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Pair collisions in the nonequilibrium state are known to lead to kinetic correlation of the occupa- 
tion numbers. The classical diagram technique is used to investigate the correlations produced as 
a result of pair collisions between triads and tetrads of occupation numbers. 
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1. INTRODUCTION 

In 1969, in the course of development of the theory of 
fluctuations in a nonequilibrium stationary state,'-3 an addi- 
tional or collisional correlation was observed between the 
occupation numbers of single-particle states; this correlation 
arises in a gas as a result of pair (binary) collisions and is 
significant just under nonequilibrium conditions." The the- 
ory of fluctuations in a nonequilibrium state, including these 
results, is expounded in reviews by Gantsevich Gurevich, 
and Katilyus6 and by Ernst and Cohen,' as well as in the 
book by Lifshitz and Pitaevskii.' These results were used, in 
particular, to calculate the cross section for light scattering 
by a nonequillibrium electron gas3.9 (see also the re vie^,^ p. 
41), and quite recently by an ordinary nonequilibrium 
gas.'O.ll 

As the next step in the development of a quantitative 
kinetic theory of fluctuations in a nonequilibrium state, it is 
natural to calculate the higher correlation functions and as- 
certain how the aforementioned collisional correlation man- 
ifests itself in the case of many particles. To derive the kinetic 
equations for the correlation functions we use a suitably gen- 
eralized classical kinetic diagram technique, developed in 
Ref. 12, where the classical diagram technique, subject to 
satisfaction of the usual criteria for the applicability of the 
kinetic equation, was obtained from first principles, namely 
from the statistical diagram technique of Konstantinov and 
Perel'.I3 

For the problem posed in the present paper, namely the 
calculation of higher correlation functions, the classical 
technique developed in Ref. 12 is insufficient, since we en- 
counter the problem of splitting the higher equal-time corre- 
lation functions into lower, but such objects-higher equal- 
time correlation functions-were not encountered in the 
problems considered in Ref. 12. We had therefore to supple- 
ment the technique of Ref. 12 with new elements corre- 
sponding to (large) diagonal terms of equal-time correlators. 

We confine ourselves in this article to a detailed investi- 
gation of spatially homogeneous correlations. In particular, 
we take into account also the correlation that occurs 

We regard the main result of the paper, however, to be 
the expressions for the nontrivial parts of equal-time correla- 
tors, viz., Eqs. (22) and (24). 

We call attention to the fact that higher correlation 
functions lend themselves at present to measurement. Thus, 
the quadratic current correlator is determined by measuring 
the electromagnetic radiation from the sample. By measur- 
ing its fluctuations, however, rather than the average radi- 
ation flux, i.e., by directing the radiated flux to the input of 
the correlation meter, we determine the quaternary correla- 
tor of the currents in the sample. 

2. FORMULATION OF PROBLEM 

We consider for the sake of argument an electron gas in 
a semiconductor (or a weakly ionized gas), acted upon by a 
sufficiently strong electric field that causes noticeable devia- 
tions of the electron velocity distribution from equilibrium 
Maxwellian. The electrons collide with one another as well 
as with the thermostat (phonons or neutrals, assumed to be 
in the equilibrium state). 

Our task is to investigate the manifestations of the cor- 
relation mentioned in the Introduction as applied to three- 
and four-particle correlation functions in a stationary non- 
equilibrium state of an electron gas. 

Of greatest interest is the four-particle distribution 
function with pairwise coinciding times; the spatial Fourier 
transform of this function 

X F(t+z, r+r,+r2+r3, p, It+ T, r+r,+r3, p21t, r+r3, p31 t, r, pc), 

(1) 
is expressed in terms of the creation and annihilation opera- 
tors a: and a, of electrons with momentum p in the follow- 
ing manner: 

between occupation number as a result of the constancy of 
= (Sp po) -' Sp {poS+ (t+.t) a , f _ q , , 2 a P , + ( 1 , , 2 a & , t - , ~ , l z a P ~ + ~ , ~ - ~ 2 , , 2  

the total number of particles in the system, a correlation first 
predicted for two-particle correlation functions in Ref. 14. x s ( 7 ,  t a + q q 2 a p , q , q 2 a + q 2 a p , q , S  t (2) In contrast to the correlation due to pair collisions, the addi- 

h 

tional correlation does not vanish in the equilibrium state. where S ( t  ) is the evolution operator:iS = (H, + V )S, 
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(H, + V) is the total Hamiltonian of the system, and fi  = 1. 
Included in V are both the (strong) electric field) and the 
interaction of the electrons with one another and with phon- 
ons (neutrals), the latter regarded as the thermostat; H, is the 
free-electron Hamiltonian in the absence of a field. Just as 

we assume that a stationary state independent of 
the state at t = 0 is established in the system after e suffi- 
ciently large time interval (formally, as t-co). This allows us 
to choosep, in the form 

po=exp{- ( f I Q - p R ) / T )  (3) 
A 

and put S (0) = 1. Here N is the particle-number operator, p 
the chemical potential, and T the thermostat temperature in 
energy units. Since the state is stationary, the mean value in 
Eq. (2) is independent of t  at large t, i.e., 

In (2) is used the circumstance that in a uniform electric 
field E the function F of (1) does not depend on r. We shall 
investigate the function P:::,(7-), assuming satisfaction of 
the usual criteria of existence of a kinetic equation: 

Here E~ and p are the characteristic energy and momentum 
of the electron, and T, is the characteristic electron relaxa- 
tion time. 

3. CLASSICAL DIAGRAM TECHNIQUE FOR CORRELATION 
FUNCTIONS 

We assume the criteria (5) to be satisfied and that the 
kinetic equation for the single-particle distribution function 
of the electrons, F, 4 1 (Boltzmann statistics), has been de- 
rived: 

(eEi9,+IPfh) Fp+Ip {F, F) =O. (6) 

Here I: is the operator of electron collisions with the ther- 
mostat; I, (F,F ) is the electron-electron collision term. We 
can use next the classical diagram technique proposed in 
Ref. 12. It is then necessary to process additionally the 
equal-time correlation functions and separate in them the 
terms with equal momenta. 

In the classical diagram technique, the double ordering 
typical of the quantum diagram technique,13 in time and "by 
contour," is replaced by ordering in time only. The two pro- 
pagator lines representing the observable merge into a single 
classical propagator.') Figure 1 shows two such lines that 
merge into a single distribution-function line. We regard this 
line as saturated by the interaction with the field and by the 
collisions with the thermostat and with the remaining elec- 
trons. Diagrams representing higher correlation functions 
have several propagator lines. These lines are interconnected 
by binary electron-electron collisions. Such a connection is 
shown in Fig. 2a. The vertical line corresponds to instantan- 

FIG. 2. 

eous momentum exchange during the time of the collision, 
with the momenta p and p' going over into the momenta p, 
and p,. Connecting from the left the distribution functions 
Fp and Fp, and summing over p and p' (the summation is over 
all the inner lines) we obtain the diagram 2b. The vertical 
connection together with the lines to the left of it corre- 
sponds to a paired collision term without one summation: 
I,, ( F,F ) . This is precisely the term that produces the colli- 
sional (additional) correlation in the nonequilibrium state, 
observed in Refs. 1-3 (I,, { F,F ) = 0 at equilibrium). Sum- 
ming over p, (or p,) we obtain a diagram with one output line, 
shown in Fig. 2c, namely the electron-electron collision term 
of the kinetic equation I, (F,F I .  

Corresponding to the propagator lines (e.g., to the lines 
on the right of the connection on Fig. 2b) are propagator 
denominators which we shall take into account in accord 
with rule for "vertical section' through the diagram (cf. Ref. 
13). The section to the right of the connection on Fig. 2b 
corresponds to the denominator (J, + J,)-', where J is the 
linearized kinetic-equation operator: 

Jl=eEi9p,+Ip,'h+Ip, {F), 

FIG. 1 .  FIG. 3. 

The analytic expression for diagram 2b is thus 

Unequal-time distribution functions are represented by 
diagrams with lines that extend to the right to different dis- 
tances i.e., that bear against "terminals" located at different 
points on the time axis. For example, the unequal-time two- 
particle distribution function 

Ft, 2 (z) = (Sp pol -'Sp{poS+(t+z) al+alS(tf.5, t)a,+a,S(t)), 
(9)  

corresponds to the sum of diagrams of Fig. 5. In noncoupled 
diagrams, the vertical section should be drawn for each part 
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FIG. 4. 
FIG. 6. 

of the diagram separately. Corresponding to diagram a is sical diagram technique, we calculate the spatially homo- 
( - iw)-'F,F,. In the analytic expression for diagram 6 ,  the geneous four-particle distribution function with pairwise 
denominator corresponding to the section between t and coinciding times: 
t + 7 ,  i.e., ( - i o  + J , )  ', is followed by a two-particle corre- F ~ ~ ,  31 ( Z )  
lator with equal times, which stems from the same diagram, 
when there are no points of interaction between t and t + T = ( s p  - i ~ ~ { ~ , s +  ( t + Z ) a l + a , a z + a z ~ ( t + Z ,  t ) a 3 + a 3 a 4 + a , ~ ( t ) ) .  
(in the approximation (5) assumed by us). In the correspond- 
ing correlator (14) 

gi2 (.c=O) = ( S p  po)-'Sp{p0S+ ( t )  at+a,a2+a2S( t ) )  -F1F2, (10) 

it is necessary to separate specially the term with the coincid- 
ing momenta, i.e., to commute a ,  and a,+. The term S2,Fl 
that appears after the commutation can be graphically repre- 
sented as the result of merging of two classical lines into one. 
We emphasize that this merging should be carried out only if 
the terminals (right-hand end) one of the merging lines is 
below (above) the other line. This remark is important when 
more complicated diagrams are considered. Corresponding 
to the correlator (9) is the sum of diagrams in Fig. 4: 

gt2 ( ~ ~ 0 )  =cp12f 6,,Fi. (11) 

In the diagrams 5a and 4a, the momenta p, and p, are not 
equal (but this is immaterial in the framework of Boltzmann 
statistics). 

The unequal-time two-particle correlator g,,(w), i.e., 
the connected part of the diagram of Fig. 5, is thus expressed 
by the sum of diagrams in Fig. 6. 

Figures 5 and 6 correspond to the analytic expression 

Fi,  ( a )  = ( - i a ) - 'F lF2+  ( - i o + J , ) - ' ( ( ~ ~ ~ + 6 ~ ~ F i ) ,  (12) 
where F(w) is a one-sided Fourier transform with respect to 
7 :  

F (o) = F (T) exp ( i m )  d ~ .  P (13) 

Figure 6 means that there exist two types of coupling: via 
pair collisions and as a result of commutation. In more com- 
plicated cases it is necessary to merge all the lines by all 
possible methods and thus write out all the obtained dia- 
grams with couplings due to pair collisions and to commuta- 
tion. 

4. FOUR-PARTICLE SPATIALLY HOMOGENEOUS 
CORRELATOR WITH PAIRWISE COINCIDING TIMES 

By way of example of the application of the foregoing 
rules for the calculation of higher propagators by using clas- 

It corresponds to the sum of diagrams of Fig. 3. Diagrams b 
and c constitute each several diagrams of the same type. Dif- 
ferent groups of diagrams correspond to terms of different 
order in 1/N, where N is the total number of electrons in the 
system. The diagram of Fig. 3a corresponds to a product of 
our single-particle functions 

( - i a )  -'F1F2F3F4. (15) 

Diagrams b correspond to terms of order 1/N compared 
with diagram a: 

( - i a ) - '  [FiFzgs4 ( ~ ~ 0 )  +F3Fkg12 (Z=O)]  +FZF4gl ,  ( a )  

+FzFsgi, f FiF1g2, , ( a )  +FiF3g2, , ( a ) .  (16) 

Diagrams c correspond to terms of order 1/N ': 

F4glz83(a)+F3g12, 4 ( a )  +Fzgi, 31 ( a )  f Fig,, , , ( a ) ,  (17) 
(- ia)-ig12 ( ~ = O ) g 3 4  ( Z = O ) + ~ l ,  3 ( a ) g Z ,  4 ( 0 )  +gl ,  1 ( 0 ) g 2 ,  3 ( a ) ,  

(18) 

wheregij,, are three-particle correlators with two coinciding 
times: 

gij, k ( z )  =Fij, k ( z )  -FiFjFk-Fkgij ( ~ = o )  -Fjgi, k ( 9 )  -Figj, , ( T )  
(19) 

Finally, diagram d corresponds to a term of order 1/N3, 
namely the four-particle correlatorg,,,,, with pairwise coin- 
ciding times: 

We begin with calculation of the three-particle correla- 
tor g1,23 (@)-the connected part of the diagram of Fig. 3cl. 
Figure 7 shows its constitutent diagrams. They correspond 
to the analytic expression3' 

g,, , , ( a )  = ( - i a+J , ) - '  [ 6 2 i ~ i 3 f  632~+3+  63icpi~ 
f ~ ~ ~ 6 ~ i F i - I i  /$i, z ( @ ) ) g k ,  3 ( a )  + ( P i z s I  (21) 

where p12, is the equal-time part of Fig. 7a and is shown in 
Fig. 8. We call attention to the appearance of diagrams 7c, 
7d, and 8b. The first is the result of the merging of both lines 
2 and 3 with line 1. Diagrams 7d and 8b result from multipli- 
cation of the electron lines in pair collision-cf. Fig. 2c. Al- 
together there are six each of diagrams 8a and 8b. The ana- 
lytic expression4' for p,,, is the following: 

= -  ( J ~ + I ~ + J ~ )  ( { ) i  2 3 9 (22) 
FIG. 5. P 
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FIG. 7. 

withp,,, = p2,, = p3i2 = ... etc., and thesummationisover 
the permutations of the indices 1,2, and 3. 

For diagram 3d, of the four-particle correlator g,,,,, (a) 
we have analogously the diagrams of Fig. 9 (two each of type 
b, four of d2, two each of e and three each off). The corre- 
sponding analytic expressions are: 

g i z ,  34 (0) =&igi, sr (a) 

+ (-iu+Ji+ J2) {-Ii2 {F} gi, 3k (a) 

-Ii2{&?1. 3 ( 0 )  ) g k ,  4 ( 0 )  

+ r p 1 2 3 i +  

where p,,,, is that part of the equal-time four-particle corre- 
lator which is connected via pair collisions, i.e., the equal- 
time part of Fig. 9c is represented in Fig. 10. Its analytic 
expression is 

~ p i m = -  (Ji+Jz+J3+J4)-' 

x ( ' / 4 Z I ~ { F }  q i34+' /2r32  (via7 qkk}+' / z i i  { q { z } q k 3 4 )  

P 

(24) 
Obviously, the same method can be used if necessary to cal- 
culate also correlators of higher order and/or with larger 
numbers of unequal times. 

FIG. 8. 

FIG. 9. 

5. ALLOWANCE FOR THE CONSTANCY OF THE NUMBER OF 
PARTICLES 

So far the averaging at the initial instant of time was 
over a grand canonical ensemble. Since the number of elec- 
trons in the system at the initial instant of time is assumed 
given and not altered by the interaction and by the action of 
the field, an appropriate condition must be imposed on the 
results, namely Eqs. (21) and (23). The absence of fluctu- 
ations of the total number of electrons calls for vanishing of 
the summation, over any of the momenta, of the expressions 

where 

6F1=S+ (t) al+aiS (t) - (Sp p~)-'Sp {poS+ ( t )  ai+alS(t) 1. 
Direct calculation yields 

where the equal-time four-particle correlator is 

FIG. 10. 

121 5 Sov. Phys. JETP 57 (6), June 1983 Barkauskas etaL 121 5 



As shown in Ref. 6 (see also Refs. 1 and 3), constancy of 
the number of particles in the system leads to replacement of 
v12 by 

In exactly the same manner, it is necessary to add to the 
solution q, of Eq. (22) a particular solution of the correspond- 
ing homogeneous equation. The constant in front of this 
term is determined precisely from the condition that there be 
no fluctuations of the total number of particles: 

@123=- (Jt+Jz+J,) -' 

We recall that the inverse regression operators were 
chosen such that2s6 

C Xlt3=o etc. 
1.z.3 

Using (30), we rewrite (29): 

In exactly the same manner 

Thus, at a constant number of particles in the system it is 
necessary to replace in (21)-(24) the q, by the 6 given by Eqs. 
(28), (3 l), and (33). 

If the conditions of the problem are such that pair colli- 
sions can be neglected, the correlation between the occupa- 

of the total number ofparticles in the system. The equal-time 
correlators in (25) and (27) take the form 

We recall that (see, e.g., Refs. 14 and 1) 

Equations (35)-(37) describe also correlations in a gas with 
pair collisions but at equilibrium. 

We thank V. L. Gurevich for calling our attention to 
this problem and for reading the manuscript and making a 
number of valuable remarks. 

"The idea of the existence of a correlation in an equilibrium gas with pair 
collisions, at distances large compared with the radius of the intermole- 
cular forces, was advanced even earlier by M. S. Green4 and G. Ludwig.' 

2'We mean here a diagram technique for classical particles. The diagram 
technique for classical waves is differently organized. 

''A similar result for a gas of uncharged particles is contained in Ref. 7. 
4'No expression is given in Ref. 7 for the equal-time four-particle correla- 

tor, apparently because of the unwieldiness of the calculation of such 
quantities within the framework of the BBGKY method. 
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