
Self-trapping in crystals and nonlinear wave processes: self-trapping barrier for 
plasma cavitons 

F. V. Kusmartsev and E. I. Rashba 

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted 6 December 1982) 
Zh. Eksp. Teor. Fiz. 84,2064-2081 (June 1983) 

An analogy is drawn between some nonlinear wave phenomena (plasma solitons, their instability, 
plasma collapse) and related objects and phenomena in the physics of self-trapping in condensed 
media. The analogy is found to be far-reaching; the main difference is that for ordinary self- 
trapping the rate constant is determined only by the parameters of the material, while for plasma 
formations it is also proportional to the number of involved plasmons. It is shown that for plasma 
cavitons there exists a self-trapping barrier W, corresponding to the energy of formation of a 
critical caviton, which subsequently is spontaneously compressed via plasma collapse or by dissi- 
pation (N is the number of plasmons trapped by the caviton). The height of the barrier is 
WN a N -', i.e., it decreases with increasing N, while the critical-caviton radius RN a N. It is 
shown from symmetry considerations that the critical caviton is asymmetric: it has a flattened 
(disk-like) shape in its central part. In the conclusion, a brief comparison is presented with some 
numerical calculations and with the available experimental data on spike turbulence and caviton 
formation. 

PACS numbers: 7 1.45.Gm 

A definite analogy exists between a purely quantum 
phenomenon, namely self-trapping (after Landau) in con- 
densed phases and certain wave phenomena that evolve in 
the region of a strong nonlinearity. To be specific, we shall 
consider predominantly one of them, the formation of plas- 
ma cavitons, which can occur in the course of the plasma 
collapse first considered by Zakharov.' This analogy mani- 
fests itself mathematically most fully within the framework 
ofthe continual theory. The continual self-trapping theory is 
valid if the scale of the produced formations is large com- 
pared with the lattice constant d. It is convenient to compare 
it with hydrodynamic theory of a quasineutral plasma. Phy- 
sically, the analogy between these two greatly different 
groups of phenomena is best traced under conditions when 
they can be described in the adiabatic approximation. The 
rapid subsystem that is described by the Schrodinger equa- 
tion of the stationary states is formed in this case by electrons 
(holes, excitons) in solids and by plasmons in a plasma. The 
slow subsystem constitutes respectivley phonons and ions. 

In Sec. 1 we shall establish the similarity of the Lagran- 
gians for the systems indicated above and elucidate both the 
analogies and the substantial differences between them. 
Thus, a correspondence is established between the Lam- - 
muir  soliton^,^ their in~tability,~ and plasma collapse1 on the 
one hand, and the analogous objects and processes in self- 
trapping physics, on the other. The ensuing differences are 
due mainly to two causes. First, the wave function in the self- 
trapping theory is normalized, whereas its analog in the non- 
linear plasma theory-the envelope of the high-frequency 
field-spans over an extensive region of space and the number 
of plasmons N stored in this space begins in fact to play the 
role of the effective coupling constant. Second, the collapse 
theory is usually constructed as a dynamic theory of the type 
of self-focusing theory, in which the dissipative processes 
remain usually in the background and as a rule weaken the 

self-fo~using.~ In the self-trapping theory, on the contrary, 
the dissipative processes are assumed to be strong enough to 
ensure the self-trapping process, which evolves so as to de- 
crease the system energy, and the principle calculated quan- 
tities are as a rule the stationary values of the energy. As 
applied to wave-collapse theory, a similar approach ensures 
dissipative evolution of the system towards formation of ca- 
vitons after the system passes through the self-trapping bar- 
rier (see below). 

In Sec. 2 we construct the theory of the self-trapping 
barrier for the formation of plasma cavitons, i.e., we find the 
lowest saddle that separates, spatially, on the surface of the 
adiabatic potential of the ions, the homogeneous state of the 
plasma and the state that evolves towards caviton formation. 
It  is shown that the critical caviton corresponding to the 
barrier has a reduced symmetry-it is not spherical but has 
an oblate (lentil-shaped) form; the nonsphericity of the cavi- 
ton follows completely from the arguments based on symme- 
try considerations. 

Also formulated are certain results that are valid also 
outside the region of applicability of the adiabatic approxi- 
mation. 

1. SELF-TRAPPING IN CERTAIN NONLINEAR PHENOMENA 
IN A PLASMA 

We start with writing down the Lagrangians of two dif- 
ferent systems. One system is a quasiparticle (for the sake of 
argument, a hole) in a crystal, belongs to a triply degenerate 
band, and interacts with longitudinal acoustic oscillations 
with the aid of one (hydrostatic) deformation p~tent ia l .~  
These conditions were chosen to obtain a maximum analogy 
with plasma; for the same purpose we retain in the deforma- 
tion only the contribution connected with the bulk compres- 
sion modulus (this limitation, however, is not particularly 
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essential). The other system is a quasineutral plasma with we assume here that curl Q = 0, since the last term in (8) does 
account taken of the electric field of the plasma oscillations not excite vortical motions. Introducing the generalized mo- 
and of the field of the electromagnetic waves. menta 

The Lagrangian of the first system is of the form P (r) = 6 ~ / , 6 ~ ( r )  = ~ ( r ) ,  

1 1 
Here Q(r) is the deformation vector, p is the density, s is the H(Q, q) = -P2 f -(div 0 ) '  

2 2 
speed of the longitudinal sound, I) is a three-component vec- 
tor wave function that describes a hole belonging to the trip- 1 +- 1div$l2 +& lrot$12+llp(r) 12divQ. (lo) 
ly degenerate band,5 Cis  the deformation potential, and ml 2 2 

and m, are the effective masses. The notation used in ( I )  for As seen from (4), the formulas obtained here become 
the kinetic energy of the hole (the fourth and fifth terms) is meaningless at n = 2. This case calls for a special treatment. 
~ar t icu lar l~  ~onvenient,~ inasmuch as the masses come- ~h~ dimensionless Lagrangian has here, in contrast to ( 5 ) ,  
sponding to holes with different helicities A are explicitly the form 
separated in it. For a plasma, however p = m,/m, s 1, and 
we shall therefore consider this case below. The last term 1 aQ 9 a$ 1 

L = ~ ( ~ )  -T(divQ)z+ialp'----Idiv~12 
describes the interaction of the hole with the lattice deforma- at  2 

tion. - 
It is convenient to transform to dimensionless variables, 

leaving unchanged the normalization integral 
i.e., it contains one extra dimensionless coeffiicent compared J I$(.) l'dnr=l; (2) with (5). The corresponding Hamiltonian is 

The form in which the volume d" r is written presupposes 
that dimensionalities n<3 of space can be considered. Of 
course the dimensionality of the densityp depends here on n. 
The conversion to dimensionless units is effected by the P m C  '12 +- lrot$12+ - transformation 2 ( p ,  ) I$(r)lzdivQ, (12) 

r-+r(,r, t+t,,t, Q+QnQ, I;+LoL, (3) with the dimensional and dimensionless variables connected 
and the energy scale is determined by the quantity g = Lori. by formulas similar to (3), except that now 
The quantities are dimensional in the left-hand side of (3) and 1 1 g'" '12 

dimensionless in the right. If we define ro = - to =- Q o = T ,  a = s ( T )  , 
(mlg)'i2' s (m,g) '"' 

mlC2 "(n-Z' TO 1 1 
To=(,-) 

, t o = y .  Qo = - mlCro 9 g = x (  
and the energy scale g remains arbitrary. 

(4) We write down now the analogous equations for a qua- 
then the dimensionless Lagrangian sineutral plasma. We assume that in the high-frequency elec- 

1 a Q z  1 8% 
tric field the dominant frequencies are close to the plasma 

L = - --- - - (div Q) 2+ialp' - 
0 2  

frequency w, = ( 4 ~ e ~ n d r n ) ' / ~ ,  where m is the electron mass 
2 at at and no is the equilibrum density of the homogeneous plasma. 

1 P 
-- Idiv$I2-- /r0t$1~-divQllp(r) I z ,  ( 5 )  We introduce, as usual, the smooth envelope f of the electric 

2 2 field E,: 

where a = m, r$. Formulas (4) determine the characteristic 1 - 
E, (r, t) = - [E(r, t) exp(-io,t) f c.c. I .  

scales of all the physical quantities. 2 (14) 

Writing down in standard fashion7 the Lagrangian 
The plasma Lagrangian can then be written in the form equations for +: - 

a~ a a L a a~ (6)  P dQ psZ 
i - dE 

-- __-= L = _  - - - ( ~ ~ V Q ) ~ + - E ' -  CZ a(aq./az.) at  a+- 84' ( a t )  2 at  
3Te - cz - e2no 

and similarly for +* and Q, we obtain the equations of mo- - 2(divE)2-- IrotEI2-- l B l z d i v ~ .  
16nmop 16noP2 4mopZ 

tion (15) 
a$ 1 P i a - + - V ( V $ ) - - - [ V X [ V X $ ] I - $ ~ ~ V Q = O ,  (7) 
at 2 2 Herep is the plasma density, s is the speed of ion sound, c is 

dZQ/dt2-AQ-V 1% (r) Iz=0; (8) the speed of light, T, is the electron temperature; usually 
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T, )Ti (T, is the ion temperature). The quantity Q(r) has the 
meaning of the hydrodynamic Lagrangian variable with that 
peculiarity that the differentiation is with respect to the co- 
ordinate of the point r; the first term in (1 5) is then the kinetic 
energy of the plasma and the second is the work done against 
the gaskinetic pressure forces. The remaining terms are con- 
nected with the field %, which plays the role of the wave 
function. Thus, the fourth term is the energy of the longitu- 
dinal field (reckoned from Nw, , where N is the total number 
of plasmons), i.e., the kientic energy of the plasmons. It can 
be easily obtained if it is recognized that the effective mass 
m, of the plasmon determined from the known plasmon dis- 
persion law8 

o ( k )  ~ o , + 3 T , k Z / 2 m o p ,  

is equal to m, = ma, /3 Te , and the plasmon density n, and 
the energy density of the longitudinal field p(w) (Ref. 9), in 
terms of which n, is directly expressed, are equal to 

(16) 
The superior bar in (16) denotes averaging with respect to 
time; in the calculation ofp(w) we used the formula for the 
dielectric constant ~ ( o )  = 1 - wi/w2 and, after differentiat- 
ing, we put w z w p ;  for a plane wave the fourth term in (15) 
reduces to n, k 2/2m,. The third term considered jointly with 
teh fourth ensures a correct plasmon dispersion law. The 
fifth term is the magnetic-field energy H = - ic curl%/w, ; 
the transverse-electric-field energy is small compared with it 
in terms of the parameter Te /mc2 ( 1. Also negligibly small 
is the energy of the quasistatic ambipolar-diffusion field (see 
Sec. 2). Secondly, the last term in (15) is the energy of elec- 
trons with density 6n = no divQ in the field of the ponder- 
motive forces with potential e21 %l2/4mw; (which is the same 
for the longitudinal and transverse From the La- 
grangian (15) follow Zakharov's equations1 for E and Sn in 
the form in which they were expressed by Kuznetsov.I2 

It is convenient to change the normalization of the field 
in such a way that its square yields n, directly. We intro- 

duce 

E(r)=(8noP)-"%(r) ,  n p = I E ( r ) l z  (17) 

and 

I,= IE ( r )  I 'd3r= 1% ( r )  d3r=N, 

where N is the total number of plasmons. Then (1 5) takes the 
form 

where m, = u,/c2; usually y = mc2/3Te )1. In this form 
the Lagrangian (19) conicides with (1) apart from the substi- 
tution C-tw,/2. Therefore a transformation similar to (4) 
can reduce it to the dimensionless form (5) so that the Hamil- 
tonian (10) is again obtained. 

It is obvious that I, is an integral of the motion1 and 
both a renormalization integral for the Schrodinger equa- 
tion (1 7) and an adiabatic invariant corresponding to conser- 
vation of the number N of the plasmons. 

Thus, the Lagrangians in the self-trapping theory and in 
the nonlinear plasma theory practically coincide. However, 
a substantial difference exists in the normalized conditions: 
for a plasma, in constast to (2), the condition (18) is valid, 
since it contains the number ofplasmons N, a quantity deter- 
mined by the degree of pumping of the plasma, by the geo- 
metric dimensions of the pumped region, by the sizes of the 
fluctuation, etc. We shall show that the value of the integral 
of motion N exerts a substantial influence on the behavior of 
the system. 

The second difference lies in the very approach of the 
treatment of the problem. In plasma theory one usually 
solves dynamic equations of the type (7) and (8) with definite 
initial conditions. The underlying idea is in many respects 
close to self-focusing theoryI3; e.g., plasma collapse is con- 
sidered predominantly as the result of plasmon focusing 
(since the three-dimensional time-dependent Schrodinger 
equation is equivalent to a four-dimensional parabolic equa- 
tion), which is self-consistent with the plasma motion, and 
not as the result of dissipation. (By dissipation we under- 
stand here viscuous hydrdynamic friction with the number 
of plasmons conserved.) Therefore most papers deal with the 
study of he nondissipative equations (7) and (8), which con- 
serve the energy integral 

[ His  defined by Eq. (lo)] and a rigid phase relation between 
the density field and the velocity; in some cases one investi- 
gates also the perturbing action of the dissipation (see, e.g., 
Refs. 14-16). Unfortunately, the problem for a plasma is 
substantially more complicated then in self-focusing the- 
ory?13 since in place of the known initial condition-the 
profile of the incident beam- it is necessary to choose arbi- 
trary initial conditions corresponding to turbulent-plasma 
configurations whose statistical weight is difficult to esti- 
mate. The main advantage of the dynamic approach is the 
possibility of calculating, within the framework of the as- 
sumed model, the growth rates, the characteristic times, and 
the detailed course of the process. 

On the contrary, in self-trapping theory the basic con- 
cept is the adiabatic potential of the system, the particular 
attention is being paid to finding stationary values of the 
adiabatic potential: the stable state-the absolute minimum, 
metastable local minima, unstable states-saddle points. It 
is assumed here that the direction of the processes is deter- 
mined not by the dynamic processes," but by the dissipation: 
the system tends to go over into a state with lower energy. 
This approach is not claimed to describe completely the 
course of the process; nonetheless, as will be shown below, it 
provides a new view of certain processes in a plasma and 
makes it possible to include in natural manner in plasma 
theory symmetry arguments that have apparently not been 
used heretofore in this field. A total synthesis of these ap- 
proaches, which has not been realized so far, consists of a 
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consistent allowance of dissipation in the theory of collapse 
and induced emission of phonons-in self-trapping theory. 

We consider now several examples. We apply to them 
the standard methods of Pekar's adiabatic self-trapping the- 
ory." We change first from the density of the Hamiltonian H 
to the total Hamiltonian 2Y in acccordance with (20). Then 
the condition SX/SQ (r) = 0 yields then 

div Q=-EZ(r) , (21) 

and after eliminating Q(r) we obtain for the field E(r) 

Further minimizatin off with respect to E should be car- 
ried out under the additional condition (18). It is convenient 
to introduce first a new function 

which satisfies the standard normalization condition (2), and 
the functional 

Varying FN with respect to IJJ with the normaliztion pre- 
served, we obtain 

It is important to note that since the functional ?[PI is 
obtained from 2Y by variation with respect to Q(r), it has by 
itself no direct physical meaning in the adiabatic theory: 
only its stationary values (extrema, saddles) have a clear 
meaning. 

For the extremals of the functionals f N  there exist 
simple relations between the individual terms in the right- 
hand side of (24). They can be obtained if, following the usual 
method of deriving the quantum-mechanical viral 
theorem,I9 one carries out in (24) a scale transformation that 
preserves the normalization: 

@ ( r )  =hnf2Y (hr )  . 
Then 

1 P 
$,[@]=k2J{--ldiv 2 Y 1 2 f T  b lrot Y l z  d"r-hn+[ IY 14dnr. 1 

(27) 
Since P is an extremal of the function yN [Y], the equa- 

lity (dFN/d/l ), = , = 0, should hold, from which it follows 
that 

We denote the left-hand side of (28) by 2K, where K is the 
kinetic energy; according to (lo) and (21)-(24), the integral 

has the meaning of potential energy, and V =  - 2U the 
meaning of interaction energy. Then we have as a result of 
(28) and (24) 

and from (18), (20), and (24) it follows that - 
z 2 = z i f N .  (30) 

Relations similar to (29) are known in self-trapping the- 
ory'8,20 and Eq. (30) with p-cc was obtained by another 
method in Ref. 2 1. 

By way of the first example we consider Rudakov's 
planar plasma ~o l i t on .~  To this end we assume that Y = Y(x) 
and has only one nonzero projection, along x. In this case 
curl Y = 0 and Eq. (25) reduces to 

where N, is the number of plasmons per (dimensionless) unit 
area of the soliton. The only solution of (31) that decreases at 
infinity is well known: taking (29) at n = 1 into account we 
obtain 

(32) 
To change over to the solution of the problem of self-trap- 
ping in a one-dimensional chain, we need only put N, = 1 in 
(31); we obtain then the known 

+ (x) =1/2 ~ h ( ~ / 2 ) ,  n=- , %=aia. (33) 

In both cases f < 0 and is the minimum of the total energy 
(including the lattice-deformation energy). 

Comparison of (32) and (33) shows the whereas in the 
self-trapping problem all the quantities are uniquely deter- 
mined by the parameters of the material [cf. (4)], in the the- 
ory of plasma solitons there remains a free parameter N, . If, 
using (4) (with n = I), we define f2 that enters in (33) in di- 
mensional units, then it turns ouf that L? a C4; it is then natu- 
ral to regard the deformation potential C as a dimensional 
coupling constant. Comparison with (32) shows in this case 
that the number N, of the plasmons enters in the dimension- 
al energy in the combination (N, C2)2, i.e., it increases the 
coupling constant by a factor N:'2. We shall verify below 
that the conclusion that an increase of N is equivalent to 
strengthening of the coupling is of general character. 

We note also that both plasma solitons and self-trapped 
one-dimensional particles can move; in particular, one can 
calculate their effective mass and other 

To consider self-trapping in a two-dimensional system 
it is necessary, starting from (12), to eliminate div Q in ana- 
logy with (21) and write the total Hamiltonian 
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If we carry out a scale transformatin of the type (26), we see 
that both terms vary in proportion to A 2. This means that 
self-trapping sets at a critical coupling-constant value 
mC 2/ps2 - 1 (it is assumed thatp 2 1); a similar result, name- 
ly the presence of a critical power, is known also in the the- 
ory of self-focusing of a cylindrical beam.26 When the cou- 
pling constant reaches the critical value, the self-trapping 
takes place without a threshold, i.e., by continuously varying 
11, it is possible to achieve a monotonic lowering of f [ + ] ,  
starting with f = 0; the absence of a threshold follows from 
(29) with n = 2. In theory of a plane soliton, the effective 
coupling consant is arbitrarily large, to the extent that the 
ratio N  /N,  , i.e., the area ofthe soliton, is large. Therefore the 
soliton is unstable and breaks up into bunches when ?[Y] is 
continuously lowered-this instability is observed also in 
the kinetic analy~is .~ 

In the three-dimensional case (n = 3) the functional 
~ [ Y I  is not bounded from be lo^,^' a fact that can be seen 
from (27), where the last term decreases without limit with 
increasing. This corresponds to "'collapsing" the self- 
trapped state2' or the plasma cavitonl; of course, the em- 
ployed description is valid only over scales r)d for self-trap- 
ing and at r)lD for plasma cavitons (I, is the Debye length). 
It must be emphasized that in contrast to the theory of plas- 
ma collapse' we arrive at the formation of plasma cavitons 
from energy rather than dynamic considerations. The ener- 
gy arguments indicate that the caviton can certainly be pro- 
duced if ?, [Y] becomes negative already on functions Y 
with space scale R > I,, i.e., within the framework of appli- 
cability of the quasineutral t h e ~ r y . ~  The condition for this, 
as follows from (24), is of the form N >  T :ld/e2wp, where Nis 
the number of plasmons in the cluster; consequently, only 
sufficiently large clusters can produce cavitons. After con- 
traction to a scale - I,, the electric field gf in such a cluster 
should satisfy the condition 1Ef l2/n0~,  > 1; it follows from 
the constancy of N  upon compression of the cluster. We 
note, incidentally, that in plasma cavitons produced by 
pumping with an electron beam, a ratio E ~ , , / ~ P ~ , T ,  z 1 
was re~orded.~' It  appears that a similar criterion (or an even 
more stringent one, since it must include the hydrodynamic 
energy of the plasma) should exist also in plasma-collapse 
theory. Indeed, if it is assumed that the collapse is due to 
strong outflow of plasmons at large momenta and is accom- 
panied by a loss of energy, the energy deficit can be covered 
only on account of the thermal energy of the electrons and 
ions; such a mechanism seems artifical and to our knowledge 
has not been discussed. 

We approach now the nub of our problem. In the theory 
of self-tapping in three-dimensional systems, the transition 
from the homogeneous state I$(r) l 2  = 1 / F  is the normaliza- 
tion volume, corresponding to f[+] = 0, to the self-trappng 
state with f[$]-+ - w cannot be effected by decreasing f 
continuously: it is necessary to surmount a self-trapping bar- 
rier20.22,29 corresponding to the lower saddle point on the 

surface of the adiabatic potential. The height of this barrier is 
W = /!$[El > 0, where the superscript s indicates that the 
value of the functional f is taken at the saddle point, and 
the subscript N, as usual, is the number of plasmons. The Y 

function on the barrier is defined by an equation of type (25). 
This equation was previously analyzed in its scalar var- 
iant,30.3' and it wa shown that there exists an infinite number 
of eigenvalues with fl, < 0 which decrease at infinity. Since 
according to (29) we have at n = 3 

wN=fIJt' [El = - N Q N ,  

we are are interested in the solution with a maximum O N ,  
which ensures a minimum barrier WN ; we take into account 
consistently in this case the vector structure of Eq. (25). 

In pure thermodynamic language, WN is the minimum 
isothermal work necessary to produce the critical caviton 
containing N  plasmons; this caviton will hereafter be con- 
tracted alredy spontaneously, i.e., without performance of 
outside work, in other words, the barrier caviton is the criti- 
cal one. 

2. HEIGHT OF SELF-TRAPPING BARRIER AND SHAPE OF 
BARRIER CAVITON 

In the Schrodinger equation (25) and in the function 
f, [Eq. (24)] the two terms that make up the kinetic energy 
are of different order of magnitude, sincep = mc3/3Te ) 1 is 
large compared with the relativistic parameter. Strictly 
speaking, allowance for the curl team exaggerates the accu- 
racy somewhat, since the relativistic corrections to the plas- 
mon dispersion law8 were not taken into account. We have 
retained above the curl term in order to preserve the general 
vector structure of the equations. It  describes the transverse 
field produced as a result of the spatial inhomogeneity of the 
longitudinal field; in this sense it is analogous to the weak 
longitudinal field in self-focusing t h e ~ r y . ~ ' . ~ ~  It may turn out 
physically to be responsible for the emission of electromag- 
netic waves from plasma cavitons. Its influence on f at 
p) 1, however, is small; it can be shown4' that the corrections 
to f are proportional to pP2. We can therefore put 
curl Y = 0 (in analogy with the theory of acceptor centers6). 
In the functional (24) this can be done by choosing Y = VX. 
In Eq. (25), so as not to increase the order of equation, it is 
convenient to proceed in a different manner, separating in 
the linear term its potential part: 

1 -- N 
2 

AY (r) + - p a d  div y, (") d3r'=QNY (r) . 
4n lr-r'I 

This equation will subsequently be convenient for establish- 
ment of the asymptotic behavior of Y(r) as r+ co . In essence, 
in both cases we have performed one and the smae oper- 
ation-we retained only the longitudinal states with A = 0 in 
the wave function Y of the electromagnetic field, which has a 
sp ins=  1. 

To choose correctly the class of functions that describe 
the lower saddle point, we disregard for the time being the 
violation of the spherical symmetry (which will inevitably 
set in later) and consider the solutions of a linear Schrodinger 
equation of the type (35), in which the second term is re- 
placed by an attracting spherically symmetrical potential. In 
this case the solutions of (35) should be spherical vectors35 
made up of spherical functions and bases spinors with spin 
S = 1. Their set, corresponding to the minimal f,, should 
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belong to the vector representation of the rotation group, 
i.e., to the same representation as the initial electric field. 
The reasoning is that this choice ensures the minimum of 
zeros of the wave function (in analogy with the choice of the 
ground state of the acceptor Then in the bases 
chosen as X, Y, and Z the spehrical vector $, corresponding 
to a projection M = 0 of the total angular momentum J = 1 
is of the form 

where q,, and p2 are spherically symmetrical functions (with 
p,(O), p2(0)#O). However, the scalar square 

which corresponds according to (21) to the field of the inho- 
mogeneous deformation because of the factor z2 in the sec- 
ond term, has only axial but not spherical symmetry. There- 
fore in the problem considered the vector character of the 
field E(r) leads to spontaneous (essentially, Jahn-Teller) 
breaking of the symmetry of the self-trapping barrier. As- 
suming that minimum symmetry breaking takes place, com- 
patible with the lifting of the degeneracy, we shall assume 
that the functions p,(r) and p2(r) preserve central symmetry 
and axial symmetry with respect to the z axis. 

Before we proceed to the numerical calculation, we 
shall dwell on certain simple physical considerations that 
permit a better understanding of the structure of the states 
corresponding to the self-trapping barrier. In the barrier 
states, the densities n(r) of the electrons andp(r) of the posi- 
tive ions, as well as the electric field Q(r) of the ambipolar 
diffusion are constant in time, while the field B(r,t ) in (14) can 
vary only in phase, i.e., - - 

E (r, t )  =E (r) e-I"'. 

The condition that there be no constant electron and hole 
fluxes due to the pondermotive forces, diffusion, and drift in 
the field Q, are of the form 

, , 

- v{(n~+F) Ti)  +eQ=O. 
no+F 

Here ii a n d j  are nonequilibrium increments to the densities. 
Assuming that the quasineutrality ( i izp)  and linearity 
()El .(no) conditions are satisfied, as well as that the potential 
of the pondermotive forces is small, e2 12 1 2/4mwi g T, , and 
neglecting the spatial dependence of T, and Ti, we obtain5' 

At the center of the caviton the field of the envelope has a 
maximum, the density no + n has a minimum, and the static 

field Q(0) = 0. This distribution corresponds fully to the 
physical fixture of caviton formation (incidentally, it 
answers in natural fashion the question of the possible exis- 
tence of a burst of n(r) near the center of the caviton, a burst 
that occurred in some earlier st~dies'.~'; in the second of 
them it was demonstrated that spherical supersonic collapse 
is impossible). 

Writing the equations for the vibrational motions 
against the background of the static solution (39), we easily 
arrive at Eq. (25). In this equation 0, is the frequency shift: 
the frequency of the local plasma mode produced near the 
barrier caviton is o, + 0, (with, of course 0, < 0). The 
first term in (25) appears in natural fashion as a result of the 
spatial dispersion of the conductivitys 

This relation together with the Maxwellian equation 

dv 
- +c2 rot rot Eo=4ne (n,+n)- 

at2 at 

with account taken of 10, 14wp and of (39) leads right away, 
after changing to dimensionless units, to (25). 

We proceed now to a more detailed analysis of the be- 
havior of the function Y(r). From a comparison of (36) and 
(35) it follows that the dominant term in the expansion of the 
second term of (35) as r+oo will be the one connected with 
the deviation from zero of the z-projection of the vector 

This in turn means that Y(r) has the following asymptotic 
behavior (cf. Ref. 38) 

Y (r) va ( r i )  /az, (42) 

i.e., Y is anisotropic and decreases like r-3. The behavior as 
r-0 is clear from (36), while p,(r) and p,(r) are smooth func- 
tions. 

The numerical calculation was carried out by a vari- 
ational method by minimizing the functional (24) with 
Y = VX and the factor N, previously excluded with the aid of 
a scale transformation. For x we choose a linear combina- 
tion of the functions 

B,,Zr(r2+b2) -(n+'l*) 

with different 1 and n satisfying the correct behavior as r-0, 
and ensuring satisfactory approximation also at r 2 1. We 
note that asp+ w the leading term in the asymptotic form of 
x as r-+m is z/(? + b 2)3'2, and the correct behavior at r 5: b 
is ensured by other terms. At finite p ,  the asymptotic vari- 
ation of x is exponential, but the necessry quality of the ap- 
proximation of Y with the aid of functions with power-law 
decrease was monitored both by the convergence of the pro- 
cess with expansion of the bases, and by the use of a similar 
approximation to the exact solution of Eq. (3 1). The param- 
eter b was initially maintained fixed, and the function 7, (b ) 
was calculated by minimization with respect to all B,, . The 
change of b corresponds to a transition from the free states 
b+w) to the self-trapped ones ( 6 4 ) .  The maximum 
71;2 = max, ?,(b ) gave the lowest barrier, and from the 
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width of the maximum, which constituted a rather broad 
plateau, it was possible to deduce a sufficient flexibility of the 
approximating functions. The final result, in dimenensional 
units, for the barrier height WN = Fjs! and for the frequency 
shift nN = - Ff is of the form 

Here 1; = T,/mw; and it is assumed that T, )Ti.  Attention 
is called to the large numerical coefficient in WN . The spatial 
scale of the barrier caviton is 

RN-IO-' r,, ro=ne20pN/3T,Z; (44) 
and the numerical small coefficient of r, is the result of the 
large coefficient in WN . 

It is of interest to note that the quality g, as follows from 
its initial definition (4), contains C4 in the denominator at 
n = 3. Therefore, according to (43) we have R N  a (NC2)-'. 
This agrees with fully with the statement that an increase of 
N is equivalent to an increase of the effective coupling con- 
stant, a statement made above when discussing Eq. (32). 

A very important fact is that  he barrier caviton is an- 
isotropic: it has in its inner part a disk-like shape of a strong- 
ly flattened ellipsoid of rev~lution.~' The isolines for the cen- 
tral section of the caviton are shown in Fig. 1. The 
predominant contribution to the normalization integral for 
the wave function Y(r) of the local plasmon mode is made by 
the cental part of the caviton (thus, inside the surface 
q = 0.225 is concentrated approximately 80% of the norma- 
lization integral, and consequently an equal part of the defi- 
cit of the plasma density and of the energy of the high-fre- 

FIG. 1 .  Isolines in a critical caviton. The central section zp is shown (z is 
the symmetry axis andp is the polar radius) the parameter is q = ( ~ ( r ) ( ' /  
IY(0)12. Curves: l-q = 0.63; 2-q = 0.225; 3-q = 0.075; 4-q = 0.027; 5- 
q = 0.019; 6-q = 0.0175; 7-q = 0.0173; 8-q = 0.013; 9-9 = 0.006. The 
distance between eyelets is ~ 4 . 5  X 10-2r, [see (44)]. 

quency field (E). The spatial distribution of the field E(r) is 
illustrated by Fig. 2. The decisive role for all the physical 
processes should be played by the central part of the caviton. 
In particular, lowering the plasma density in it 
E(r) a - lY(r)I2 [cf (39)] produces a "resonator" ' that forms 
the considered local mode; the field in the resonator is practi- 
cally parallel to the symmetry axis z. 

The course of the isolines in the peripheral region is 
much more complicated; the complete picture is illustrated 
in Fig. 1. It can be seen from it that with increasing distance 
from the internal region the disks "shrink" in their central 
part and the isolines acquire the shape of a butterfly wing. 
On the symmetry axis z there are two deep dips of the func- 
tion (Y(r)I2 (the centers of the "eyelets" in Fig. 1). The iso- 
lines go around these points in a complicted manner. At the 
value of the parameter q,, ~ 0 . 0 1 7 4  (see the caption of Fig. I), 
bifurcation takes lace: the two "claws" that surround each 
"eyelet" (curves 6) are joined. In this case, instead of one 
isoline at q > q,, there appear three isolines: two of them 
enclose the eyelets, and the third the entire figure as a whole. 
At first this isoline is slightly flattened, but with decreasing q 
it becomes elongated. From (42) it follows that the asympto- 
tic form of these isolines as q-0 is 

P- (1+3 cos2 0) /0.6q, cos 8=z/r. (444 

Therefore at 9-0 the ratio of the axes of the isolines is d (z)/ 
d ( p )  = 2'13. The isolines that enclose the eyelets compress 
into points at qz0.001. It is interesting to note that the eye- 
lets are points where the plasma density has local maxima 
with n =no. In contrast to the spherically symmetrical bar- 
rier caviton with J = 0 (see the end of this section), in the 
present case these maxima are located on the periphery of 
the caviton (and not at its center!). Although there is also 
numerical calculations in regions where IY(r)I2 is small are 
the least reliable, the picture shown in Figs 1 and 2 does not 
change qualitatively when the number of parameters B,, is 
increased from 5 to 16; Figs. 1 and 2 correspond to a calcula- 
tion with 16 parameters. 

It is natural to expect the shape of the central part of the 
barrier caviton (Figs. 1 and 2) to remain flattened when the 
caviton is compressed. Flattened cavitons were predicted 
earlier by certain numerical calculations for two -dimension- 
al models (see, e.g., Ref. 39). It follows from the foregoing 
that there were due to the vector character of the electric 
field and should therefore not appear in scalar models of the 
collapse (see, e.g., Ref. 40). One more difference from the 
scalar model is the abrupt increase of the numerical coeffi- 
cient in (43): in the isotropic model with mass m, it would be 
equal to z 4 4  (as against z 1.25 X lo3). 

Finally, we emphasize that WN a N - I ,  i.e., it decreases 
with increasing number N of the trapped plasmons. 

We have considered above a state corresponding to the 
minimum value of W. Besides the function Yo (Eq. (36)) it is 
necessary to consider two other spherical vectors Y *, cor- 
responding to the projections M = + 1 of the same total 
angular momentum J = 1. If Wis formally calculated for the 
functions Y * , , the numerical coefficient of WN in the equa- 
tion similar to (43) increases to 1600, and the caviton be- 
comes elongated in this case. But since the states Y + do not 
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form a Kramers doublet, this pair of states is unstable and 
the symmetry should be further lowered. Although in prin- 
ciple it can lead to states that are not axisymmetric (this 
question was not investigated by us numerically), it seems to 
us more probable that, in final analysis, after passing 
through the axially-asymmetric configurations the axial 
symmetry is restored and states of the type M = 0 are pro- 
duces, but with a symmetry axis other than the z axis. 

In an external constant uniform magnetic field (3 ori- 
ented along the quantization axis, the degeneracy of the 
states I,, is lifted. Therefore the instability referred to 
above in the preceding paragraph vanishes. Then, in princi- 
ple, it can be assumed that owing to the Zeeman energy the 
value of W for one of the states M = f 1 turns out to be 
lower than for M = 0. In an approximation linear in 0, there 
is added to the left-hand side of (25) the term 

where o, = e W m c  (Ref. 12), and to the functional (24) is 
added the term 

i/2io. j [ Y*Y 1 BK 

Since the vector Y , is potential, we write it in the form 

'l',,=V{(x+i~)cp(p, 2 ) ) .  

Substitution in the preceding formula leads to the integral 

sincepZlp12=Oatq,=Oandatp = CO. Thus, in the linear 
approximation the magnetic field does not influence the 
height of the barrier and the shape of the caviton. Among the 

higher barriers there is also a barrier corresponding to a 
function Y with angular momentum J = 0 and a spherically 
symmetrical caviton (see also Refs. 1 and 37). This Y is of the 
form 

(45) 

where p (r) is a spherically symmetrical function that de- 
creases exponentially as r--+ w . The corresponding barrier is 
W,( J =  0)=:1600g/N. Incidentally, it is precisely such a 
function which leads to an unphysical burst of the density at 
r = 0. Indeed, from 

and Eqs. (38) it follows that n(r = 0) = n(r = W )  = no. 
A comparison of the barriers obtained for cavitons of 

different shape shows that the lowest is the barrier (43), 
which corresponds to flattened cavitons. 

3. DISCUSSION OF RESULTS 

Let us draw some conclusions from Eqs. (43) and (44). 
We take it into account here that the total energy I, [Eq. (20)J 
is conserved or decreases (when dissipation is taken into ac- 
count). Therefore, if in a certain regin of space, with radius 
R, the plasma density is lowered and a cluster of N coherent 
plasmons with energy I, is present, then at I, < WN the clus- 
ter will spread out if R > R,, and contrast with formation of 
a caviton if R < RN. Thus, the barrier separates plasma 
states with different type of evolution. If I, > WN , both types 
of behavior are possible. At I, < 0, the plasma bunch will 
always contract; this last fact is well known.' 
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It is appropriate to note here that the calculated quanti- 
ty WN permits definite conclusions to be drawn concerning 
the behavior of the system not only in the hydrodynamic 
situation considered above, but also in the static approxima- 
tion,' when the first term of th Lagrangian (15) is left out and 
it is assumed that the density distribution ii(r) is determined 
by the instantantous value of IE(r,t)12 in accordance with 
(39). In this case the evolution of the system is determined by 
the time-dependent Schrodinger equation for E(r,t ), and the 
conserved quantity, having the meaning of the total energy, 
is the functional f N  [El, which is determined by Eq. (24) 
[since the first term in (10) is omitted in the static approxima- 
tion]. It is very important that in the static (in contrast to the 
adiabatic!) approximation the functional yN [Y], defined by 
Eq. (24), means something over the entire space of the func- 
tions Y(r), and its numerical value can be specified arbitrar- 
ily. What is critical is the value of WN/N, where W, is the 
lower saddle. The equation Y[Y]  = const< WN/N defines 
two hypersurfaces in functional space, and the functions 
YN, which are solutions of (25) and differ from one another 
only by a phase factor eia , belong to both hypersurfaces and 
form a saddle-point set on which they are joined together. 
These are unstable equilibrium points, and small perturba- 
tions cause the system to go over either towards a homogen- 
eous state, or towards a deepening of the caviton. Although 
both dynamic and dissipative processes can contribute to the 
caviton development, it can be stated that in the case of dy- 
namic evolution solutions with self-similar behavior in all of 
space are impossible (in the static approximation considered 
here), provided only that I, = N <  w . Indeed, it can be seen 
from (27) that 7, cannot remain constant under the scale 
transformation (26), regardless of the time dependence of the 
transformationconstantR (t ). ~ t y  < WN/N thedirectionof 
the evolution depends on the ratio of the respective charac- 
teristic radii R and RN of the initial state Y and of the func- 
tions YN (see the preceding paragraph). At 3 > WN /N, evo- 
lution is also possible in both directions, but it becomes more 
and more difficult to predict the direction of the evolution 
with increasing distance of 3, from WN/N, since the suc- 
ceeding saddles come into play. 

We turn now to the adiabatic regime. We can raise the 
question of the probability of fluctuation formation, in the 
plasma, of a barrier caviton, i.e., of a state from which the 
system can become self-compressed (by a dissipative or non- 
dissipative mechanism). Calculation of the probability, 
strictly speaking, calls for knowledge of the correlation func- 
tions of a strongly turbulent plasma. But the simplest esti- 
mate can be obtained from thermodynamic considerations, 
if one assumes the existence of a plasmon temperature Tp 
and of their average density that fixes the chemical potential 
of the plasmons 6. Using a Gibbs distribution with variable 
number of we can then write down the probabil- 
ity of formation of a barrier state: 

Here 2 WN, according to (29), is the energy of formation of 
the fluctuation of the density forms the barrier W,, in the 
absence of plasmons; therefore, the first factor is the usual 

Boltzmann multiplier. The second factor reflects both the 
entropy loss and the energy gain connected with the density 
N of the plasmons on one local mode. Recognizing that 
WN = -NflN, and putting (T*)- '-2T;'-  T p '  p , we 
obtain 

The optimal fluctuation occurs at 

It can be seen that this estimate can be meaningful only at 
Tp > Ti 12 (when T * > 0). At lower T, , the formation of the 
fluctuation already ceases to be a limiting factor: since the 
change of the sign of T * takes place when T * pases through 
the value + W ,  according to (47) there are produced small 
cavitons whose energy can subsequently increase by trap- 
ping new plasmons. Actually one deals here already with a 
cold plasmon gas, whose instability is well known.42 

The creation of cavitons was discussed throughout 
above under conditions when there is no external source of 
plasmon excitation. Yet in many recent experiments there 
was successfully observed the onset of a spiking turbulence 
that develops in cavitons under conditions of external excita- 
tion (longitudinal high-frequency field or electron beam, see, 
e.g., Refs. 43 and 44 and the literature cited therein). For a 
one-dimensional model, an approximate theory of caviton 
formation with allowance for external pumping and disipa- 
tive processes was developed in Ref. 15. The formation of 
cavitons under conditions of external pumping can be natu- 
rally understood from the viewpoint developed above it it is 
recognized that the pumping should lead to an increase of N, 
i.e., to a continuous accumulation of plasmons on the mode 
induced by fluctuations; therefore the decrease of W, c N - ' 
with increase N should lead to shutoff at a definite instant of 
time: once the barrier is surmounted, the process begins to 
develop spontaneously in a direction towards compression 
of the plasma bunch and formation of a caviton. 

We are grateful to V. E. Zakharov for helpful discussion 
and to V. I. Mel'nikov, S. V. Meshkov, and L. N. Shchur for 
consultations when writing the computer programs. One of 
us (F. K.) thanks also M. G. Rudavets for helpful discus- 
sions. 

"The only exception is seemingly Ref. 17, where dynamic equations in 
imaginary time were considered for tunnel self-trapping. In plasma the- 
ory, however, such exponentially slow processes have to our knowledge 
not been investigated. 
We recall that we have confined ourselves (Sec. 1) to interaction via a 
deformation potential and therefore excluded polarons from considera- 
tion from the very outset.'' 

']The very same criterion is the condition for the absence of strong Lan- 
dau damping. 

4'It must, however, be noted that the entire theory (see also below) is 
burdened with large numerical coefficients. In particular, it turns out 
that( W(m) - W(,u)/ W ( m ) z  50/,u2, thereforetherelativisticeffectscan 
manifest themselves relatively early. The W =  W( p )  dependence that 
follows from the functional (2) is given in Ref. 34. 

''Starting from Eq. (39) we can easily verify the correctness of the state- 
ment made in Sec. 1, that the contribution of the energy of the ambipo- 
lar-diffusion field @ to the total energy is small. Thus, using the equality 
6n = no div Q, as well as the fact that the field O varies over a scale of the 
dimension of the barrier R ,  (see (44) below), it is easy to verify that the 
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ratio of the energy ofthe field (31 to the second term in (15) is of the order 
of (I,/R,)'; the smallness of this factor coincides with the quasineutra- 
lity condition. 

6'The decrease of the parameter p weakens the degree of flattening of the 
caviton and increases thecontribution of the transverse electromagnetic 
fields to its formation; these two tendencies are closely related. 
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