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Concentration self-quenching of excitations by cross-relaxation of energy between the impurity 
centers is considered. It is assumed that resonance-excitation migration over the impurities leads 
to an uncorrelated change of configuration of the surrounding particles after a jump. The self- 
quenching rate calculated in accordance with the theory of continuous random walks is found to 
be independent of resonant interaction between the centers. However, correction of the theory by 
partially taking into account the return of an excitation to the initial center restores the kinetic 
similarity of the quenching and self-quenching processes, the only difference being in the numeri- 
cal values of the rate constants. 

PACS numbers: 82.20.R~ 

INTRODUCTION 

By concentration quenching is usually meant excitation 
quenching produced in solids or in very viscous liquid solu- 
tions when the activator (energy-donor) concentration 
[Dl  = p is increased. This phenomenon is due to resonant 
transfer of energy from an excited donor to an unexcited one, 
a transfer that ensures spatial delocalization of the excitation 
migrating over identical impurity centers. The migration of 
the excitation does not by itself shorten its lifetime, but en- 
sures transport of the energy to its sinks. These are the do- 
nors on which the excitation annihilates faster than on oth- 
ers. The most common cause of accelerated of energy 
dissipation on these donors is their proximity to acceptors- 
impurity centers to which the energy is transferred irrevers- 
ibly. In such a case the quenching is enhanced not only with 
increasingp, but also when the energy-acceptor concentra- 
tionc = [A ] is increased. As a result, the theory ofconcentra- 
tion quenching should generally speaking consider the de- 
pendence of the pressure on two variable concentrations, p 
and c. It happens, however, that the same impurity centers 
are simultaneously both donors and acceptors of energy. 
This is possible if the interaction between them is capable of 
leading to irreversible replacement of one excitation by two 
that are approximately half as large, via a cross-relaxation 
mechanism (Fig. 1). This is the situation in crystals and 
glasses activated with neodynium ions, in the Stark-level sys- 
tem of which there are located states 4F 312 suitable for cross- 
relaxation deactivation. l4 The symmetrical vibration of the 
CH, of the CH3CCC13 molecule is quenched in exactly the 

FIG. 1. 

same manner in a liquid solution by changing into two low- 
frequency oscillations, identical or different, the sum of the 
energies of which is approximately equal to the initial excit- 
ed value.5 Self-quenching becomes forced with increasing 
impurity concentration, even if there is no resonant transfer 
of the excitation. But the latter is always present. By chang- 
ing cross-relaxation partners with different distances to the 
excited donor, the migration modulates the rate of its 
quenching with time. Calculation of the resultant rate of this 
process is in fact the subject of the present paper. 

1. HOPPING QUENCHING 

Concentration self-quenching of Nd3 + became the first 
object of application of the theory of hopping quenching,' 
even though the latter always dealt with donors and accep- 
tors of different type.6 It was implied that the hopping thoery 
describes self-quenching as a particular case in which p=c. 
Actually, in principle acceptors and donors were treated in 
Ref. 6 differently. The acceptors were assumed to be distrib- 
uted uniformly but randomly in space. The quenching prob- 
ability of each donor by the aggregate of its surrounding 
acceptors 

depended on the concrete configuration of the acceptors lo- 
cated at different distances ri from the donor. On the con- 
trary, the donors were assumed to be located at the sites of an 
"equivalent" lattice, whose period was equal to the average 
distance between them, A =p-  'I3. For this reason, the rate 
of outflow from any site was assumed to be the same at 

where C,, is a constant that determines the probability of 
resonant dipole-dipole transfer of excitation from donor to 
donor: 

u=CDD/r6. (1.31 

Obviously, under these assumptions, the kinetics of the out- 
flow (irreversible departure of excitation from its creation 
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point) is always exponential 

An entirely different kinetics is obtained for static (in the 
absence of migration) quenching of excitation by acceptors: 

The averaging designated by the angle brackets, over differ- 
ent random configurations of the acceptors, transforms 
quenching into a non-exponential process. In particular, in 
dipole-dipole quenching, when 

we obtain the well-known Forster result7: 

According to the theory of hopping quenching6, the ki- 
netics of a migration-accelerated process N (t ) is described by 
the integral equation 

1 

the kernel of which is the product of the function N,R,. At 
qr0( 1 this process develops exponentially over practically 
its entire extent, at a rate 

If both the transport and the quenching are dipole-dipole, 
using expressions (1.4) and (1.7) in (1.9), we obtain6 

It was indicated many times that the numerical coeffi- 
cient in this formula should be corrected, particularly be- 
cause the kinetics of the outflow R (t ), even in the case of 
ordered arrangements of the donors, coincides with (1.4) 
only during the initial state ( t  5 r,), when the return of the 
excitation to the initial center can be neglected. In fact, how- 
ever, the number of excitations that return at least once to 
the point of creation is equal approximately to 25%. In the 
course of time, when the fraction of the excitations that do 
not leave the initial center becomes smaller than those re- 
turning after random walks over the crystal, the outflow ki- 
netics becomes of the diffusion type: R K l / p (4~Dt  )2'3 (t,~,). 
This difference between R and Re lengthens the average time 
of stay of the excitation at its initial center: 

For dipole-dipole transport, q = 1.266 for a primitive cubic 
lattice, 1.214 for a body-centered lattice and 1.21 1 for a face- 
centered lattice.' Owing to the returns of the excitation, the 
modulation W in the course of the random walks is not 
strictly speaking a process without memory, as assumed in 
Ref. 6. It was established nevertheless in Ref. 9 that replace- 
ment of T, by 7 in (1.10) is the only necessary refinement of 

this result in the case of ordered arrangement of the donors. 
This conclusion was subsequently confirmed in Ref. 10. 

In the case of disordered donors, the kinetics of outflow 
is different from (1.4) even at the initial irreversible state of 
the process at t<r,. The outflow probability 

is different for different centers because of the different con- 
figurations of the surrounding donors. Outflow kinetics 
averaged over these configurations 

(1.13) 
does not differ during this stage from the quenching kinetics 
from the viewpoint of the time dependence." For dipole- 
dipole excitation transfer 

R, (t) =exp (--16tlr,). (1.14) 

The average time of stay on the initial center, obtained from 
the equation 

OD 

r = JR,  (t) at, 
0 

is one-third the value of T, only because of the variance of the 
outflow probabilities. Consequently, this factor is at least 
just as important as the return of the excitation. In the next 
section we consider how it can be taken into account sepa- 
rately, and then introduce into the calculation a correction 
for the partial allowance for the return of the excitation. 

2. UNCORRELATED CHANGE OF PROBABILITIES 

From the very start, the theory of hopping quenching 
was constructed under the assumption that the probability 
of quenching after each hop of the excitation can be arbi- 
trary, independent of the preceding value, in strict accor- 
dance with the equilibrium distribution q,( W) of the donors 
over the quenching pr~babilities.~ Such a change of W(t ) is 
known in the theory of Markov processes as uncorrelated. 
The memory function f ( W', W) which establishes the con- 
nection between the quenching probabilities before and after 
the hop, coincides in this case with p, namely f (W1,  
W) = q, ( W). The question of determining the corresponding 
function f (U', U)  did not arise, since it was assumed that 
p ( U )  = S(U - 1/r0). 

As already indicated, for disordered systems this as- 
sumption is artificial, even if the return of the excitation to 
the initial center is neglected. The donor distribution in U is 
exactly the same as in W. However, any theory that makes 
possible the use of this distribution requires additional as- 
sumptions which are not always explicit, but are essentially 
connected with the correlation of U' and U, as well as of U 
and W. Such is, in particular, the presently very popular 
theory of "continuous-time random walks (CTRW). It was 
first used to describe dipole-dipole transport of excitation in 
a disordered system of centers by Vugmeister,12 and then 
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used many times for the same purpose by Vug- Returning to the temporal variables, we find ultimate 
meister derived in the same formalism an integral equation L 

similar to (1.1 I), which describes the kinetics of the hopping N ( t )  = F ( t )  + 5 o, ( t - t f )  N ( t l ) d t l .  
quenching with allowance for the variance of the outflow (2.6) 

probabilities. It was recently duplicated in Ref. 15, where the 
authors avoided the uncoupling procedure used in CTRW, 
assuming that not only W(t ) but also U(t ) varies with time in 
an uncorrelated manner, i.e., f (U ', U) = e, (U). 

On the basis of this assumption, the validity of which we 
shall discuss later, it is easy to consider not only quenching 
but also self-quenching. The difference from the usual situa- 
tion, in which the donors and acceptors are different parti- 
cles, lies only in the fact that the averagings over Uand Ware 
not independent. To demonstrate this, we use an economical 
and effective method of summing over realizations, first 
used to obtain Eq. (1.8) (Ref. 6). All the realizations of a 
random process are broken down into subensembles, in 
which: a) not a single hop took place in the time interval (0, t ); 
b) only one hop took place at the instant t ' in this interval; c) 
two hops occurred at the instants t " and t ' (t " < t '), etc. The 
probability that the hop takes place in an interval dt near t is 
obviously Ue - "'dt, and the probability of quenching in this 
interval is either dependent (self-quenching) or independent 
of U (quenching). Reasoning in this manner, it is easy to 
specify N (t ) in the form of a series 

(2.1) 
The process must be uncorrelated for the averaging over the 
probabilities in each time interval between the successive 
excitation hops to be independent of the remaining ones. The 
expression (2.1) obtained in this manner can be represented 
in the form 

in which F = (exp[ - ( W + U )t I ) ,  and P satisfies the equa- 
tion 

where 

@ ( t ) = < U e x p  [ - ( W + U ) t ] ) .  

Taking the Laplace transform of Eqs. (2.2) and (2.3), it is 
easy to obtain 

m ( ~ )  = F ( s )  [ ~ + P ( S ) ] ,  P ( S )  = w s ) / [ ~ - s ( s ) I .  (2.4) 

Eliminating (s) from these equations, we have 

To obtain from this an equation that describes the concen- 
tration quenching, it suffices to recognize that the distribu- 
tions of the donors and acceptors in space are not correlated. 
This makes it possible to average over Wand Uindependent- 
ly, and calculate F and @: 

F ( t )  =(e-Wt>(e-ut>=No(t)Ro(t), (2.7) 

Substituting these results in (2.6) we obtain indeed the Vug- 
meister e q u a t i ~ n ' ~ * ' ~ :  

N ( t )  =No ( t )  R. ( t )  - I N o  ( t - t r )  d. ( t- t ')  N ( t ' )  atr ,  (2.9) 
0 

which differs from (1.8) in that Re is replaced by R,. This 
difference can be traced all the way to the formula that deter- 
mines the rate of the hopping quenching, which was first 
obtained by a different method in Ref. 16: 

m 

-ICT,R, d t  i w=- J - J ln ~.i. at. 
No Z T o  

The difference of this result from (1.9) does not reduce to 
replacement of r, by ?. The averaging is carried out here over 
a non-exponential distribution of the times $(t ) = - ~ , ( t  ), 
which distinguishes in principle the CTRW theory from the 
Markov theory. Nonetheless, the quenching rate differs only 
numerical coefficients from its Markov analog (1.10): 

When estimating with the aid of these formulas the self- 
quenching rate, the usual as~umpt ion~-~  is t h a t p ~ c ,  which 
yields the experimentally observed quadratic dependence of 
the rate on the activator density. However, the application of 
the Markov theory to this problem seems inconsistent, since 
it is necessary to regard the same particles as arranged both 
in order and randomly, depending on whether they serve to 
transport or quench the excitation. Utterly inapplicable in 
the CTRW theory is also Eq. (2. lo), no matter how it is de- 
rived. Although it takes into account the scatter, over the 
states, of both the acceptors and the donors, the averaging 
over either type of particle located around the excitation is 
carried out in (1.5) and (1.13) quite independently. But if the 
donors and acceptors are identical particles, they are distrib- 
uted in like manner around the excited center. 

In other words, in the course of migration the probabili- 
ties Wof the self-quenching and U-of the outflow vary in a 
correlated manner: they increase or decrease together when 
the excitation hops over from one center to another. This is 
in principle compatible with the fact that their new values 
are not dependent in any way on the preceding ones. How- 
ever, the separate averaging over Wand U, assumed in (2.7) 
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and (2.8), is inadmissible. There is a single distribution of N 
particles in the volume V, which at moderate p = N/V is 
multiplicative over the distributions of each individual parti- 
cle: 

It is this distribution that must be used to calculate the func- 
tions F (t ) and @ (t ), going to the limit as N-+ oo , V-+ co , and 
p = inv, as in usually done." Taking (1.11) and (1.12) into 
account, we have 

Somewhat more complicated is also the averaging of the 
quantity 

= lim fJui erp {- (w.+q) t  
N,V+m 

i=l 

Here Wi = w(ri) and ui = u(ri), while the prime of the pro- 
duct symbol means that the ith factor is missing from the 
product. The last circumstance becomes meaningless when 
the limit is taken, as a result of which the following relation is 
established between the sought functions: 

@ ( t )  =p S U ~ - ( ~ + * . ) V ~ . F  ( t ) .  (2.12) 

If the impurity centers are subjected to inhomogeneous 
broadening, the exponent in (2.11) should be averaged not 
only in space but also over the distribution of the detunings 
of the resonance in the channels of the transport and quench- 
ing of the energy, which can also be uncorrelated. The same 
applies to the integrand of (2.12). Substituting the expres- 
sions obtained in this manner for f (t ) and Qz (t ) in (2.6) we 
solve in principle the problem of concentration self-quench- 
ing in the most general form at any interaction that effects 
quenching and transport. 

We defer, however, the discussion of the general case to 
the future and consider a particular but quite common situa- 
tions, in which both the transport and the quenching are due 
to the interaction of like multipolarity. If there is no inhomo- 
geneous broadening in such a situation, we have 

W=zU,  (2.13) 

where z = CDA /CDD. This simplifies substantially the for- 
mal description of the phenomena, since 

F ( t )  =Ro( [l+z] t), (2.14) 

@(t)=--dR,([l+z]t)/d[l+z]t. (2.15) 

Substituting these functions in (2.6) and changing over to a 
new variable r = (1 + z)t, we obtain the equation 

At z = 0 it is obviously satisfied by the solution N = const, 
since there is no quenching. If, however, z g  1 but not zero, 
self-quenching takes place mainly exponentially at a rate w. 
To verify this it suffices to take the exact Laplace transform 
of (2.16): 

I f z  
rst(s)= 

zRo-' (s) +s ' 

At smalls this solution has a simple pole, which in fact deter- 
mines the sought quantity 

The physical meaning of this result is clear. At zg1  the 
quenching is weak. In the interval between two successive 
hops it is on the average small: W? = W/U = z. Thus, a frac- 
tion z of the excitation is lost at each center visited in the 
course of migration, regardless of the configuration of the 
surrounding particles. Multiplying by the number of hops 
per unit time, which is in fact I/?, we obtain (2.18). 

Let us apply (2.18) to the dipole-dipole interaction, us- 
ing in it (1.15): 

We took into account here the definition z = CDA /CDD and 
the definition given in (1.2) for 1/~,.  The result is quadratic 
in the density of the impurity centers, as expected. It is qual- 
itatively different, however, from what can be obtained from 
(1.10) or (2.10) by putting c = p. The difference is that it does 
not depend on C,,, i.e., on the rate of the donor-donor trans- 
port, about which we know only from the conditions of the 
applicability of (2.19) that it is large: 

In this sense this result is similar to the kinetic limit (ultrafast 
migration), which is also reached when the quanching be- 
comes weak.6 

The long-term asymptotic form of the self-quenching 
process is therefore given by 

Since 241 the rate of the process is determined in fact by 
(2.19). These results, however, do not extend to the initial 
nonstationary state of the process. To obtain an idea of the 
latter, it suffices to put N(T) = 1 in the right-hand side of 
(2.6). The very first iteration gives 

We have thus at first a pseudo-Forster decay of the excita- 
tion with a parameters smaller by a factor z than in (1.7). The 
quenching rate during this stage, equal to - N (t ), decreases 
monotonically until it becomes comparable with W. The 
equality - N (t, ) = W determines the temporal boundary t, 
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between the initial (2.22) and concluding (2.21) stages of the 
process. It is obviously equal to 

i.e., it is smaller by a factor 6/a than the corresponding time 
in the theory of ordinary quenching. 

Thus, self-quenching is not a particular case of quench- 
ing within the framework of the approach used here, which 
is equivalent to the CTRW theory. The difference between 
the latter and the Markov theory, which in the case of 
quenching reduces to correction of the numerical coeffi- 
cient, becomes functional when self-quenching is consid- 
ered. The dependence of the rate of the process on the micro- 
parameters CDA and CDD turns out to be different both in the 
stationary and the nonstationary stages of the process. It 
would be premature, however, to review from this point of 
view the extensive experimental material whose interpreta- 
tion within the framework of the usual premises has raised 
no difficulty so far. The assumption that the variations two 
probabilities are not correlated is too strong and does not 
correspond fully to the physics of the process. The change of 
the probability of the quenching can be reasonably assumed 
to be uncorrelated when it is small. But if it is large, the main 
reason is that the cross-relaxation partner is alongside, 
"paired." The probability of exchange of excitation within 
such a pair is very high, and its contribution to Uis decisive. 
This excitation exchange, however, does not modulate the 
rate of its decay, i.e., the change of W is strongly correlated 
and insignificant--only on account of the modulation of the 
distance to the particles surrounding the pair. The simplest 
consequence of this is the lengthening of the time of preser- 
vation of the quenching probability when the excitation 
lands on closely located centers. It  leads to an increase of the 
"action" w?, which can become quite strong thereby des- 
troying the validity of the usual picture of hopping quench- 
ing. We shall verify below that even partial allowance for the 
return, from only the nearest neighbors, confirms these ar- 
guments. 

3. PARTIAL ALLOWANCE FOR THE RETURN OF THE 
EXCITATION 

The outflow kinetics lends itself to direct experimental 
investigation in experiments on selective excitation of lumi- 
nescence of the activator with inhomogenous broadened 
~pectrum.",'~ A definite idea concerning this kinetics is ob- 
tained also from computer simulation of the migration of the 
excitation in the disordered system.19 In the course of these 
investigations it became clear that to regard the outflow pro- 
cess as an irreversible one even during the initial stage is 
incorrect. Much better agreement with laboratory and com- 
puter experiment is reached by making the following substi- 
tution: 

and assuming that 

Obviously, n(r,,  t ) is the population of the excited state of the 
donor, which decreases with time from 1 to 1/2 as a result of 
the intermixing of the excitation between it and its partner 
located at a distance r,. Equation (3.2) would take quite ri- 
gorously into account the return of the excitation if there 
were only two particles. If, however, the outflow is to many 
surrounding particles, it is possible to regard this process as 
multiplicative, as in (3. I), only if it develops exponentially 
through all channels. Therefore the use of (3.2) in (3.1) is an 
approximate semiphenomenological artifice. Proceeding in 
manner, we expect to take correctly into account the return 
at least from the nearest neighbor, and it is not likely that 
there will be two or more nearest ones in a dilute solution. As 
for the more remote neighbors, we have for them 

i.e., everything is favorable. This device, proposed by Huber, 
has fully justified i t ~ e l f . ~ ~ - ~ ~  Using (3.1) in (1.13) we obtain 

I 
(3.3) 

This result differs from (1.13) only in that the parameters are 
redefined, namely p - y / 2  and CDD+2CDD. Therefore the 
outflow kinetics with partial allowance for the return re- 
mains the same as before, although its rate becomes differ- 
ent. In dipole-dipole interaction we obtain 

- 
R ( t )  =exp (-Y't lT), 

and 

i = jR(t)dt=2i=2lrT. (3.5) 
0 

takes on a value closer to 7,. It is clear that allowance for 
return from more remote neighbors decreases even more the 
difference between them. 

The constructive improvement proposed by Huber is 
used at the present time extensively to correct the results 
that depend on the outflow kinetics. It was used, in particu- 
lar, to refine the coefficient of difision over a disordered 
system, which is obtained in the CTRWI3 and in the Green's 
function formalism.23 If it is used in Eqs. (2.7) and (2.8), the 
situation reduces to a simple replacement of R ,  by R, after 
which we obtain in place of (2.9) the following kinetic equa- 
tion for the quenching: 

1 

N ( t )  =No(t )  R ( t )  -  IN^ ( t- t ' )  d ( t - t ' )  N ( t ' )  d l f .  (3.6) 
0 

It can be seem that partial allowance for the return in this 
case does not lead to any qualitative changes, and merely 
corrects the numerical coefficient in the quenching rates ob- 
tained from (3.6): 

n (r!, t )  =' /2+1/2  exp [-u ( r , )  t ]  . (3.2) This brings us back in fact to the intial result (1. lo), which is 
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only (?r/3)'I2 larger than (3.7). 
A much more radical influence is that of partial 

allowance of the return on the self-quenching. Making the 
substitution (3.1) in (2.11) and averaging, we get 

whereNo@/2, t )is obtained from (1.7) which c replaced byp/ 
2. 

We calculate in the same manner also 

Taking (3.8) and (3.3) into account, we obtain hence 

m=-*(t d t  [I+<])N~(+, t ) .  

Using (3.8) and (3.10) in (2.6) we get ultimately 

This equation, which describes self-quenching, differs from 
Eq. (3.6) in the hopping limit, when z(1, only in that c is 
replaced by p/2. We therefore obtain in place of (3.7) for the 
rate of hopping self-quenching 

If, however, z, 1 only the free term in (3.1 1) is significant and 
this term, as can be seen, is transformed into Ni@/2, 
t ) = No(p, t ), which corresponds to a static collective 
quenching on account of cross relaxation 

N = N ,  (p, t )  = exp {- (?LDAp2t ) 'I2 1 . 
In fact, there is no place left for diffusion self-quenching. 

CONCLUSION 

It can be stated that at present two different viewpoints 
have been formed concerning the manner of correctly esti- 
mating the rate of hopping quenching in a disordered system 
of centers. One of them starts out in fact from the concept of 
an equivalent regular lattice, which is the basis of the initial 
Markov theory. The quenching rate in this case is always 
determined by Eq. (1.9), and what matters is only that the 
migration time over the equivalent structure be correctly 
determined. Sometimes one proposed to replace 7, by 7 from 

(1.11) (Refs. 9 and lo), but more frequently by ? (Refs. 24-26, 
19). Favoring the latter is the agreement between the results 
obtained by two independent statistical methods: seculariza- 
tion of the t - m a t r i ~ ~ ~  and the coherent-potential method.26 
The other viewpoint is contained in the papers discussed in 
Sec. 2, which are based on the concept of uncorrelated vari- 
ation of both probabilities (of the quenching and of the trans- 
p ~ r t ) . ' ~ , ' ~ . ' ~  The quenching rate (2.10) obtained in these pa- 
pers differs numerically from the Markov estimate (1.10), 
even if one puts in the latter ?in place of T ~ .  Since the differ- 
ence is only numerical and small, it had not been regarded as 
significant before. However, an analysis of self-quenching, 
carried out in that paper, shows that this difference is funda- 
mental. From the statistical point of view self-quenching 
turns out to be a more subtle phenomenon than quenching at 
a result of formulation of transport and cross-relaxation pro- 
cesses. To eliminate the qualitative differences in its descrip- 
tion it was necessary to take semiphenominologically into 
account the return effect. One must not lose sight, however, 
of the fact that this effect was taken into account only par- 
tially and only partial allowance was made for the correla- 
tion of the quenching probability, namely only for excita- 
tions that return to the initial center. In fact, however, the 
excitation has exactly the same (and not arbitrary) probabil- 
ity of becoming quenched when located on the other center 
of the pair. From the equivalent-lattice, point of view, excita- 
tion transitions between the pair particles do not exist at all 
as a process that modulates the quenching probability; this 
makes it possible to take better account of the correlation 
where this is most necessary. On the other hand, the subdivi- 
sion of identical particles into two kinds, those belonging to 
the equivalent lattice over which the excitation is transport- 
ed and those not belonging to it but participating only in the 
cross-relaxation, seems quite arbitrary. It is therefore not 
quite clear at present which viewpoint should be given pre- 
ference. 

In this connection, a third path is attractive: expansion 
of the solution is a series in the impurity density, which in 
principle makes it possible to carry out a consistent averag- 
ing over the configurations in any order. A linear theory of 
this kind was proposed in Ref. 27, but it is valid only for short 
times (t 5 rO) To get an idea of the long-time asymptotic 
form, with parameter F, of the process it is necessary to sum 
this series, at least in part. Two such methods were recently 
developed, two-particle and three-particle,28 but only the 
latter is acceptable, since it is the only one capable of repro- 
ducing the statice (Forster) kinetics of the quenching, at least 
at short times, and reflects the difference between the diffu- 
sion and hopping quenching ( z ~ l ) . ~ ~  There exists also other 
methods which are contrasted in the theory of disordered 
systems to the CTRW,30 but their effectiveness as applied to 
migration and quenching problems has not been demon- 
strated even once. 

In conclusion, the author considers it his duty to note 
that he is indebted to the formulation of the present problem 
to very useful discussions during the time of the Seventh All- 
Union Symposium on the Spectroscopy of Crystals Activat- 
ed with Rare-Earth and Transition-Metal Ions (Leningrad, 
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1982), and is grateful to S. I. Klokishner, I. A. Shcherbakov, 
and V. A. Smirnov who took part in it. 
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