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1. INTRODUCTION 

Periodic motions of magnetization are of interest for 
two reasons. First, they are important for the experimental 
investigations of the properties of magnetic materials, since 
resonance methods allow us to measure the periods of such 
motions with great accuracy. Second, the periodic solutions 
play a distinct role in the mathematical investigation of the 
equations of magnetodynamics. 

The motion of the magnetization in superfluid helium-3 
is described by the Leggett equations1 in the absence of relax- 
ation, and by the Leggett-Takagi equations2 when the relax- 
ation is taken into account. According to these equations, 
the motion of the magnetization in superfluid helium-3 oc- 
curs under the action of two torques: the Zeeman torque 
produced by the external magnetic field Hand the spin-orbit 
torque produced by the dipole-dipole interaction with ener- 
gy U,. The magnitudes of the torques are characterized by 
the Larmor frequency w, = - gH (g is the gyromagnetic 
ratio for the He3 nuclei) and by the frequency R of the longi- 
tudinal oscillations. Two asymptotic regions naturally arise: 
w, 40 and Rgw,. Until recently, the spin-dynamics equa- 
tions for superfluid helium-3 were investigated mainly in 
these regions, the equations possessing periodic solutions in 
both limits. In the strong-field limit (i.e., for w, s f 2  ) the peri- 
odic solutions describe a Larmor precession perturbed by 
the action of the moment of the dipole-dipole forces. The 
resulting corrections to the precession frequency394 contain 
nontrivial information about the properties of the superfluid 
phases of helium-3, and they are used in the interpretation of 
pulsed NMR experiments performed on these  phase^.^ In 
the opposite limiting case, i.e., o, 40, the motion of the 
magnetization is primarily determined by the moment of the 
dipole forces, and depends essentially on the specific form of 
U,. The Leggett equations for the B phase in the case w, = 0 
have been solved e ~ a c t l y , ~  and the motion of the magnetiza- 
tion has been investigated in detail.' In particular, in this 
case the periodic solution to the Leggett equations, which is 
called the WP mode (wall-pinned mode), has been known for 
a long This solution describes the periodic magneti- 
zation motion experimentally observed earlier.9 

The magnetization motion in fields of intermediate 
strength (i.e., in fields for which w, -0 ) is also of interest, 
but only one of the earlier investigated periodic solutions of 
the Leggett equations, namely, the Brinkman-Smith solu- 

tion3 for the case in which the angle between the magnetiza- 
tion and the magnetic field is smaller than 8, = arc cos( - b), 
remains valid for such fields. Recently, Novikovlo showed 
that the Leggett equations for the B phase possess a number 
of periodic solution in the case when o, and R are arbitrarily 
related. The properties of the periodic solutions in the region 
of intermediate fields, were, however, not investigated. In 
the present paper we explicitly write out these solutions, in- 
vestigate their stability against weak perturbations, and find 
out how they are affected when allowance is made for dissi- 
pation caused by an "internal" mechanism in the hydrody- 
namic approximation. Furthermore, to establish a corre- 
spondence with the known asymptotic solutions, we follow 
the passage to the limits w , 4  and 0 / w , 4 .  A brief ac- 
count of some of the results obtained can be found in Ref. 11. 

2. CHOICE OF THE VARIABLES 

To be in a position to subsequently take into account the 
effect of dissipation on the periodic solutions, we shall pro- 
ceed from the equations of spin dynamics with dissipative 
terms. But we shall, recognizing that for intermediate mag- 
netic fields the hydrodynamic approximation is applicable in 
a broad range of temperatures, limit ourselves to the consi- 
deration of only this case, and write the Leggett-Takagi 
equations in the hydrodynamic limit: 

Here S denotes the spin of a unit volume of helium-3 (we use 
a system of units such that S is measured in set.' and the 
magnetic susceptibility x = gZ); d is the order parameter in 
the vector representation and is a function of the direction in 
momentum (a) space; t_he correspondence for the B phase is 
realized by the matrix R (n, 9 ) for rotation through the angle 
19 about the direction n: 

di (P) =Ri, (n, 8) PG 
v is the angular velocity of the order parameter, it being 
given by Eq. (3); ND is the torque produced by the dipole- 
dipole forces and is connected by the relation 

N ~ = - n d U ~ / d 8 ,  

with the dipole energy U,, which, in the B phase, depends 
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only on the angle 8: for example, Ref. 12): 

and x is that combination of the constants of the Leggett- 
Takagi theory and characterizes, in accordance with (1)-(3), 
the energy dissipation rate: 

dE/dt=-xND2. 

Equations (1)-(3) go over into the Leggett equations when 
x = 0. The Leggett equations have periodic solutions for the 
B phase because these equations have another integral of the 
motion besides the energy. To find the solutions, we should 
rewrite the system of equations in such variables that this 
integral would be explicitly separated out. One possible set 
of such variables has been suggested by Novikov." The var- 
iables in Ref. 10 were chosen for reasons of convenience in 
the general analysis of the system of Leggett equations. Of 
greater importance in the present paper is the possibility of a 
direct physical interpretation of the solutions obtained and 
of a comparison with the previously obtained asymptotic 
solutions. For this purpose, it is more convenient to describe 
the motion of the order parameter with the aid of the Euler 
anglesa,P, and y. The integral of the motion is then also easy 
to find. 

Let us, following the usual definition of the Euler an- 
gles, set 

R(n, O ) = R ( ~ ,  p, r ) = ~ . ( a ) f i , ( P ) ~ ~ ( r ) ,  (5) 

where k,(a) is the matrix for the rotation through the angle 
a about the z axis, etc. The z axis is oriented in the direction 
opposite to the direction of the field H, in accordance with 
the fact that the gyromagnetic ratio for He3 is negative. Then 
at equilibrium S is oriented along thez axis. Let us introduce, 
besides the fixed coordinate system (x,y,z), a moving system 
( g , ~ ,  c )rotating together with the d vectors, i.e., let f = k (n, 
8)z, etc. To go over to the Euler angles in the equations of 
motion, we project Eq. (1) o ~ t o  the unit vectors 2 and j and 
the perpendicular to the (2, c ) plane (let us denote the unit 
vector in this direction by B ). We shpuld, in doing this, bear 
in mind that the unit vectors f and fl are moving (i.e., rotat- 
ing) vectors, and to the time derivatives should be added 
terms taking account of this rotation. The components of the 
rotation axis n, which are the same in the moving and fixed 
bases, can be expressed in terms of the Euler angles as fol- 
lows: 

1 n.=-- 
2 sin 0 eiwRkl (a ,  B, r ) ,  

with the angle 8 given by the relation 

1+2 cos 0=cos p+cos a,+cos p cos CD, (6') 

where @ = a + y. As a result of the indicated operations, we 
obtain equations expressing the time derivatives of S,, Sc, 
and Sg in terms of these quantities themselves and the angles 
a ,P ,  and y. Th:ee other equations are obtained by projecting 
Eq. (3) onto 2, f, and (j, and by substituting into the resulting 
equations the components of the angular velocity v ex- 
pressed in terms of the derivatives of the Euler angles (see, 

As a result, we obtain a closed system of equations for the six 
variables a ,  P, y and S,, So, Sc, which, in the absence of 
dissipation, are respectively canonically conjugate variables. 
Let us note further that, according to (4) and (69, the dipole 
energy depends on a and y only through the combination 
@ = a + y :  

As a result, the quantity P = S, - Sc is conserved in the 
absence of dissipation. Let us therefore incorporate @ and P 
into the set of independent variables in place of y and Sc. 
Solving the resulting equations for the derivatives, we finally 
obtain the following system of equations: 

-= 
sin f~ cos p P 

P+S, 
dt (1+cos p). ( 1-cos p 

x dU sin@ + - ------ - 
2 d(cos 0) sin p [P-Sz(1-cos p) I ,  (9) 

d~ x au 
-=--- 
dt 2 a (COS 0) 

{(l+cos a,) [Pcos p+(i-cos p)s,] 

-S6 sin a) sin @), (10) 

da 
-=- 

1 
O L  +- [ P  cos p+s* (1-cos p) 1 

dt sinz p 

da, 
-=- 

I 
OL + --- dU 

at 
(2S,-P) +x sin a, --- 

l+cos fi d (cos 0) ' (13) 

In certain cases, instead of the set of angular momenta 
S,, Sg, and P, it turns out to be more convenient to use 
Sc, So, and P. The transition to these variables is accom- 
plished directly with the aid of the definition of P. 

3. THE PERIODIC SOLUTIONS 

The right-hand sides of Eqs. (8)-(13) do not contain the 
angle a ;  therefore, the system admits of solutions of the form 

( 0 )  &=-aL+A (P('), P('), S, , a,('), s ~ O )  ) =const, (14) 
wherep"', @ 'O', ... are those values of the variables at which 
the right-hand sides of Eqs. (8)-(lo), (12), and (13) vanish, i.e., 
at which 

The angle a for such solutions increases linearly in time, 
which, according to the definition (5), corresponds to a peri- 
odic motion: rotation of the order parameter about thez axis. 
On account of the condition = 0, the angle y also varies in 
this case, its rate of variation being equal in magnitude but 
opposite in sign to the rate of variation of the angle a .  We 
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shall at first neglect the dissipation (i.e., set x = 0). Then the 
condition d P / d t  = 0 is automatically fulfilled. Thus, P is 
that integral of the motion which is discussed in Sec. 2; it 
corresponds to the integral P, in the Maki-Ebisawa nota- 
tion6 and the integral A ,  in the Novikov notation.'' There 
remain four conditions on five variables, i.e., the periodic 
solutions form a one-parameter family. 

The condition for the vanishing of the right-hand side of 
Eq. (8) has the form 

dU/dcI,=-8/15Q2 ( c o s , ~ + ' / , )  sin 0 ( I f  cos B )  =O. (16) 
It is fulfilled in the following four cases: 

I )  cos O = - i / r ,  1 1 )  @=O, 

111) @=n, IV) cos @ = - I .  

The cases 11) and 111) correspond to the condition sin @ = 0, 
but they should not be combined, since the solutions corre- 
sponding to them differ greatly in their properties. 

For all the four cases we find from (12) that 

i.e., that S lies in the plane of the unit vectors f and c. The 
vanishing of the right-hand sides of Eqs. (9) and (13) estab- 
lishes a relation connectingo, P, and S,, whereupon Eq. (1 1) 
determines the dependence of the angular frequency of the 
periodic motion on the integral P. In certain cases it is more 
convenient to use the anglep as the parameter specifying the 
solution. 

Let us now consider in greater detail the solutions cor- 
responding to the above cases. 

The case I), as can be seen from the formula (4), corre- 
sponds to the minimum of the dipole energy, and in this case 
not only is d U / d @  = 0, but also 

In this case the moment of the dipole forces is equal to zero, 
and the motion of the magnetization occurs under the action 
of the magnetic field only. Let us write the conditions result- 
ing from Eqs. (9) and (1 3) in terms of the variables S, and s<, 
with respect to which these conditions are symmetric: 

(Sz-Sc cos b )  (St-Sz cos p) =O, (18) 

S,+Sc=oL(l+cos p )  . (19) 

This system of equations has two solutions: 

Ia) S,=oL, SL=mL cos P, 
Ib) S,=UL COS P, SL=OL. 

For the solution Ia) the spin has the equilibrium value, the 
torque produced by the external field is also equal to zero in 
this case, and the solution Ia) is thus a steady-state solution. 
The substitution of Ia) into the right-hand side of (1 1) gives, 
as was to be expected, da/d t  = 0. The angle /3, according to 
Eq. (6) and the condition cos 8 = - 1, can vary within the 
limits O@<B,~arc cos( - b), thereby defining an entire 
branch of steady-state solutions. The existence of such a 
branch is a consequence of the independence of the dipole 
energy of the orientation of the axis n of rotation. Indeed, we 

can, by computing with the aid of the formula (6) the third 
component of n for the solution la): 

sin cI, 4 1 'h 
nz=nt = - 

2 sin 0 ( ~ + c o s B ) = [ - ( - + ~ s ~ ) ]  5 4 , (20) 

verify that it varies from one to zero as B varies from zero to 
8,. The specific choice of the equilibrium orientation of n 
under given external conditions is dictated by interactions, 
not considered here, that are weaker than the dipole interac-r 
tion.I3 

In the case of Ib) we obtain from (1 1) the relation d a /  
dt = - a,. This solution corresponds to a steady proces- 
sion of the spin with the Larmor frequency. The spin is ori- 
ented along the< axis, i.e., it forms an angle0 with the direc- 
tion of the magnetic field. The solution Ib) also exists only 
when O@<B,; it coincides with the Brinkman-Smith solu- 
t i ~ n , ~  and describes the magnetization precession in pulsed 
NMR experiments under conditions when the initial angle 
of deviation of the magnetization is smaller than 0, (Ref. 5). 
As w L 4 ,  the solutions Ia) and Ib) go over into the trivial 
solution S = 0, dUD/dO = 0, which corresponds to the equi- 
librium state. 

In the case 11) the dipole energy is stationary only with 
respect to the variable @. Setting @ = 0 in (67, we obtain the 
relation cos 0  = cos p. Further, setting 

da/dt='I, (6 -mL) ,  (21) 

we obtain from (9) and (1 1) the relation 

0 ~ ~ - 6 ~ = 4 d U / a  (cos P )  =i6/ ,5Q2(1+4 cos P ) .  (22) 
For %.f2 '(1 + 4 cos p ) < o, Eq. (22) furnishes two real val- 
ues of 6 that differ in sign: 

6'*)=f  [mL2-'s/i5Q2 (1+4 cos B )  ] I h .  (23) 
The values of the S-vector components corresponding to 
these values of 6 are found from Eqs. (1 1) and (13): 

The disposition of the vectors S'+' and S'-' in the (i, e) plane 
for cos p < - is shown in Fig. 1, where we have introduced, 

FIG. 1 .  Disposition of the vectors S'+' and S'-' for the periodic solutions 
IIa) and IIb) respectively. The distance OA = 6 and OB = o,. 
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besides the axes & and g, the orthogonal axes X and Y orient- 
ed respectively along & + $ and & - g. The components of S 
along these axes are found from the formulas (22) and (23), 
and are equal to 

s'+'-s'-'- (+)- 
x - -aL cos B/2, S y  --~:-)=161sin p/2, 

i.e., S'+' and S'-' are symmetric about the Xaxis. The angu- 
lar frequencies of the corresponding motions of the order 
parameter are, according to (21), equal to 

{w,+ [aL2- iv / , .n2( i+r  cos p) 1%). 
2 (26) 

Let us now investigate how the solutions found behave 
in the limiting cases w L 4  and / w L 4 .  When w, = 0, 
the two frequencies coincide, and are equal to the frequency 
of the WP mode8; S'+' and S'-' are then parallel and antipar- 
allel respectively to the Y axis. Below we shall designate the 
solution corresponding to the upper signs in the formulas 
(23)-(26) as IIa) and the solution corresponding to the lower 
signs by IIb), and consider these solutions separately. 

In the case IIa) the direction of the spin S approaches 
that of the z axis as the field intensity increases, and the angle 
between them is -(a /o,)~ when w, )a. The S-precession 
frequency for (R /w,)(l is obtained by expanding the 
expression (26); it is equal to 

&'+I=- -- n2 (L+4 cos p) . 
15 U L  

Notice that the precession frequency is much lower than the 
Larmor frequency. This is due to the cancellation of the 
magnetic-field-induced torque by the torque N, produced 
by the dipole-dipole forces. The torque produced by the field 
is proportional to the S component perpendicular to the 
field, and tends to zero as the angle between S and H tends to 
zero. The torque N, is determined by the orientation of the 
order parameter and does not depend on the angle between S 
and H; therefore this angle can be chosen such that the two 
torques are close in magnitude. The direction of ND coin- 
cides with that of n. For @ = 0 the vector n is perpendicular 
to the (z,g plane, and, consequently, N,lS, as is the torque 
produced by the field. As can be seen from the answer, the 
terms or order (a/o,)' cancel out completely. Low-fre- 
quency precessions of the type under consideration have 
thus far not been observed. They can apparently be excited 
by a variable field, starting from the configuration in which 
nlS and 0 = 6, and smoothly varying the frequency of the 
exciting field from zero to the value corresponding to the 
requisite motion. 

In the case IIb) the direction of S approaches that of 1; as 
the field intensity increases, and the precession frequency 
tends, in the limit of high w, , to the Larmor frequency and is 
given up to terms -(a /w,)' by the formula 

which was first obtained by Brinkman and Smith.3 Thus, the 
WP mode and the steady-state precession of the magnetiza- 
tion in pulsed NMR experiments5 for P >  6, are limiting 

cases of one and the same periodic solution to the Leggett 
equations. 

For cos p >  - 4, periodic solutions of the type 11) exist 
only when wL > 2(1 + 4 cos fl ); the S(* ) are in this case 
located inside the angle formed by the positive directions of 
the z and 5 axes. These solutions are, however, unstable (see 
Sec. 5 of the present paper), and will not be considered 
further here. 

In the case 111) cos @ = - 1 and, according to (67, 
cos 6 = - 1. In this case U, does not depend on P, and, 
taking (21) into account, we have 6 = + a, .  Equations (22) 
and (23) remain valid, and we have, in accordance with two 
possible signs of 6, two solutions: the steady-state solution 

(+) - (+) 
a=o, S. - a = ,  SL =oLcos p 

and the Larmor precession: 

Both of these solutions are also unstable. 
The case IV) corresponds to the singular-for the cho- 

sen coordinates-line cosp  = - 1, on which the angles a 
and yare not independent coordinates. There arise ambigu- 
ous expressions in Eqs. (8)-(13) when cos P = - 1, and it is 
convenient in this case to proceed directly from Eqs. (1)-(3). 
When cosp  = - 1, cos 6 = - 1 also. As a result, 
aUD/d8 = 0 and, consequently, ND = 0. The system (1)-(3) 
possesses in this case an obvious periodic solution corre- 
sponding to the rotation of the order parameter with angular 
velocity parallel to the z axis and equal to v, = S, - gH. In 
this case S is also parallel to thez axis. Notice, however, that 
the value cos 6 = - 1 corresponds to the maximum of U, 
as a function of 8, and it is to be expected that solutions of the 
type IV) will be unstable. 

4. EFFECT OF DISSIPATION 

Let us now find out how the solutions found will be 
affected when allowance is made for the dissipative terms 
dropped earlier from the equations of motion. Notice that 
the condition (16) for the existence of periodic solutions is 
satisfied by all the extrema of U, as a function of 6: to them 
correspond the solutions I), 111), and IV). At the same time, 
all the dissipative terms are proportional to N,, and go to 
zero together with aU,/d6. Thus, the switching on of the 
dissipation in no way affects the solutions I), 111), and IV), 
and only the solutions of the type 11) need to be analyzed 
further. In this case the relaxation terms in Eqs. (10) and (12) 
are nonzero. The right-hand side of (12) can be made to van- 
ish by choosing the appropriate Sg; this will not affect the 
remaining stationarity conditions. On the other hand, the 
right-hand side of Eq. (10) cannot be made to vanish by mak- 
ing small changes in the solutions 11); as a result, for these 
solutionsdP/dt #0, and they cease to be periodic in the strict 
sense of the word. If, however, the dissipation is so weak that 
the characteristic relaxation time is long compared to the 
periods of the nonrelaxational motions, then we can assume 
that Pvaries slowly, and that the remaining variables are the 
same functions of the instantaneous value of P that we have 
in the absence of dissipation. The motion of the order param- 
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eter will then be almost periodic, but with a slowly varying 
angular frequency. Since it is precisely the angular frequency 
that is a directly measurable quantity, it is useful to find the 
law according to which it varies in the course of the relaxa- 
tion. 

To do this, let us substitute into the right-hand side of 
Eq. (10) the solution 11), i.e., @ = 0, and the quantities S, and 
Sc as given by the formulas (24) and (25). Allowing also for 
the fact that P = S (1 - cos ,B ), and that S andP are connect- 
ed by Eq. (23), we obtain an equation describing the variation 
of S and, consequently, the angular frequency a of the 
precession in the course of the relaxation: 

where, to abbreviate the notation, we have set A = 16/15 
X L? '. Equation (29) can be integrated, and determines impli- 
citly the dependence of 6 on the time: 

where 

Here we have introduced the notation a2 = W 2  - 5, 
b = W2 + 3,W = wL/k The function P ( y) has singularities 
at the points y = f 6 (cosp = - a) and y = + b 
(cos #I = - 1). The difference y2 - a2 does not vanish when 
- 1 <cos #I< - 1. For the S /A values lying in the interval 
- (G2 + 3)'" <S /A < - W, the formulas (30) and (31) de- 

scribe the relaxation of the solutions IIb); correspondingly, 
in the interval W < S/A < (W2 + 3)'" the formulas describe 
the relaxation of the solutions IIa). The direction of the re- 
laxation in both cases corresponds to the decrease of the 
absolute value of 6 /A, i.e., to cos ,B+ - 4, in view of which 
the relaxation should be considered in the neighborhoods of 
the singularities S /A = + 5. The analysis of the indicated 
singularities is not complicated. Here we shall discuss only 
the case of small 6 ;  the singularity then becomes less trivial 
because of the presence of W in the denominators of the first 
three terms in the formula (3 1). The investigation of this case 
is also interesting in connection with the experiments that 
have been performed to study the relaxation of the WP 
mode.9 

Let us retain the leading-in W( 1 and y( 1-terms in 
the formula (31). Setting g = oL/S (16 I < I), we obtain from 
(30) and (3 1) the formula 

where f0  is the value of < at t = 0. For {( 1 the formula (32) 
gives the following well-known asymptotic law of relaxation 
of the WP mode2 for both of the solutions IIa) and IIb): 

But when w, #O this law does not describe the relaxation of 
S at t+w, since in this case Ig I should tend to unity, and the 
condition I {  1 a: 1 is not fulfilled. The complete formula (32) 
should be used when g - 1. And at the final stage of the relax- 
ation we have in the case of the solution IIb) {+ - 1, i.e., 
S-+( - a,) according to the law 

11 ( 6 + 0 L )  - 3 / , s x m ~ t .  

For the solution IIa) g-1, and from (32) we obtain the rela- 
tion 

6 - m L - e x p  [ - 3 / s ~ o L ' t ] .  

The frequency relaxation law can be simplified in the 
limiting cases oL = 0 and L? / o L 4  as well. For a, = 0 the 
formulas (30) and (31) go over into the well-known expres- 
sion for the relaxation of the frequency of the WP mode. l4 To 
obtain the asymptotic law of relaxation for L? / w L 4 ,  it is 
convenient to proceed directly from Eq. (29). In the case of 
IIa) this equation in the limit in question has the form 

After integrating and substituting the precession frequency 
a as given by (21) into the result, we obtain 

i.e., the relaxation occurs with characteristic time - l/xQ '. 
The relaxation of the solution IIb) in the case R /wL (1 has 
already been investigated in connection with pulsed NMR 
experiments in strong magnetic fields.15-l7 The characteris- 
tic relaxation time in this case is -wi/xL? 4, i.e., it is longer 
than the characteristic time in the case of IIa) by a factor of 
(wL/L? 12. 

5. STABILITY OF THE SOLUTIONS 

For applications, it is important to know whether the 
solutions found are stable. In this section we shall investigate 
the stability of the periodic solutions against weak perturba- 
tions. To simplify the analysis, let us initially drop the dissi- 
pative terms from Eqs. (8)-(13). Let us, following the usual 
procedure, set S, = Sr '  + f ,  S, = 7, @ = @ 'O) + p,  
,B =,Bco) + $, where the symbols with the index 0 denote 
those values of the variables which correspond to the period- 
ic solution in question and {, v, p, and $ are small perturba- 
tions. According to Eq. (lo), P is an exact integral of the 
motion, and it is not necessary to perturb it. For each of the 
periodic solutions considered in Sec. 3, the linearization of 
the system (8), (9), (12), and (13) with respect to the small 
perturbations and the substitution of solutions of the form 6, 
7, p,  $-e - lead to an equation for w2. If all the w2 are real 
and positive, then the perturbations remain small in time. In 
the opposite case we have growing perturbations, and the 
original solution is unstable. For stable solutions, not only 
the signs but also the magnitudes of w2 are of interest, since 
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they determine the frequencies of small oscillations about 
the periodic solutions. These frequencies characterize the 
particular original solution, and can be used to identify it 
experimentally. Let us, omitting long, but simple calcula- 
tions, give only the final results of the investigation of the 
stability of the solutions found. 

In the case I) we obtain for both of the two branches Ia) 
and Ib) one and the same equation for the frequencies: 

If 4 cos B 
a4- (o~~+SZ~)  a2 + o ~ ~ S Z ~ = O  

5 

The roots of this equation are 

a*"='/, (0L2+SZ2) * [='I4 (at2+SZZ) 2-1/$aL2SZ2 (1+4 COS P) ] 

(37) 
In the entire domain of existence of the solution I) (i.e., for 
cosP> - I), both roots are positive, and the solutions Ia) 
and Ib) are stable. This was to be expected, since the solu- 
tions I) correspond to the minimum of the dipole potential 
U,. The formula (37) gives the frequencies of the two oscilla- 
tion branches. When cos P =  1, one of the oscillations goes 
over into longitudinal oscillations with frequency R, while 
the other goes over into the Larmor precession. 

The second term of the radicand in the formula (37) can 
be rewritten in the form - o i R  'n: with the aid of (20), i.e., 
the frequencies of the small ascillations give direct informa- 
tion about the orientation of the vector n. This property of 
the oscillations in question has been used in experimental 
investigationsI3 of the magnetic textures in the B phase of 
helium-3. The angle between n and the magnetic field was 
determined in these experiments from the transverse-NMR 
resonance frequency given by the formula (37). In the cited 
paper the discussion is about the frequencies of small oscilla- 
tions about the static solution Ia). The formula (37) also gives 
the frequencies of the oscillations about the periodic solution 
Ib), and this allows us to use it to determine the orientation of 
n in the case when the deviation of n from the equilibrium 
direction is produced by dynamical means, as is done in 
pulsed NMR experiments. Such measurements could be use- 
ful in, for example, the investigation of the magnetic relaxa- 
tion in the B phase. In this case it may turn out to be more 
convenient to excite such oscillations with the aid of a longi- 
tudinal variable magnetic field. 

In the case 11) the equation for the frequencies of the 
perturbations has the form 

Elementary analysis shows that the condition for both of the 
roots of Eq. (38) to be positive is cos P < - a, i.e., the solu- 
tions of the type 11) are stable only when P >  8,. The small- 
oscillation frequencies can easily be found from Eq. (38), but 
the resulting expressions are unwieldy, and we shall consider 
only the limiting cases. 

For w, = 0 we obtain two pairs of frequencies from 
(38): 

Comparison of the frequencies of small oscillations about 
the solutions 11) with the rate of relaxation of these solutions 
allows us to establish a criterion for the slowness of the relax- 
ation and, consequently, for the applicability of the method 
used in Sec. 4 to describe the relaxation. Indeed, for the mag- 
netization and the order parameter not to move away from 
the periodic solution 11) in the course of the relaxation, the 
relaxation rate must be low compared to the small-oscilla- 
tion frequencies a,,, , i.e., we must have 

Let us, in particular, apply this criterion to the WP mode. 
For w, = 0, the frequency o, is more "dangerous," since 
cos fl-t - 1 in the course of the relaxation. For this frequen- 
cy we obtain from (41) with the aid of (22) and (33) the condi- 
tion 

Since, at any rate, t )  1/S, S 5 R, and xR( 1 on account of the 
assumption that the hydrodynamic approximation is appli- 
cable, the condition (42) is always fulfilled, the fulfillment 
becoming better and better as t increases. 

In the opposite limiting case, i.e., for R /a, (1, the fre- 
quencies of small perturbations of the solutions 11) are given 
by the following expressions: 

a12=~L2+2 / IaSZz{5 (1+~~~  P) (1-4 cos P)  -2 (1+4 cos P)) ,  (43) 
a , z = - 8 / l , Q 2 ( ' / 4 + ~ ~ ~  P) (I+COS P) . (44) 

The criterion (41) in this case also reduces to the condition 
xR( 1, which is always fulfilled in the region of applicability 
of the system (8)-(13). 

In the case 111) the equation for the frequencies of the 
perturbations has the form 

G ~ - o ~ ( ~ L ~ - ~ / ~ Q ~ )  - 1 / 5 ~ L 2 Q 2  (1+cos P) =O. (45) 
Elementary investigation shows that both roots w: and w: of 
this equation are real, and that their product is negative, i.e., 
solutions of the type 111) are unstable. 

The case IV) is a more complicated singularity, which it 
is natural to investigate with allowance for the relaxation 
terms. In the present work we did not investigate the stabil- 
ity of solutions of the type IV). 

In the case of small oscillations about the stable periodic 
solutions, there naturally arises the question of the lifetime 
of such oscillations. Physically, the most interesting in this 
sense are the oscillations about the solutions Ib) and IIb), 
since these solutions describe states that arise in pulsed 
NMR experiments. In order to find the corresponding life- 
times, we should take the dissipative terms in Eqs. (8)-(13) 
into consideration as well in the stability analysis. For solu- 
tions of the type Ib) allowance for the dissipative terms leads 
to the replacement 0 2-R ' (1 - ixw) in Eqs. (36) and (37). 
Since it was assumed from the very beginning that wx( 1, we 
should limit ourselves in the solutions to the terms of first 
order in this quantity. For example, according to (37), there 
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are two branches in the limit 0 /w, (1: greater than 104"; the solution 1Ia) has thus far not been 

a+2=mL2+4/5Q2 (1-cos p )  ( I - & a + )  , (46) 

0 - ~ = ' / ~ 3 ~ ( 1 + 4  cos p )  ( I - i x a - ) .  (47) 

The solutions IIb) relax; therefore, for them the question of 
attenuation of the perturbations makes sense only if by 
chance they attenuate over a time period that is short com- 
pared to the relaxation time of the solution itself. Such a 
situation obtains in the limit of strong fields, i.e., for w, )R. 
The relaxation time of the solutions IIb) in this case is 
-wi /x02 ,  and for the frequencies of the perturbations 
when allowance is made for the dissipation we have 

i.e., the longest of the lifetimes - l/xO 2<wL2/x0 4. Both 
the frequencies and the lifetimes of the low-frequency 
branches have already been The frequencies 
were determined correctly, but there is an error in the dissi- 
pative terms, which leads to the appearance of a superfluous 
factor (1 + cos p)-' in front of wx. The error was detected 
by Schoepe and Schertler in the course of a numerical solu- 
tion of the spin-dynamics equations for the B phase of heli- 
um-3 (see Ref. 11). The formulas (47) and (49) agree with the 
results of the numerical computation. 

6. CONCLUSION 

In the present paper we have considered those periodic 
solutions of the spin-dynamics equations for the B phase of 
helium-3 which arise because of the presence in these equa- 
tions of another integral P of the motion besides the energy. 
This naturally does not exclude the possibility of the exis- 
tence of other periodic solutions at some isolated values of 
the parameters. For periodic solutions of the type considered 
here to exist, the moment of the dipole-dipole forces and the 
Zeeman torque must actually be collinear; they they will 
together cause the spin to precess. 

For applications it is important that there be periodic 
solutions for an arbitrary relation between R and w,; this 
will allow the interpretation of experiments performed in 
arbitrary magnetic fields, and not just in fields correspond- 
ing to the asymptotic regions. The stable periodic solutions 
are of interest in connection with experiment; there are four 
of them: Ia), Ib) and Ila), IIb). The solutions Ia) and Ib) are 

The solutions IIa) and IIb) are new. In the limit 
oL = 0 they go over into the well-known solution corre- 
sponding to the WP mode. In the limit of strong fields the 
solution IIb) describes the precession of the magnetization in 
pulsed NMR experiments at magnetization tipping angles 

investigated in the limit f2 / w L 4 .  
When the stable periodic solutions are perturbed slight- 

ly, there arises small oscillations that are also periodic mo- 
tions. There is, however, an important difference between 
these oscillations and the original periodic motions. It con- 
sists in the fact that the small oscillations are periodic only in 
the linear approximation: as their amplitude increases, the 
various modes begin to interact with each other, and the 
periodicity is, generally speaking, destroyed. Let us also note 
that all the small oscillations become damped when 
allowance is made for the dissipation. 

The analysis performed here allows us to determine the 
behavior of the phase trajectories of the system of equations 
(8)-(13) only in the vicinity of the periodic solutions found. 
This, however, is not sufficient for the establishment of the 
general picture of the phase trajectories of the indicated sys- 
tem in its six-dimensional phase space. Further investiga- 
tions are necessary for the elucidation of this important-for 
applications-equation. 
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his work to me before publication, for interest in the work, 
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