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We consider the known classical Bennett problem of the equilibrium of an electron-ion beam in its 
magnetic self-field. Objections are raised to the known approach based on consideration of beams 
of infinite radius. In our opinion this approach leads to the prevalent incorrect conclusion that the 
particles condense around the axis at arbitrary beam parameters. It is shown that within the 
framework of Maxwell-Boltzmann statistics, at arbitrary parameters, the beams can have quasi- 
stationary states with a finite particle density on the axis and with a maximum on the plot of the 
potential of one of the components vs the radius. The maximum determines in maximum fashion 
the effective beam radius R ,  . Even though the potential well has only a finite depth for this 
component, a criterion formulated in the paper for an approximate thermodynamic equilibrium 
is satisfied in a wide range of conditions, so that at distances p < R ,  the Bennett equations that 
describe a quasi-equilibrium beam are perfectly applicable. A numerical experiment is described 
and illustrates how a system of superimposed pinching beams tends to a quasi-stationary state 
with finite particle density even from a strong disequilibrium state. 

The problem of equilibrium of an axisymmetric elec- is expressed as 
tron-ion longitudinally uniform electron ion beam in its self- 
field was formulated by Bennett back in 1934.' The system of 

9,=2 1n [ 1 + ~ 2 ~ p 2 / 8 ( 1 + ~ ) ] .  

equations he obtained can be written, in the case when the 
ion component is at rest, in the form 

where 

n, and n, are the densities of the electrons and ion on the 
beam axis in the lab, r is the distance from the axis, v is the 
beam-electron velocity, and $, and are the potentials of 
the electromagnetic force fields in which the electrons and 
ions are respectively located. It is assumed that both the elec- 
tron and the ion component are in thermodynamic Boltz- 
mann equilibrium with respective temperatures T, and Ti. 
The electrons are acted upon by a radial force due both to the 
electric field and to the magnetic field of the current, while 
the ions are acted upon only by the radial electric field. 

An analytic solution of Eqs. (1) was obtained only in one 
particular case, when the ion density at any point is propor- 
tional to the electron density, i.e., n, /n ,  = const=$ The lat- 
ter occurs under the condition 

z = p 2 / ( l - / ) - D O ,  (2) 

and the Bennett solution itself, with zero boundary condi- 
tions 

The next step in the investigation of the equilibrium of 
two-component beams free of external field was made in Ref. 
2. It was shown that self-pinching stationary beams with 
finite particle density at the axis are possible only at a strictly 
defined relation between the parameters [the Meierovich- 
Sukhorukov (MS) condition], a condition that includes also 
relation (2). 

On the other hand, the question of the state of the sys- 
tem in the general case (at arbitrary beam parameters) has so 
far not been answered to any degree of satisfaction. More- 
over, when raising this question, erroneous conclusions, in 
our opinion, were drawn in Ref. 2 concerning the behavior of 
this now-classical physical object. Starting from the require- 
ment that the total number of electrons per unit length of an 
infinitely wide beam (r-tm) be finite, the authors of Ref. 2 
found that at arbitrary parameters this requirement is satis- 
fied only if one admits solutions in which the particle density 
increases without limit towards the axis. In their opinion, 
"an appreciable fraction of the total number of particles may 
turn out to be condensed on the beam axis," and this calls for 
the use of quantum statistics to describe the degenerate elec- 
trons in the axis region. In contrast to the treatment of singu- 
lar solutions as corresponding to current carrying beams or 
to charge-carrying wire on the axis (named the "generalized 
Bennett di~tribution),~.~ it is stated in Ref. 2 that the solution 
with singularity at the origin must be treated as a stationary 
state of a self-pinched relativistic beam, and the current and 
charge on the axis, needed for self-consistency, "should be 
regarded as pertaining to the beam itself being produced by 
an appropriate number of electrons and ions compressed 
into the origin, when the collective-interaction energy is not 
compensated by the energy of the thermal spreading of the 
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particles"; this compensation is uniquely related by the 
authors to satisfaction of the condition obtained by them. 

Without denying, in principle, the feasibility of produc- 
ing very dense beams (see, e.g., Ref. 5) in which quantum- 
mechanical effects begin to manifest themselves, we assume 
that the existence of such beams is in no way connected with 
satisfaction or nonsatisfaction of the MS condition. A cylin- 
drical plasma is not acted upon at the axis by the peripheral 
beam particles, and its state does not depend at all on 
whether their number is finite or infinite. In particular, the 
condensation problem should be considered on the basis of 
local equations. The MS relation, on the other hand, is of 
"global" character. Indeed, it is the consequence of the re- 
quirement that the integrals 

converge at infinity, a requirement equivalent to the follow- 
ing asymptotic behavior of the potentials: 

From the first integral of the system (I), which is of the 
form " dlpi dOe d * e 2 + -  

y ( p Z -  2r  ( ~ ~ 4  + ( p d p 4  

and from the boundary conditions (3) we then obtain an alge- 
braic relation between5 r,fi 2, and veSi = Nevi / 2m, ,  , where 
Ne,i is the total number of the corresponding particles in a 
system with infinite radius: 

This relation generalizes the MS condition at arbitrary 
f i 2 <  1andgoesoverintoitatfi2 = l . A t ~ ,  = vi = 4(1 + 7)/ 
B '7 relation (5) goes over into the condition (2), which corre- 
sponds to the Bennett solution (4). However, the conver- 
gence of the integrals 

is not dictated by physical considerations, for it makes sense 
to consider only beams of finite thickness. Moreover, a sta- 
tionary current always has a corresponding counter current, 
which can be naturally regarded in the considered axisym- 
metric problem as flowing somewhere at large p. If, how= 
ever, we do not require that v,,~ converge at infinity, the 
condition (5) is not obligatory. The role of the particle num- 
ber should thus be assumed by the integrals 

R eff 

J nP 

where Re, is a certain effective beam radius to be deter- 
mined. The boundary conditions in the form (3), on the other 
hand, must be regarded as satisfied beforehand in the ab- 
sence of extraneous fields. 

In the present paper we demonstrate on the basis of 
such an approach the possible existence of quasi-stationary 
beams with finite particle density at the axis, and the range of 
the admissible parameters of the system is larger than that 
defined by the MS relation. When considering finite-thick- 
ness beams we start from the only known analytic solution of 
Eq. (I), which we write in the form 

"e j 
p- = p[fe-*r- (P-P2) e - * a ]  dp, 

dp 0 

Wi j 
p - = p[e-*e-fe-*l] r dp. 

dp 0 

We label the corresponding equilibrium parameters that sa- 
tisfy relation (2) by the letter B and consider qualitatively the 
possible state of the system (which is already different!) if 
condition (2) is violated by adding to one of the parameters, 
say TB, a small increment ST but keep the densities of the 
beams at the axis fixed. 

For the Bennett solution (4), d$, /dp and d$, /dp are 
always positive, but when Ti is decreased, i.e., at ST > 0, the 
ion density, which is proportional to exp( - $i) (when fixed 
on the axis), decreases everywhere, the uncompensated 
charge of the electrons increases, and consequently the elec- 
tronic component will be broader in this new beam, i.e., 
exp( - $, ) increases. It can then be seen from (6a) that d$, / 
dp can go through zero and then become negative. This 
means that the potential $, of the electrons reaches a maxi- 
mum and begins to decrease, whereas the ion potential $, , as 
can be seen from (6b), increases even more steeply than the 
Bennett potential. It follows similarly from (6) that $i can 
reach a maximum at ST < 0, and the electronic component 
becomes even more strongly pinched. 

These qualitative considerations are confirmed by nu- 
merical integration of Eqs. (1) at different ST (Fig. I), and the 

FIG.  1 .  Radial distribution o f  the particle density n/n, = e ? The 
curves are numbered in accord with the table. Electrons-dashed line, 
ions-solid. Curves B 1 ,  and B 2 are Bennett distributions with respective 
parametersPo2=0.4, f o = 0 . 9 , r o =  3 a n d B 2 = 0 . 8 ,  fo=0.68,  T,= 1.5. 
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TABLE I. 

larger 1671 the smaller the p = R ,  at which an inflection 
appears on the plot of the electrons at ST > 0 and of the ions 
at ST < 0. It is easily seen that when f andP deviate from fB 
and p the deviation of the solution of the system (1) from 
the corresponding $, has the same character as when T devi- 
ates from T,. Moreover, the same solution of the system (1) 
can be obtained from the corresponding $B by a definite 
deviation of any parameter from its Bennett value, as illus- 
trated in the table. 

In the region past the inflection ( p > R ,  ) particles of 
the same species drop down from the potential hill, and since 
there is no reflecting wall on the periphery, there are no con- 
ditions here for thermodynamic equilibrium. The solutions 
of Eq. (1) in this region are purely formal, since the equations 
themselves are inapplicable. Particles from one of the beams, 
when landing there, are freely accelerated from the system 
axis. In the region p < R ,  , however, both components are 
present in the potential wells. To be sure, for one of them the 
well depth is finite and the corresponding particles cannot be 
in a state of true thermodynamic equilibrium. Nonetheless, 
if the number of particles that surmount the potential barrier 
is small, it can be assumed that the system is in thermal 
quasi-equilibrium, and the Boltzmann distribution can be 
used. Let us formulate a criterion for the applicability of the 
idea of such an approximate equilibrium. We assume that 
the gas in the potential well is in a quasi-stationary state if the 
number of particles in the considered component does not 
change substantially within the time of the thermodynamic 
relaxation. In our case this means that the number N of the 
collisions between particles must greatly exceed the flux I of 
the particles through the potential barrier, i.e., the number 
of collisions with a "wall" of radius R ,  is 

N B I .  (7) 

To calculate the total number Nof the collisions of elec- 
trons having a distribution function f (r, v) in an inhomogen- 
eous system we use for the number of collisions at a point r a 
formula from which N is obtained by integration over the 
system volume V: 

Lm 

N= 1 d3r J'S d3v, d3v.l dokf (r, v,) f (r, v.) . 
V -m a 

HereA depends on the parameters of the Coulomb colli- 
sions and is independent of r. In our case f (r,v) = noy(r)p(v), 

so that the integration with respect to v and r is separated in 
the integral: - 
~ = n 4  /l (r) d3r j k v l  d3v2 jdokrp (v,) cp (v.) =nl W 

v - m a 

where W is the interval over the velocities and the angle 
variables. On the other hand, for a homogeneous system 
with density no, the number of Coulomb collisions N,,, was 
calculated without using Eq. (8) and is equal to no vcou, V/2, 
where 

is the frequency of the Coulomb collisions in a homogeneous 
system with temperature T, and A is the Coulomb ioga- 
rithm. The same number Nhom can be obtained from Eq. (a), 
which yields W = vcou, /2n,, and for the number of colli- 
sions in an inhomogeneous system we obtain ultimately 

~ O V C ~ ~ ;  N = -  
2 

1 d 3 r r  (r) . 
v 

The flux of particles with mass m and density n(p)  to a wall 
of radius R ,  is 

where n and T for particles of a given species should be taken 
in the proper frame of the species. In the integral 

J p n  
V 

we can replace approximately exp( - $) by exp(lCI,) and ex- 
tend the integration with respect top to infinity. Substituting 
the expression obtained in this manner in (9), we obtain for 
the quasi-equilibrium criterion (7) 

I % 
n , ~  p Z ~ R C r n  exp {--$a (Re,) ) (1 la) A, --;T; B qe = 2.2..105 

(I+.c) T* 
, 

The condition (1 la) pertains to the maximum of the 
electronic potential at the point Re,, and (1 lb) to the maxi- 
mum of the ionic potential at the point R i m .  The Coulomb 
logarithms 
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3 T : ~  change in radius and penetrate freely through one another. 
&=ln 

18ne3 (7) At a sufficiently large axial velocity of the particles, it can be 
e,tO approximately assumed that only radial forces are present in 

are calculated using the densities on the axis, and this only the system. In this case, the shape of each tube, rik (z) and 

strengthens the quasi-equilibrium criterion. re, (z) (k = 1,2, ..., K ), can be described by the following sys- 

Here Rm is measured in units of re and Tin degrees, nk tem of equations in the dimensionless variables z' = zw, / 

is the density of the of the corresponding compo- f lue ,  r' = r/r09 where w: = 4re2i/me, n = n~ /r4 and r, 

nent on the axis in their proper reference frame. If relation Can be arbitrary: 

(1 1) is satisfied, the ~oltzmann-distribution assumption is 
justified, with R, in essence the radius Re, of the quasista- 
tionary beam. In the opposite case Eqs. (I) are not valid even 
approximately. It can be seen from the data in the table that 
all the cited examples can represent a real physical situation 
at sufficiently large AN: '~ /T~~~.  

We note that inequalities ( I  1) should be satisfied also if 
the beam parameters lie in the range defined by (5), since the 
equilibrium of real beams, which always have a finite diame- 
ter, can be only approximate. In this case R, must be taken 
to mean the effective beam aperture, i.e., the radius of the 
region in which Eqs. (1) are valid. 

Thus, both in the case when the parameters of the 
pinching beam satisfy relation (5) and when this relation does 
not hold, quasistationary states with finite particle densities 
on the axis are perfectly feasible and are satisfactorily de- 
scribed by the classical equations (1). 

Since the number of particles of one of the components 
decreases continuously in the considered quasistationary 
beams with nonmonotonic potential, it is legitimate to raise 
the question of the consequences of this spilling of the parti- 
cles out of the potential well. It  can be easily seen that the 
species of the particles leaving the beam is precisely that for 
which the depth of the well for the remaining species in- 
creases with increasing number of the departing particles, 
i.e., the system should evolve self-consistently, by losing the 
"excess" particles, into a state in which both components are 
well retained. Moreover, the numerical example described 
below shows that beams tend to such a quasi-Bennett state 
even when their initial state is far from equilibrium. 

The purpose of our computer experiment was to track, 
using a known simulation method: the spatial evolution of a 
stationary electron beam with electron and ion longitudinal 
velocities v, , vi , where v, >vi . Each beam is represented by a 
large number of concentric tubes of like charge, and the 
chargeen per unit length of the tube is set equal to the corre- 
sponding charge of the ion tube. Interacting with one an- 
other via their electric and magnetic self-fields, the tubes 

The system (12) was solved numerically with boundary 
conditions that specified the coordinates re,, of all the tubes 
a tz=Oand 

The chosen boundary conditions correspond to cold beams 
of electrons and ions that are somewhate separated at the 
point z = 0. To circumvent the difficulties in the calculation 
of the tube contour, due to the finite tube charge and to the 
singularity as r 4 ,  the trajectories were specularly reflected 
from a cylinder with a certain small radius h, a procedure 
justified by the axial symmetry of the system. 

The computer-calculated particle trajectories are 
shown in Fig. 2. It can be seen that the absence of beam 
equilibrium at z = 0 leads to oscillations of the tube diame- 
ters, along z, under the influence of the electric field, the 
spatial periods of the electron and ion tubes being propor- 
tional to the electron and ion energies. Owing to the differ- 
ence between the phases and amplitudes the oscillations, the 
trajectories become entangled. The tubes are particularly ra- 
pidly randomized if the magnetic pinching concentrates 
them at the system axis and the beams change from tubular 

FIG. 2. Particle trajectories in superimposed cold beams. Solid 
lines- electrons, dashed-ions. 
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to solid. The evolution of the integral characteristics of the 
beams is illustrated in Fig. 3, which shows the radial distri- 
butions of the density of each component and the particle 
distribution functions in the transverse velocities at different 
z. It is noteworthy that the oscillations of the distribution 
function attenuate with increasing z and at the end of the 
considered spatial integral the distribution function, just as 
for quasi-equilibrium beams, is close to symmetric about the 
point dr/dz = 0, while the density distributions are similar 
to those of Bennett (except for the artificially produced for- 
bidden region 0 < r' < h ). We note also that if the ratio f of the 
positive charge contained in a circle of some radius r' to the 
corresponding negative charge varies strongly along z be- 
cause of the disequilibrium of the beam, and furthermore 
differently for different r' (Fig. 4), at the end of the computa- 

FIG. 3. Spatial evolution of radial dependences of the densi- 
ties n, and n i ,  and of the particle distribution function p 
averaged over the cross section, with respect to the radial 
velocities u = \1Zu,/o,r,, for different zl:I-z' = 5.11-15, 
111-19, IV-23, V-27; K = 250. Solid lines---electrons, 
dashed-ions. 

tion these oscillations attenuate. The ratios indicated then 
become nearly equal for different r' and smaller than unity, 
as should be the case in quasi-equilibrium beams. 

Summarizing the results of the described numerical ex- 
periments and the deductions of the preceding part of the 
paper, we can conclude that quasi-equilibrium beams are 
perfectly realizable physical systems. Their states are stable 
in the sense that when one such state is disturbed the system 
tends to go into another state of the same form. Of course, 
the question of the effect of possible two-stream instability 
on the investigated system calls for a special study. 
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