanical energy, expanded 
in terms of the quantity to second order, is equal to the sum 
of two contributions: 

due to capillary and gravitational forces, respectively. 
We now choose a rectangle O<x<L, , O e < L ,  in the 

plane of the unperturbed boundary z = 0 and expand the 
function f ( p) on it is a Fourier series. Since f is real, we write 

while k , ,  = 2~n, , ,  /L,,, , n,, , are integers, 6 : = (-, . Sub- 
stituting (3) in the expression for AE,,,, and taking into 
account the periodicity of the individual harmonics in the 
chosen rectangle with area S = L,L, , we find 

where k = Ikl, x2 = 2/d =pg/a,  d is the capillary con- 
stant. Obviously, fluctuations with different k are statistical- 
ly independent. The probability of the fluctuation 5, is 

The doubling of the exponent is connected with the equal 
probability of fluctuations with wave vectors k and - k. 
With account of the real and imaginary parts of (,, we find 
the mean square of the fluctuations with wave vector k in the 
form 

Squaring (3), averaging, and transforming from summation 
to integration, it is not difficult to perceive the logarithmic 
singularity of [{ ( p)I2 noted above. Actually, 

T " k d k  
[ ~ ( P ) I ' = C ~ S ; T I = ~ J ~ .  

k 0 

As k+m, the cutoff must be made at the reciprocal interato- 
mic distance, a- ' .  The divergence due to failure to take into 
account gravitational forces (i.e., at x = 0) as k+O is now 
absent. The role of the smallest k is played by the reciprocal 
of the capillary length x .  Thus, we verify that 

3. We now find the change, due to the curvature of the 
liquid surface, in the electrical energy of interaction of an 
electron, with the polarization charges on the surface. First 
of all, we note that the rate of formation of the image field 
significantly exceeds the characteristic velocities of the elec- 
tron in a potential well near the surface. For the frequencies, 
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this means satisfaction of the inequality w,  = Q 'w:'go:'. 
Thus, we do not have to take into account beforehand the 
retardation of the polarization and the dispersion of E 

(Q 2- On the other hand, the characteristic frequency 
of the electron in the well, we = Q 'me4/@ - 1012 GHz, sig- 
nificantly exceeds the capillary-wave frequencies 
wf,, = (a/p)k 3, which determine the rates of surface defor- 
mation: w,)o,,,. The inequality is weakened only in the 
immediate vicinity of the maximum surface-oscillation fre- 
quency corresponding to the wave number k,,, -a- ' - 10' 
cm-' and amounting, in order of magnitude, to 10'' Hz for 
He at T- 1 K. This face, however, is not so important, since 
the final answer for the shift in the levels will be obtained 
with logarithmic accuracy. 

The neglect of all temporal effects, which is possible 
under the given conditions, allows us to solve a purely static 
problem. Using the coordinates mentioned above, we as- 
sume that the electron is located in a vacuum at the point 
z = h, p = 0 and we expand the potential in the vacuum (in- 
dex 1) and in the liquid (index 2) to terms of second order in 
the displacement of the surface: 

(r) =cpo+cpIO' +cp:l' +f$' 

(5) 
e E-l e =---- + cp:l' +&' , 

Ir-hi ~ + l  lr+hl 

2e 
rpz (r) ='io' +cp:" +qi2' = + (pi"+(p:2', h=Zlh. 

(&+I) lr-hl 

Here we have substituted the well-known solution4 for a 
charge above a plane surface. 

The corrections q1\!;2' in both media satisfy Laplace's 
equation and the standard boundary conditions of contin- 
uity of the potential and of the normal component of the 
induction vector: 

AT (r) =0, (64  

cp,=cpz, -= "I E "' - r=r bound =p+F (p) , t=;c. (6b) 
dn  dn ' 

We expand the desired potentials q ~ \ ; f '  (2, p) similar to (3), in 
a two-dimensional Fourier series in the x-y plane. The ex- 
pansion, for example, of the potential q~(,'." which satisfies 
(6a) (and falls off as z- + co ), has the form 

Further, after obtaining the expansion of the boundary con- 
ditions (6b) on the curved surface up to terms of second order 
in 6 ( p) (we do not write them out here because of their cum- 
bersome form), we transform in them to the Fourier compo- 
nents with the help of ( 7 )  and ( 3 )  and with the use of the 
potentials (5) of the unperturbed problem. The resultant 
boundary conditions allow us easily to find the Fourier com- 
ponents of the potentials themselves. For the potential in a 
vacuum, in first order, we obtain 

where p,  = p/h.  Using the potentials pf)  in the vacuum and 
in the liquid, we find the second-order corrections by an 
analogous method. We note that, in view of the proportion- 
ality of these quantities to the small factor Q, additional ac- 
count of the departure of E from unity in the corresponding 
expressions would lie beyond the accuracy of the work. The 
correction q~f' in the vacuum, which is of interest to us, is 
equal to 

We now assume, and this is confirmed by the calculation, 
that the principal contribution to A U is made by the surface 
oscillations with large k :  kh> 1. This assumption corre- 
sponds to the fact that13 the distortions of the shape of the 
surface manifest themselves to the greatest degree in the 
short-wave range k y - I %  1 (see above). (The absence of a con- 
tribution from the long-wave oscillations with kh< 1 is ex- 
plained by the fact that the inertia-free electron is simply 
moved adiabatically along with the surface, the portion of 
which under it can be regarded in this case as locally plane.) 
The wavelengths of such oscillations are much shorter than 
the characteristic distance of the electron from the surface; 
therefore, the electron senses them as a fine ripple. Desiring 

where to isolate only the principal effect, we can average the 
expression for A Uover the spatial oscillations of the surface. 

2-p12+hk I-- (kik) ] + i (kip) , Such space averaging, as is not difficult to see, is equivalent 
F (p, k, kt) = - 

l+pi2 [ k2 in the given case to a statistical averaging over the statistical- 
The energy of interaction of the electron with the polar- ly independent c k  because within a distance along the sur- 

ization charges on the surface of the liquid can be found from facet equal in order of magnitude ot the quantity h, a distance 
the general formula for the total energy of the field,4 after that is characteristic for the considered ~roblem, we can 
subtracting the characteristic energy of the electron place a large number of intervals, within which oscillations 

take place with given but arbitrarily differing, wavelengths 
e Qe2 e 

= - cpl (h, p=O) - ; t c p : Z )  1 r=h =uO+*u. (Adh ). In the averaging of A U the correction of first order in 
2 h 2 p=o vanishes and there remains 
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The independence of the fluctuations with different k, ex- 
pressed by the equations 
--- 

t k , b k , = c k , ' L k , ' =  I S t ,  I "kg, - k ~ r  

allows us to carry out the summation over k, in (8) without 
difficulty. Then, transforming in (8) and (9) from summation 
over the wave vectors to integration, we get for the energy 
d, averaged over the fluctuations, 

- QeeT 
A l l = -  ------ 

2-pi2 J d2ke-kh cos (kp) 

k ,  dki 
x 

in the energy levels of the unperturbed problem. On the oth- 
er hand, the quantum correction dU'2' in this approxima- 
tion leads precisely to a shift in the energy levels which, as 
will be seen from the calculation carried out below, turns out 
to be equal in'order of magnitude to ( ~ f ) ~  ln2(ya). Estimating 
the level shift under the action of the first two of the enumer- 
ated perturbations in the second approximation, it is not dif- 
ficult to establish the fact that their contribution turns out to 
be of the order of (yf )2, i.e., it does not contain the square of a 
large logarithm. Account of these contributions would actu- 
ally mean refinement of the constant under the logarithm 
sign, which would be an exaggeration of the logarithmic ac- 
curacy of the given calculation. Thus, in Eq. (1 la), it suffices 
to keep only d, and to write out the boundary condition 
(1 lb) on the unperturbed plane boundary of the liquid. 

After separation of the variables we obtain for the wave 
function @,(z) that describes the motion of the electron 
along the normal to the surface, the equation 

ktmln 

in?) ]  e. ( z )  =o 
Integration over k l  is carried out over the region of signifi- 
cant wave numbers k,h>1, i.e., limited by the values 
kl  ,,, - - I and k, ,,, -a- I; hence X2 can be omitted in the with the usual boundary conditions and normalization 

denominator. Integrating over the angle q, between k and - 
p,I6 we find Q .  (0) =0, n ( z m )  0 i mn2(z)az=i .  

0 

- QeZT ln (hla) The wave equation of the unperturbed problem has the 
AU=- 

nah form'' 

w - en (0)  ( 1  
p i  d p l  k  dke-"1. ( k p )  

The shift in the n-th level is given by - 
where J,,(x) is a Bessel function of zero order. Then integrat- m - 
ing over k (Ref. 16) and then over p , , we finally obtain E:"= j' AU") [ @ : ( I  (2 )  lZdz 

0 - Qe2T h Au=-- 
2nah3 ln (o). (10) Qe2Ty3 -dz 2  2yz 

= - - JT 1n (a ) (=)' e-*z/n [L,,' -)I . 
2nu n 

4. Finally, we consider the quantum mechanical part of 
the problem. The presence of the small parameter yf( 1 al- (12) 
lows us to make use of perturbation theory for the calcula- As is seen, the principal contribution to the integral is made 
tion of the shift in the levels. The Schrodinger equation with by the region of small z. In this region, the Laguerre polyno- 
the boundary conditions has the form mials 

A" n! ex dn-' 
- A Y  (2, p) + [E- (U,+AU(')+AU('))  ]Y ( z ,  p) =0, (1 la) 

L,'(~)=----- (e-*xn) 
2m (n-1)  ! x  dxn-' 

The electrostatic energy of interaction of the electron with 
the deformed surface of the liquid in (1 la) is expanded in 

tend toward a constant-nn! Limiting the integration in (12) 

powers of f up to terms of second order: U,, is defined in (1); 
at small z to the value z,,, -a ,  and at large z to the character- 

AU'" is explicitly written out in Ref. 13 and is a correction istic distance of the electron from the surface z,,, - (z) ., we 

that is linear in f;  the value of the second correction d, find, with logarithmic accuracy, 

averaged over the fluctuations of the surface, is found above QeZTy3 ( z ) , ,  
(10) (in place of the value of the z-th coordinate of the elec- E:')"--- nun3 l n 2 ( ~ ) '  (13) 

tron h used above, we now write simply z). 
In first-order quantum perturbation theory, the distor- . The energy of the n-th level is lowered and becomes equal to 

tion in the boundary condition at the curved surface (1 lb) 
and the term linear in f of the interaction energy A U"', as E,=fto, 
was shown in Ref. 13, do not make a contribution to the shift a 

(14) 
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We estimate the shifts of the transition frequencies 
Av,, = v,, - v(PI and Av13 = vI3 - Y E .  For electrons above 
4He at T = 1.3 K, which corresponds to the conditions of the 
experiment of Ref. 5, we find with the aid of (14), Av,, = 1.5 
and Av,, = 1.64 GHz. Under the experimental conditions of 
Ref. 7, we obtain for electrons over 3He, at T =  0.4 K, 
Av,, = 276 and Av,, = 302 Mhz. We note that these values 
exceed by a wide margin the natural line widths estimated in 
the first and second cases, respectively, to be <450 MHz3 
and < 110 MHz.' The temperature dependence of the level 
shift (13), which must manifest itself also in the temperature 
dependence of the frequencies of the resonant transitions 
Y,, (T), allows us to identify the discussed effect uniquely. 
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results. 
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