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It is shown that transit broadening does not decrease the resolving power of spectroscopy in 
which use is made of nonlinear dispersion resonances determined by varying the emission fre- 
quency of two-mode gas lasers with nonlinear absorbing cells. Using modern recording tech- 
niques, the resonance width can be 10 to 100 Hz. 
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1. The broadening of reference lines in nonlinear spec- 
troscopy, due to transit effects, is one of the main obstacles to 
obtaining ultranarrow resonances with widths less than a 
kilohertz.' The influence of these effects on the width and 
shift of power resonances of single-mode gas lasers, which 
fix the molecule-transition frequency in the absorbing cell, 
has been discussed in the literature many times.24 Recently 
developed experimental procedures, such as the method of 
separated beams,5 two-photon ab~orpt ion,~ and cooling the 
atoms and ions in traps,' promise to get rid of the harmful 
influence of the transit effect. 

Common to all the foregoing procedures is one fea- 
ture-what is registered in these experiments of absorption 
resonance. In the present paper we show that transit broad- 
ening does not decrease the resolving power of a spectrosco- 
py in which nonlinear resonance dispersions are used. The 
resolving power is determined in this case by the collision or 
radiative linewidth. In Refs. 8-10, in which the nonlinear 
dispersion resonances were registered by measuring the 
change of the emission frequency of two-mode lasers with 
nonlinear absorbing cells, it was noted that the frequency 
resonances in such lasers, which are due to saturation of the 
dispersion of the absorbing medium, offer the advantage of 
high sensitivity. The fact that in this case the transit broad- 
ening does not affect adversely the resolving power of the 
method makes their use all the more attractive for the solu- 
tion of problems in nonlinear spectroscopy and frequency 
stabilization. 

2. The frequency of an absorbing transition in a two- 
mode gas laser is recorded in the following manner. The dif- 
ference v of the mode frequencies of stationary gas laser op- 
eration in a stable two-mode regime is chosen such that it is 
known to exceed the homogeneous line width of the absorb- 
ing gas filling a cell introduced into the cavity. At the same 
time, this frequency difference v is much less than the 
Doppler width of the line, and as a rule much less than the 
homogeneous gain line. The possibility of realizing stable 
lasing in such a regime was demonstrated in Refs. 8-10. 
Change of the distance between the mirrors made it possible 
to tune this pair of modes within the limits of the gain line. 

With such a tuning, against the background of slow 
variation of the intermode beat frequency v, saturation of the 
dispersion of the absorbing gas gives rise to three narrow 
resonances. Two of them are produced when the frequency 
of one of the modes is tuned to the center of the transition 

line of the absorbing gas, and the third corresponds to a sym- 
metric placement of the mode frequencies relative to the line 
center. For stabilization purposes, as a rule, the first two 
resonances are used. In this case the mode interaction in the 
absorbing cell is practically completely eliminated, since 
they interact with different groups of molecules, and the 
mode tuned away from the absorption line center serves as a 
convenient heterodyne that makes it possible to determine, 
from the beat frequency v, the resonant change of the fre- 
quency of the second mode located near the absorption-line 
center. Naturally, at the center of the resonance the second 
mode duplicates the frequency of the transition of the ab- 
sorbing gas. 

3. We assume that the field in the cavity takes the form 
of a standing wave with Gaussian profile 

E (R, t )  =8 ( R )  eC"'+ c.c., 
x2+y2 

8 (R) =go cos ( k z )  esp [ - - ] = J G ( P ) ~ ~ P ~ P ,  

a" 
C (p) = - 8, ezp 

(1) 

8n 

p= (x; y),  k=olc. 

The influence of the absorbing cell on the frequency o of the 
wave generated by the laser is described by the equation 

where w, is the mode frequency of a cavity filled with the 
active medium, a' is the real part of the generalized complex 
polarizability per unit volume of gas in the absorbing cell 

a = ~ - i J  P(K)B. ( R ) ~ R ,  13=j z'(R) d ~ ,  

P (R, t )  =P  (R)  ei"'Sc.c., 

where P is the polarization, per unit volume, induced by the 
field E. 

Calculation of the polarization P, accurate to terms of 
third order.in the field inclusive, is perfectly analogous to 
that in Ref. 11 and leads to the following increment, qua- 
dratic in the field, to the linear polarization a,: 
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Here I and L are the lengths of the absorbing cell and of the 
cavity, respectively T = a/vo is the time of flight of the mole- 
cule through the light beam, vo is the mean thermal velocity 
of the atom, x = Id121 fY,,/fi, where d l ,  is the matrix element 
of the dipole moment of the absorbing molecular transition 
and R = w - w,, where wo is the frequency of the molecular 
transition. In Eqs. (4) and (5) it is assumed that the rate con- 
stants of the relaxation of the polarization and of the popula- 
tions are the same and equal to y, and account is taken of the 
fact that 1 a: I ) la; I near the line center. In addition, in con- 
trast to Ref. 1 1 ,  the pressure was assumed to be low enough 
so that the relaxation of the density matrix is sufficiently 
accurately described by the relaxation constants, and finally, 
as seen from ( I ) ,  no account was taken of the change in the 
curvature of the wave front. The absorption resonance is 
connected with the frequency dependence of the quantity 
a " ,  the nonlinear increment to which, in the form (5), was 
first obtained in Ref. 2. The dispersion resonance is connect- 
ed with the frequency dependence of the quantity a' = a; 
+ a; which, as can be seen from (4), makes it also possible to 

fix the line center of the absorbing transition. The quantity 
a; in (3) is a smooth function, with a width of the order of the 
Doppler linewidth Aw,, of the frequency detuning 0 and 
passing through zero near the line center R = 0. With good 
accuracy, therefore, in the immediate vicinity, of interest to 
us, of the line center, R 5 y, where the nonlinear increment 
to the dispersion (5) has a resonance, we can put a; = 0. It 
can thus be assumed that the frequency of the mode close to 
resonance is described by the expression w = w, 
- 2nw;)a;, whereas the frequency of the heterodyne mode 

is equal to a, = wg) - 2?rw;'a;, where my) is the frequency 
of the cavity filled with the active medium for the second 
mode. Near the resonance, the beat frequency is 

where 

and in the region R 5 y, I/T the quantity A remains constant, 
with good accuracy, so that the resonance in the beats 
w - w, is determined completely by the resonant depen- 
dence of a; on the detuning 0. 

4. In general outline, the dependence of a; on the de- 
tuning frequency lends itself to analytic investigation. This 
dependence is determined by the integral 

The integral (6)  is an antisymmetric function of R, and we 
consider hereafter the case R > 0. At yrg  1 the denominator 
in (6) can be set equal to (yr)', after which I '  takes the form of 
the dispersion contour 

To investigate (6)  in the opposite limiting case yr( 1 ,  follow- 
ing Ref. 12, we make the substitution 

after which we obtain 
x / z  OD 

exp ( - fyx /2Q)  s in(x  sin r p )  
I / =  JsJ x dx;  

(2527) 2+*zx2 
(7)  

0 0 

f=2 sin cp+ cos rp ,  $'=sinz c p f  (sin rp+cos r p ) ' .  

At R ( l / r ,  we can neglect in the denominator of the inte- 
grand of (7)  the term ( R T ) ~ ,  after which the integral with 
respect to x can be calculated. Making the substitution 
1 + cot p = z, we obtain 

The integral in (8) at R g y  is a linear function of the detuning 

and reaches a constant value I '  = a2/8 at R> y. Thus, in the 
wide region y g R g l / r  the integral (7) remains practically 
constant at I' = $/8. 

At IR I k 1/r we can neglect the exponential under the 
integral sign in (7),  after which we get 

In the region IRT~> 1 we get from (9) the dispersion depen- 
dence on the detuning 

1'= ( n / 2 )  (2Qa) -', 
whereas when R tends formally to zero, Eq. (9)  yields a value 
I' = $/8, which coincides with the limiting value of (8)  at 
m y .  

It is clear from the foregoing that the total dependence 
of (8) on the detuning frequency R at yr(1 can be obtained 
by interpolating Eqs. (8) and (9). In this case the integral I ' in 
a narrow region of the frequencies 0 < R 5  y  reaches its limit- 
ing value I '  = $/8 and remains practically constant in a 
wide region of values y  5 R < 1/r, after which it decreases at 
R 2  1/r  in accordance with (9). It is important that the rate 
at which (6)  reaches a limiting value I' = $/8 does not de- 
pend on the transit time T and is determined only by the 
collision line width y. Figure 1 shows the I '(0 ) dependence 
obtained by numerical calculation for the values yr = 0.1 
and YT = 0.01. The dashed curves in this figure show the 

m 
e-2E-s 2Q 

(6) 
values of I ' (R ) obtained from Eqs. (8)  and (9). 

I.= JJ d l  dq sin ( - E )  . 
( ~ ' L ) ~ + E ~ +  ( E + d 2  'I 

In experiment one usually determines not the function 
o I ' ( a  ) itself, but the derivative dI /d . f l  with respect to the de- 
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FIG. 1. Shapes of frequency resonances for two values of the parameter y r  
(solid curves): 1) y r  = 0.1; 2)  y r  = 0.01. Dashed lines-asymptotes of 
expression (8), which does not depend on y r ,  and (9) for the same value of 
the parameter yr .  

tuning frequency. Figure 2 shows the dependence of dI/dfl 
on L! at y r  = 0.01 for the case when the line consists of two 
components of equal intensity, separated in frequency by 
S = 2y. Even though the splitting S in this case is smaller by 
a factor of 50 than the reciprocal transit time of the molecule 
through the light beam, the fine structure of the line is clear- 
ly pronounced in the figure. 

Thus, transit broadening does not influence the resolv- 
ing power, and the picture hardly differs from that given by 
two dispersion-shape components of width y. Naturally, 
these valuable properties of the dispersion resonance stem 
from the contribution made by the slow molecules, which 
interact for a long time with the light beam. The contribution 
of these molecules is concentrated in the narrow frequency 
region f l  5 y and in the integral sense is small, but it turns out 
to be decisive for the resolving power of the method. 

The role of the slow molecules manifests itself also in 
the sharpening of the absorption resonance, something re- 
peatedly mentioned in the l i t e r a t~ re .~ ,~ ,~ '  In particular, such 
a sharpening has made it possible to observe experimentally4 
the hyperfine structure of a line. There is, however, a qualita- 
tive difference in the possibility of experimentally using this 
sharpening, which we must stop to discuss. The frequency 
dependence (5) is determined by an integral of the form 

2 m 

esp  ( - j x y / 2 & )  [Ifcos ( x  sin rp) ]x d x  
IT/=  J d q  J 

(2Q2) 2+$2x2 (10) 
0 0 

the behavior of which at y r g  1 in the frequency region R( 1/ 
r can be investigated in the following manner. We consider 
the integral 

- 
e-ax-zqx ( a - i q )  " 

J= J -- x  dx= ln  
p2+x2 P 2  

The integral in the right-hand side of (1 1) converges a t S  = 0, 
therefore at &l /a  and at any q we can put B =  0, after 
which we obtain 

Substitution of this expression in (10) and integration with 
respect to q, leads to the result 

This expression coincides with that used in Ref. 3 to estimate 
the half-width r of the resonance, which was obtained from 
the requirement 

z n ( n = r )  =l/,~v(a=o) 

and which was found to be r=: l.Sl(y/r)"'. Since the func- 
tion of the frequency Q (0 ) is independent of r ,  the depen- 
dence of the resonance half-width on T is due to the presence 
in (12) of a background F, independent of frequency, that 
increases with decreasing parameter yr. If it is assumed that 
the experimental procedure of fixing the resonance makes it 
possible to eliminate this background, for example if one 
measures in the experiment the derivative d I " / d 0  
= - (1/2)dQ /do, the situation becomes perfectly analo- 

gous to that considered above for the dispersion resonance, 
in which case there is in principle no background. Thus, if it 
were possible to eliminate in (12) the background, it would be 
possible to state that the absorption resonance, just as that of 
the dispersion, is free of the transit broadening. In this con- 
nection we must note the following. 

When account is taken of (12), the absorption resonance 
a;; takes at y r g  1 the form 

The presence in the function Q (0 ) of a resonance with colli- 
sion width y is due to the contribution of the slow molecules, 
and in order for this resonance not to broaden as a result of 
saturation it is necessary that the saturating power be suffi- 
ciently low, that is, (1/4)(dE /*)2 5 1. Determiningfrom this 
condition the limiting saturating power (dE /fi)' = 4 9  and 
substituting in (13), we obtain 

FIG. 2. Dependence of the first derivative of the frequency resonance on At r y  = 0.01 the intensity of the Q (0 ) resonance is smaller 
the &tuning (y-; = 0.01) for the case when the line consists of two compo- by a factor lo4 than the intensity of the background. At such 
nents separated by S = 2 (the transit broad-ning is 50 times largerthan 6 1. a small ratio of the intensity of the useful signal to the back- 
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ground one can hardly hope to record this signal in experi- 
ment. 

5. The condition that there be no field-induced broaden- 
ing for the slow molecules can be satisfied also in the case of 
dispersion resonance. Assuming x2 = (dE /fi)' = 4y2 and 
y = qA, where A = 4w3d 2/3fic3 is the probability of the ra- 
diative transition and the coefficient q> l  shows by how 
many times the homogeneous line width is larger than the 
radiative width, we obtain for the saturating power G,, 
= cE :,, /8?r 

where A is the radiation wavelength. 
We present a numerical estimate of the possibility of 

observing a resonance with a width less than the transit 
width for the case of the F f '  component of the vibrational- 
rotational transition P (7) of the Y,  band of methane 
(A = 3.38 pm), which is of particular interest for frequency 
stabilization. Radiative probability of the transition is 
A = 10 sec-I. We denote by N the gas density at which the 
collisionline widthr  (y = r + A )becomescomparable with 
the radiative width. Bearing in mind that both the collision 
line width and the linear absorption coefficient k = 47r (o/c) 
a; are proportional to the gas density N, we obtain 

where (o - oh),,, is the resonance swing and ko is the ab- 
sorption coefficient at N = Nw Thus, the level of the saturat- 
ing power at which the field broadening does not mask the 
collision broadening of the resonances decreases with den- 
sity in proportion to N 2, while the resonance itself in propor- 
tion to N 3. 

Assuming the broadening constant to be d r / d p  = 10' 
sec-I-Torr-', the absorption dk /dN = 0.1 cm-'.Torr-', 
and T = a/vo = 2 ~ l O - ~  sec (a = 10 cm, vo = 5.104 cm/sec), 
we find that to separate a resonance of width y = 12A (y/ 
2 7 ~ ~ 2 0  Hz) the required power level is G :\ - lo-' W/cm2; 
in this case the resonance swing is (w - wh )gix - 1 Hz. The 
same values for resonances with y = 60A (y/27r = 10' Hz) 
are respectively Gg\ -2-lO-' W/cm2 and (o - w,):!, - lo2 Hz. It can be seen that the condition for the level of the 
saturating power is quite stringent and its realization calls 
for special devices that lower the power density inside the 
absorbing cell. We emphasize, however, that this condition 
is not peculiar to the considered recording method; the prob- 
lem of field broadening in recording such narrow resonances 

is encountered in the same form in any procedure. As for the 
two-mode method, experiments performed in Refs. 8 and 9 
show that such a low field density in the absorbing cell is 
realistic. Indeed, the saturating power in the absorbing cell 
in Refs. 8 and 9, at a = 1.5 cm and using a special procedure 
for lowering the intensity of one of the modes, was Gg:  
- lop6 W/cm2, i.e., to obtain the required level G,,, - lop8 
W/cm2 it suffices to increase the transverse dimension of the 
field by 10 times (a =: 15 cm), which is realistic (fields of such 
sizes were already realized for single mode  laser^'^.'^). 

The maximum sensitivity of separating resonances in 
the considered two-mode method is determined by the level 
of the natural frequency fluctuations of the laser radi- 
a t i ~ n , ~ - ~ ,  i.e., it amounts to - lo-' HZ/HZ"~. This means 
that to record resonances of width y / 2 ~  = 20 Hz at a signal/ 
noise ratio S / N  = 10' the integration constant of the signal 
should be t 1 = 20 sec. As for the resonances of width y/ 
2?r = 10' Hz, from the presented estimate of (w - w,)gg, 
one can see that they can be reliably recorded (S/N = lo2, 
t 1 = 0.2 sec) even at a sensitivity - 1 ~ z / H z ' ' ~ ,  which was 
experimentally realized in Refs. 8 and 9, and which is ap- 
proximately lower by one order than the maximum value. 
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