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The evolution of an isolated Langmuir caviton (low-density region in which Langmuir oscilla- 
tions are localized) is studied. For this purpose, the Vlasov equations for electrons and ions are 
solved by a numericaI method for the case of two spatial variables. It is shown that under certain 
conditions caviton collapse takes place and enhances considerably the oscillating electric field. It 
is shown that under typical conditions there is no time for the collapse to become supersonic. 
When the caviton is compressed to a size less than lor, the energy of the oscillations localized in it 
is transferred almost completely to the fast electrons. 

PACS numbers: 52.35.Mw, 52.65. + z 

1. INTRODUCTION 

The first study of the collapse of Langmuir waves' was 
published in 1972. It was shown there that the development 
of modulation instability2 leads to localization of oscillations 
of the electric field and to formation of cavitons, which are 
regions with decreased plasma density. Cavitons collapse 
within a finite time, and during the concluding stage of this 
collapse (Langmuir collapse) the energy of the oscillations 
trapped in the caviton is dissipated and the electrons are 
heated. 

It is easily understood that Langmuir collapse should 
play a most important role in the physics of plasma turbu- 
lence. Collapse ensures an effective mechanism of absorp- 
tion of energy from long-wave Langmuir oscillations in a 
collisionless transparent plasma, and therefore determines 
the character of the interaction of the plasma with high- 
power electron beams and electromagnetic radiation. It is 
important that as a result of the collapse the energy of the 
Langmuir oscillations is transferred not to all electrons, but 
only to a small group of them. This circumstance must be 
taken into account in the theory of collective methods of 
plasma heating. 

We note that collapse takes place also for other 
branches of the plasma-oscillation spectra, particularly for 
electromagnetic3 and lower hybrid4 waves. Thus, investiga- 
tion of wave collapse is an essential part of many problems in 
the theory of collisionless plasma. 

A direct experimental observation of the collapse of an 
isolated caviton entails considerable difficulties because of 
its small size (tens to hundreds of Debye radii r,) and short 
lifetime (hundreds of plasma periods 2?r/oP ). It  was possible, 
however, to observe in e ~ ~ e r i m e n t ~ . ~  structures that can be 
naturally interpreted as collapsing cavitons. The appearance 
of non-Maxwellian accelerated electrons in experiments on 
laser and beam heating of a plasma can also be regarded in 
many cases as a macroscopic consequence of collapse. 

The heretofore performed theoretical investigations of 
Langmuir were based on time-averaged dynam- 
ic equations.' These equations are not valid, however, dur- 

ing the concluding stage of the caviton evolution, when the 
Landau damping sets in and the energy of the Langmuir 
oscillations becomes dissipated. A correct approach to the 
study of the concluding stage of the collapse calls for solving 
the complete system of Vlasov's equations for electrons and 
ions, and in view of the complexity of the problem this can be 
done only by numerical methods. In this situation, principal 
significance attaches to numerical simulation of the collapse 
by the method of particles. In this method, the model of the 
plasma is a system of a large number of charged "macropar- 
ticles," i.e., the simulation is carried out from first princi- 
ples. This makes it possible to regard the numerical experi- 
ment as a certain analog of a physical experiment. We note 
that the method of particles turned out to be quite effective 
for the investigation of plasma turbulence and of the asso- 
ciated problems of absorption and scattering of light in a 
plasma (see Refs. 13-1 5). 

Attempts to investigate Langmuir collapse by numeri- 
cal methods were undertaken earlier in Refs. 16-18. The 
results of numerical simulation, carried out in these studies, 
do not agree fully with those ideas concerning collapse 
which came into being following the publication of Refs. 1 
and 7-12. The possible causes of this discrepancy will be 
discussed below (see Sec. 4). Here we note only that the main 
problem of the kinetic description of the evolution of an iso- 
lated Langmuir caviton was not solved in Refs. 16-18. 

The present paper is devoted to a numerical simulation 
of Langmuir collapse by the method of particles. We investi- 
gate in detail the evolution of a caviton in two-dimensional 
geometry. The choice of this case is due to the fact that an 
adequate investigation of the real three-dimensional collapse 
problem is beyond the capabilities of modern computers. 
The calculations performed show clearly the entire sequence 
of events that takes place in collapse: the caviton contraction 
accompanied by a considerable growth of the oscillating 
electric field, the dissipation of the oscillation energy during 
the concluding stage of the collapse, and the formation of 
"tails" of fast electrons. The qualitative picture of the col- 
lapse which follows from the calculations agrees with the 
results of Refs. 1 and 7-12. 
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2. WHY IS A NUMERICAL SIMULATION OF THE LANGMUIR 
COLLAPSE NECESSARY? 

It was noted above that the collapse concept was creat- 
ed on the basis of averaged dynamic equations obtained in 
Ref. 1 

Here $(r, t ) is the complex envelope of the high-frequency 
electric potential, 

E=-'IZV 13 esp (-iopt) +c.c. 1 ,  

Sn is the slow variation of the plasma density, c, is the speed 
of ion sound, no is the equilibrium plasma density, and M is 
the ion mass. The system (I), (2) has two integrals of motion: 
the number of Langmuir quanta 

and the "Hamiltonian" 

trapped in the collapse process is transferred to the particle, 
in other words, what is the efficiency of dissipation in col- 
lapse. 

After "burning out" of the Langmuir oscillations, what 
is left of the caviton is a region of perturbed density, which 
vanishes within acoustic times. It is possible that it is precise- 
ly these density fluctuations (and not the evolution of the 
collapsing caviton) which is more observable in experiment. 
In addition, it became clear recently that conversion of the 
Langmuir and electromagnetic waves by short-wave sound 
is an effective wave-dissipation mechanism.19 The collapse is 
one of the mechanisms that generates short-wave sound, and 
to estimate the efficiency of the generation it is necessary to 
know the minimum dimension of the caviton and the extent 
of variation of the density. Finally, one of the principal mi- 
croscopic consequences of collapse is generation of fast elec- 
trons. The study of this process is also quite difficult without 
numerical simulation. 

Thus, there are many phenomena whose understanding 
calls for a detailed investigation of the concluding stage of 
Langmuir collapse, and this is possible only within the 
framework of numerical simulation. 

3. DIFFICULTIES OF NUMERICAL SIMULATION 

Adequate simulation of Langmuir collapse is at the lim- 
it of the capabilities of the modern computer technology. 
The difficulties that arise are due mainly to the discrete char- 

(3) acter of the model. To obtain as large an inertial interval as 
possible, the calculation must be started with the lowest os- 

where v is the hydrodynamic velocity of the plasma. The 
total plasma energy is connected with the integrals I, and I, 
by the relation 

2?=~pI,+Iz. 

Investigation of the system (I), (2) shows' that the sufficient 
condition for collapse is that the Hamiltonian I, be negative. 
In the static limit, when the ions move at subsonic velocities 
and the derivative with respect to time can be neglected in 
(2), this statement has the character of a mathematical 
theorem. In the general case, variational estimates were 
f ~ u n d , ~ . ~  self-similar  solution^'^^^^ describing the collapse of 
the caviton were obtained, and a numerical of 
Eqs. (1) and (2) confirmed the qualitative collapse picture 
proposed in Ref. 1 (in particular, the existence of a self-simi- 
lar regime). 

It is important, however, that during the concluding 
stage of the collapse, when the dimension of the caviton 
reaches several Debye radii, Eqs. (1) and (2) no longer hold. 
In this region there is dispersion of the oscillations, the elec- 
tronic nonlinearities disregarded in (1) and (2) become sub- 
stantial, and it becomes necessary to take into account the 
interaction of the waves with the particles. This raises a 
number of questions, which can be answered only by nu- 
merical simulation. It is necessary first to show that the cavi- 
ton actually contracts to dimensions comparable with the 
Debye radius, despite the change in the dispersion law at 
kr, - 1 and the influence of the electronic nonlinearities, 
which generally speaking could stop the collapse. A funda- 
mentally important question is which part of the energy 

cillation density Wcompatible with the collapse criterion 

W/nT> (kr , )  '. 
Since k,, = 2r/L, where L is the size of the simulation 
region, it is necessary to use in the calculations a grid with a 
maximum possible number of nodes. To suppress the para- 
sitic shortwave computational instabilities with a wave vec- 
tor that differs from k by a value equal to the reciprocal- 
lattice vector, the mesh of the grid must not exceed the 
Debye radius. In our calculations we used a grid 
64rD x 64rD, ensuring a minimum value (kr, )'= lov2. 

The characteristic level of Langrnuir turbulence should 
be much higher than the level of the thermal fluctuations. 
The latter is inversely proportional to the number Nd of par- 
ticles in the Debye cell. In practice Nd cannot be less than 20. 
Thus, even in the two-dimensional case, simulation of Lang- 
muir collapse on a grid (64rD )', calls for - 10' macroparti- 
cles, which is a rather stringent requirement on the memory 
and operating speed of the computer. Solution of a three- 
dimensional problem on a (64rD)3 grid calls for lo7 particles, 
which makes three-dimensional calculation exceedingly dif- 
ficult at the contemporary level of computer technology. 

Our numerical experiments were performed on a multi- 
processor c~mputer . '~  A feature of this computer is the pos- 
sibility of distributing in parallel the algorithms both among 
the arithmetic processors and among parallel-operating de- 
vices that are of different types. This circumstance turned 
out to be most important when solving problems in plasma 
kinetics by the particle method. The program that realizes 
the algorithm of this method in the computer is described in 
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Ref. 21. To write the program we used certain results of the 
interesting paper by Kamimura et a1." The use of parallel 
distribution has made it possible to achieve an inner-cycle 
time of 30psec/particle with a total computation time that 
depends linearly on the product of the number of particles by 
the number of time steps. When simulating Langmuir col- 
lapse with 2 x lo5 microparticles, the performance of lo3 
time steps (-200 up- I )  the required computer time was ap- 
proximately two hours. 

4. CHOICE OF INITIAL CONDITIONS 

In Eqs. (1) and (2), on the analysis of which the concept 
of Langmuir collapse is based, the fast and slow motions are 
explicitly separated. The collapse criterion 1 2 < 0  is ex- 
pressed likewise in the corresponding variables. In a numeri- 
cal simulation by the particle method, there is no such separ- 
ation of variables and one specifies the initial density and 
velocity distributions of all the plasma particles. Because of 
the large ratio of the ion and electron masses, it can be as- 
sumed that the slow ion-sound motions should correspond 
to quasineutral variation of the density SZ, and the separa- 
tion of the charges Sfi causes high-frequency Langmuir os- 
cillations. Since the only negative term in the integrand of 
Eq. (3) can be the one with SE I V$I2, we must have SZ # 0 in 
the initial condition to which I, < 0 corresponds. Thus, the 
initial particle-density distribution should take the form 

If, as was done in Refs. 16-18, the initial ion distribution 
density is regarded as spatially homogeneous, A k O ,  it fol- 
lows from this directly that I, > 0. Of course, in this case I, 
can become negative in certain regions during the course of 
the evolution. However, in accordance'with the statements 
made above, there is in practice no inertial interval for such a 
perturbation. To speak of collapse in this situation is mean- 
ingless. Local maxima of the field, which were observed in 
numerical experiments,16 can be easily explained as being 
due to interference of plasma waves that cannot leave the 
calculation region because of the periodic boundary condi- 
tions. 

The initial density profiles in our calculations were cho- 
sen in the following manner: 

6 i i = ~ ~  [COS (2nxlL) +cos ( 2 n y / L ) ] ,  
GR=E [cos (nx/L)  +cos ( n y / L ) ]  . 

The initial microscopic velocities of the electrons and ions 
were assumed equal to zero. The parameter E ,  was chosen 
such that at t = 0 the high-frequency electric field connected 
with Sii by the Poisson equation V2$ = - 4reSfi, satisfy the 
condition 

I V Q ~  2/16nT=-6ii, 

i.e., that the ponderomotive forces balance the variation of 
the thermal pressure. In the numerical calculations we var- 
ied the electron and ion temperatures, the parameter E ,  and 
the mass ratio: 100(M /m (800. 

5. RESULTS OF CALCULATIONS 

Our calculations pertain to two-dimensional collapse. 
From the physical point of view, this case is important in 
principle. It is known2 that the Langmuir turbulence can be 
qualitatively regarded as a gas of quasiparticles (plasmons) 
with attraction. In view of the conservation of the number of 
plasmons, the frequency shift (in the static limit) increases 
with decreasing caviton dimension I, in proportion to I - d ,  

where d is the dimensionality of space. The dispersion incre- 
ment to the frequency is proportional to 1 -'. Therefore in the 
one-dimensional case the contraction is always stopped, in 
the three-dimensional case the role of the nonlinearity in the 
contraction process increases, while the two-dimensional 
case is intermediate: the qualitative character of the evolu- 
tion of the caviton is determined in this case by parameters 
that enter in the initial conditions. We note that in the three- 
dimensional situation the collapse criterion is weaker than in 
the two-dimensional one: collapse is possible also at I, > 0.' 

The threshold value of the parameter E obtained from 
the condition I, = 0 turned out (at Ti = 0) to be E, -0.01. 
Calculation of a variant with E = 0.01 did not yield a clear 
picture of the collapse. The distribution of the oscillation 
energy turned out to be qualitatively similar to that obtained 
in Ref. 17 at I2 > 0. In variants with E = 0.025,0.04, and 0.05 
a clear picture of the collapse was observed, followed by 
"burning out" of the isolated caviton. Figures 1 and 2 show 
the spatial profiles of the energy density of the Langmuir 
oscillations and of the ion density at several successive in- 
stants of time. The small caviton satellites observed in the 
figures are not significant and are apparently due to the 
choice of the boundary condition. In the calculations carried 
out for an isothermal plasma, these satellites are much less 
pronounced. The caviton contracts with acceleration, and 
then after a certain limiting size is reached and the Landau 
damping sets in, the energy contained in the caviton "burns 
out" rapidly. This is clearly seen from Fig. 3, which shows 
the time dependence of the energy density of the oscillations 
at the center of the caviton. We note that the energy charac- 
teristics obtained from the numerical calculation by the 
method of particles have a rapidly oscillating (with frequen- 
cy 2w, ) component, therefore the plots of the corresponding 
quantities, given in papers on numerical simulation, have a 
characteristic smeared-out form. Of physical meaning are 
the time-averaged quantities, which are in fact presented in 
the present paper. The averaging was carried out over an 
interval At = 6w; ' in accord with 

L 

f= ( A t )  - %  5 f dt. 
1- At 

The energy of the oscillations trapped in a collapsing 
caviton is transferred almost completely to the electrons. 
This can be seen from Fig. 4, which shows the temporal evo- 
lution of the energy of the Langmuir oscillations. It can be 
seen that the absorption of the energy by the particles pro- 
ceeds very rapidly, and the energy fraction ( -  50%) remain- 
ing during the concluding stage belongs to oscillations that 
do not land in the caviton. 
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a b FIG. 1. Spatial profiles and bvel lines of the quantity 
IE I2/8mTat different instants of time: a) op t = 45, 

3 b)opr=65 ,c )opt=90 ,d )opt=130 .  

n; l f l ~  It follows from Fig. 5 that the energy of the oscillations 
is absorbed by rapid electrons. The anisotropic character of 
the heating is due to the anisotropy of the caviton, which can 

0. 9 
J w t .- 30 'b< be clearly seen from Fig. 1. The shape of the caviton is simi- 

0 8 lar to that obtained from the numerical solution of the aver- 
aged equations (1 ,, -- 21, ) (Ref. 7). 

FIG. 2. Distribution of the ion density in the section x = L /2. 
FIG. 3. Energy density of the oscillations at the center of 
the cavity as a function of the time. 
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FIG. 4. Time variation of the total energy of the electrons 
k,, of the ions ki, and of the Langmuir oscillations. 

A characteristic collapse feature that follows from the 
calculations is the rather large minimum size of the collapse, 
1, z6 rD ,  which does not depend on the initial amplitude of 
the oscillations. This result can be understood from the fol- 
lowing simple considerations. The electric field inside the 
caviton varies approximately like cos w, t. If the particles 
pass through the caviton within a time <?r/w,, they are ac- 
celerated and consequently absorb effectively the energy of 
the Langmuir oscillations. It is usually assumed on the basis 
of the numerical calculations that the intense damping is due 
to particles having velocities v - (2-3)v,, and it is this which 
explains the size limit obtained from the calculation. We 
note that cavitons of just this size were observed in experi- 
ment6 in beam excitation of oscillations in an isotropic plas- 
ma. 

The energy trapped in the caviton in the course of the 
collapse does not leave the cavity prior to the start of the 
damping. Therefore, with increasing initial amplitude, the 
final amplitude also increases. Thus, at E = 0.02 the maxi- 
mum ratio II = IE 12,,, / 8 m T  at the center of the caviton is 
0.08, and at E = 0.05 we have v =  0.45. The maximum den- 
sity variations &/no amount in these cases to 0.18 and 0.27, 
respectively. 

We note that at very high amplitude of the initial per- 
turbation the picture of the collapse is no longer clear. An 
appreciable fraction of the particles is trapped in this case by 
the oscillations and it is possible that stationary structures 
analogous to the BGK sol~t ions*~ are produced. 

The calculation results shown in the figures were ob- 
tained for a mass ratio M /m = 100. The same versions, but 

FIG. 5. Distribution function of the electrons; f,-Max- 
wellian distribution at t = 0; f (u,) and f (u, ) are the distri- 
butions at the instant of time o, t = 170. 

with mass ratios 400 and 800, gave similar results. In parti- 
cular, it was found that the collapse time is practically inde- 
pendent of the ratio M /m. This means that the collapse re- 
mains subsonic all the way to the concluding stage. The 
maximum variation of the density decreases somewhat with 
increasing mass ratio, and the energy fraction transferred to 
the ions remains small in all the variants (see Fig. 4). Thus, 
the picture of the evolution of Langmuir collapse, which fol- 
lows from the numerical calculation, is in qualitative agree- 
ment with the results of Refs. 1 and 7-9, in which an aver- 
aged description was used. 

Simulation by the particle method makes it possible to 
describe more rigorously the concluding stage of the col- 
lapse. It shows, in particular, that the collapse does not man- 
age to reach the ultrasonic regime, the minimum size of the 
caviton is of the order of - lorD, and the "burning out" of 
the energy trapped in the caviton is practically complete. 

The authors are sincerely grateful to R. Z. Sagdeev for a 
discussion of the work and for valuable critical remarks. 
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