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A quantum harmonic oscillator subjected to a resonant force action and to a parametric action is 
considered. Account is taken of the coupling of the oscillator with the thermostat (and with the 
zero-point oscillations). Explicit solutions of the Heisenberg equations are obtained for the cre- 
ation and annihilation operators. Various methods of producing squeezed states in the oscillator 
are considered, and the most suitable for the registration of a weak (gravitational) force are 
chosen. Concrete estimates are obtained of the improvement of the sensitivity through the use of 
squeezed states and are obtained. The advantages and shortcomings of the squeezed-states tech- 
nique and of quantum nondemolition measurements are compared. Possible uses of the squeezed- 
states technique are discussed. 
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The expected gravitational-wave signals of cosmic or 
laboratory origin are so weak that an analysis of detection 
properties with allowance for their quantum-mechanical 
character has become urgently necessary.' The usual obser- 
vation criterion is taken to be an excess of the signal S  over 
the noise N, i.e., S / N  2 1. Even if the thermal noise is ne- 
glected and there are no other imperfections in the detecting 
apparatus, a contribution to the noise is made by the quan- 
tum-mechanical variance of the measured quantity. A re- 
cent analysis of the so-called quantum nondemolition mea- 
surements (QND) consists precisely of a demonstration that 
for certain observable quantities (Hermitian operators) the 
variance can be made equal to zero and remains equal to 
zero, despite the action of the signal that leads to a change in 
the average value of the measured quantity. It assumed that 
the vanishing of the variance is due to the act of the first 
measurement. The successive continuous tracking of the 
measured quantities does not change its variance, since the 
quantity is QND-variable. In this idealized case the sensitiv- 
ity of the detector is formally equal to infinity. The corre- 
sponding Hermitian operators, suitable for nondemolition 
measurement of a force F or of parametric action P were 
respectively named QNDF (Ref. 2) and QNDP operators 
(Ref. 3). 

The studies of this subject have the following shortcom- 
ings. First, as a rule, they have ignored the presence of ther- 
mal noise, i.e., no account was taken of the fact that the 
variance of the QND variable, even when equal to zero at the 
initial instant of time, must inevitably increase with time 
because of the interaction of the oscillator with the thermo- 
stat. Second, it is not quite clear how to realize in practice 
instruments corresponding to the rather abstract QNDF 
and QNDP operators. 

In the present paper we change somewhat the approach 
of the problem. We start from the fact that what is measured 
is a well defined quantity, not necessarily QND-variable. 
Such a quantity can be, e.g., the energy. As for the decrease 
of the noise N, i.e., of the variance of the measured quantity 
and (or) of the amplification of the signal S, i.e., the response 

of the detector to an external action, these are reached by a 
special "preparation" of the quantum state of the oscillator 
with the aid of really existing laboratory devices. We consid- 
er concretely the development and use of what are called 
squeezed states. Thus, an arriving gravitational signal inter- 
acts with an oscillator that is in a squeezed state and not, say, 
in an n-quantum or coherent state. 

In quantum theory of light, squeezed states are known 
as "two-proton coherent states" and under other names.4 In 
connection with detection of gravitational waves, squeezed 
states were considered by  cave^,^ who has shown that their 
use makes it possible to increase the sensitivity of a laser 
interferometer without increasing the laser power. It was 
also noted6 that the use of squeezed states is promising in 
laboratory gravitation-wave experiments. 

In the present paper we take consistent account of the 
connection between the oscillator and the thermostat. This 
enables us, in particular to generalize the theory of QND 
measurements to include the case of the presence of thermal 
noise and to compare the results with the method proposed 
here of using squeezed states. 

51. FUNDAMENTAL EQUATIONS AND THEIR SOLUTION 

An arbitrary harmonic oscillator, mechanical or elec- 
trostatic, will be described in standard fashion with the aid of 
the creation and annihilation operators: 

It is convenient also to introduce the operators X, and X ,  of 
the complex amplitude of the oscillator, in accordance with 
the definition 

X -1 (e-i'"a++e'"t 
1 - a) ,  X,=il (e-'"'a+-eiota) , 

where I = (fi/2mw)''2. 
It is known that a coherent state la)=D (a)lO) is de- 

fined with the aid of the displacement operator 
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D (a) = exp(aa+ - a*a), where a is a complex number. Par- 
ticipating in the construction of the squeezed state 
la, P )ED (a)S ( p )lo) is also the squeezing operator 

wherep is a complex number. A squeezed state is thus char- 
acterized by two complex numbers. 

A coherent state results from the vacuum state 10) un- 
der the influence of a force, i.e., on account of a term of the 
type P ( t  )(a + a') in the Hamiltonian. One of the possible 
methods of obtaining a squeezed state is the use of a degener- 
ate parametric am~lifier,~.' i.e., of a term of the type 
P ( t  )(af + a2) in the Hamiltonian. If the parametric pump- 
ing is effected at the frequency 2w and is of the form 

the term of interest to us in the Hamiltonian can be rewritten 
in the form 

P ( t )  (a2+a+ ') 

inasmuch as for free evolution of the oscillator we have 

a ( t )  =a ( 0 )  e-'Ot and a+ ( t )  =a+ ( 0 )  eimt. 

The first and fourth terms in (1) are rapidly oscillating and 
can be neglected compared with the resonant, second and 
third, terms. Similarly, retaining only the terms resonant at 
the frequency w, the force term in the Hamiltonian can be 
written in the form 

We shall thus work with a Hamiltonian 

wherep and f are arbitrary complex numbers. 
We note that the Hamiltonian (2) is among those that 

describe resonant action of a gravitational wave on a mode of 
the electromagnetic oscillations in the re~onator .~ To be 
sure, in the case of a gravitational signal the coupling con- 
stants I p, I and I f ,  1 are determined by the amplitude of a 
gravitational wave h and are quite small under real condi- 
tions, whereas the coupling constants with laboratory gener- 
ators, I p, I and I f, 1, depend to a considerable degree on the 
experimenter. In the general case, it can be assumed that 
p = p, + pg and f = f, + f,, but hereafter we shall deal 
for simplicity only with estimates of observing a gravita- 
tional force and therefore put p, = 0 and& #O. 

The interaction of an oscillator with the thermostat can 
be described by adding to the Heisenberg equations of mo- 
tion the term that takes the damping into account, and the 
operator of the random force (see, e.g., Ref. 8): 

The constant y > 0 is connected with the relaxation time T* 
by the relation y- ' = T*. The random-force operator 6 (t ) 
satisfies thecommutation relation [6 (t ),6 +(t ')I = y6(t - t '). 
The equation for a +  is obtained from (3) by Hermitian conju- 
gation. 

Substituting in (3) the Hamiltonian (2) we obtain the 
equations of motion in explicit form 

To solve them it is convenient to eliminate the free evolution 
by using the substitution 

a ( t )  =e-'"tp-7"2A ( t )  , a + ( t )  =e'"fe-"/zA+(t) 

and carry out the Bogolyubov transformation 

b ( t )  =e-'*I2 ch rtA ( t )  +e"I2 sh rtA+ ( t )  , 
b+ ( t )  =eiw2 ch rtA+ ( t )  +e-'*/' sh rtA ( t )  , 

where r = I plo. We then obtain forb (t ) the simple equation 

The final solution for a(t ) is 

where 

m ( t )  =a, ch rt-ao+ei*sh rt, 

1 

( t )  =-io J ewD[j  c11 r ( r - t )  -f.ei* rh r ( r - t )  ldr.  

1 

= J eT'lz [ B  ( r )  ei" ch r ( r - t )  +0+ ( r )  e-""-" sh r ( r - t )  ] dr . 
0 

An expression for a + ( t )  is obtained from (4) by Hermitian 
conjugation. 

To calculate the mean values and the variances it is nec- 
essary to average using the density matrix. The complete 
oscillator + thermostat system is described by the direct 
product of the oscillator density matrixp and the thermostat 
density matrixp, . The averaging of the operator 6 (t ) has the 
following properties8 (the angle brackets ( ) denote averag- 
ing over the total density matrix, but the operator 6 is in fact 
averaged over p, ): 

( e ( t ) ) = ( O f ( t )  )=O, (O+(t )O(t f )  >=yn,6( t - t f ) ,  

( e ( t ) O + ( t r )  )=y (n ,+1)6 ( t - t f ) .  

Here n, is the average number of quanta in the thermostat at 
the frequency w: 
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The binary terms containing 6' and 6' +' yield zero on aver- 
aging. 

When calculating the variance of the quantum-number 
operator n = a+a in the oscillator, use is made of fourth- 
order moments. Assuming that 6' and 6' + have Gaussian dis- 
tributions, they reduce to second-order moments in accor- 
dance with the expansion9: 

~ e ( t , ) o + ( t 2 ) e ( t , ) e + ( t 4 ) ) = ( e ( t 1 ) e + ( t , ) ) ( e ( t 3 ) e + ( t 4 ) )  

+<o(t,)e+(t '))<e+(t,)o(t ,)>. 

We present expressions for the mean values of the oper- 
ators XI, X,, and n and their variances, but do not specify 
concretely for the time being the initial value of the oscillator 
density matrix: 

( X i  ( t )  > =e-"IZ[ (ch rt-cos I$ sh rt)  ( X ,  ( 0 )  ) 

-sin $ sh rt(Xz ( 0 )  ) + I ( @  ( t )  + Q a ( t ) ]  , ( 5 )  
( X z  ( t )  ) =e-TtI2 [ (ch rt+cos $ s11 rt)  ( X z  ( 0 )  ) 

-sin Il, sh rt(X, ( 0 )  )+il(cD*(t) -cD ( t )  ) I ,  (6)  
( n ( t )  )=e-'' [ ( m C ( t )  m ( t )  )+cD(t) ( m + ( t )  )+cD*(t) ( m ( t ) )  

+ I  @ ( t )  12+(T+T>]. (7) 

We note that at sin + = 0 the mean values of XI and X, do 
not depend on the initial mean values X2 andX,, respective- 
ly. 

We write down the variances ofX, and X2 by means of a 
single formula, in which the upper sign pertains to SX: and 
the lower to SX: : 

~ X ~ ~ = ( X : ~ > - ( X , , ~ > ~ = ~ - ~ ' [  (ch rtTcos Il, sh rt)' X 6 ~ : , ? ( 0 )  

+sin2 $ shZ rt ~ x S , ,  ( 0 )  -sin I) sh rt (ch rtTcos Il, sh rt) IC (0 )  

It can be seen that the variances SX : and 6X: do not depend 
on the acting force. For the variance of the number of quanta 
we have the general formula 

+< ( T ' T )  2)-(T+T)2. (9) 

Expressions for the mean values containing products of 
T and T + are given in the Appendix. 

If at the initial instant of time t = 0 the oscillator was at 
equilibrium with the thermostat, it is described by the den- 
sity matrix 

and then 

Expressions for the mean values and the variances that arise 
under the action off and p on an equilibrium oscillator are 
given in the Appendix. 

Different aspects of the behavior of an oscillator in a 
thermostat under the action of a force and (or) parametric 
pumping were analyzed in Refs. 10 and 11. 

32. PRODUCTION OF SQUEEZED STATES 

A decrease (squeezing) of the variance of the operator 
XI or X, is reached by a special choice of the phase + of the 
parametric generator. Assume that at t = 0 the oscillator 
was in thermodynamic equilibrium with the thermostat. We 
put + = 0. It follows then from (A3) that 

6X,' ( t )  =12 (2n,+ 1 )  (y+3r) - I  (y-t2re-"+2r)t) ,  
(10) 

i.e., in the variance of XI decreases with time, and the vari- 
ance of X2 increases, compared with the equilibrium value 
(we assume for the sake that r > 0). The maximum squeezing 
of the variance ofX, as t + w is always finite, and the equi- 
librium value 6X : (0) decreases by a factor y/(y + 2r): 

6X12(t -m)  =12(2n,+l) [y / (y+2r)] .  (11) 

The increase of the variance of X, is finite if 2r < y, and in- 
creases exponentially with time if 2r > y. If the phase + = .n 
is chosen, the variances of X, and X2 interchange roles (in 
(10) this is equivalent to replacing r by - r). At arbitrary +, 
the operators Y,  and Y,, which are certain linear combina- 
tions ofX, and X,, are subject to squeezing and to dilatation. 

At arbitrary 2r>y, squeezing of the variance of XI to a 
value that practically reaches the limit takes place within a 
characteristic time 

Considerable squeezing is possible only at 2r comparable 
with y or exceeding y, and we shall therefore consider here- 
after the cases 2r = y and 2r> y. 

The upper bound of the parameter 2r is 2w. At this value 
I p I = 1 and the Hamiltonian (2) would no longer be positive- 
definite. Consequently the oscillator would become unstable 
and the region of permissible values of the oscillator energy 
would range from - w to + co . 

As already noted, the variances of the operators XI and 
X2 depend on the parameter r but not onf. The force enters 
only into the law that governs the mean values ofX, and X,. 
At + = 0, as follows from (A. lo), we obtain 

0 
( X I  ( t )  )=411 ![----sin cp[l-e-('+1'2)'], 

y +2r 
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We now turn to the mean value and to the variance of 
the number of quanta. Under a force generator and a para- 
metric generator act jointly on an oscillator placed in a ther- 
mostat, n(t ) andSn2(t )vary in accordance with Eqs. (A2) and 
(A4). In contrast to SX: and SX:, the variance Sn2 depends 
onf, so that the force increases not only n but also Sn2. 

To observe a weak force (e.g., a gravitational wave) it is 
desirable to create states with low variance and with large 
number of the quanta. Large (n(t )) is desirable because in a 
squeezed state, just as in a coherent one, the response of the 
oscillator, i.e., the changedn of the number of quanta under 
the action of the signal, increases in proportion to the square 
root of the number of quanta contained in the oscillator. 
Relegating the proof of this statement and a detailed analysis 
of the detection criteria to 53, we discuss the conditions un- 
der which the squeezing, i.e., the use of a parametric gener- 
ator with r#O, makes it possible to decrease the ratio Sn/ 
n1I2 in the oscillator. 

It can be seen from (A2) and (A4) that were we to have 
r = 0 i.e., if a coherent state (plus thermal noise) were pro- 
duced in the oscillator under the influence of a laboratory 
force, we would have by the instant of time t = t, 

where 

The parameter a defines also the mean values of X, and X2: 

It can be seen therefore that even within a time exceed- 
ing the relaxation time r* = y-' it is impossible to obtain a 
better result than 

6n/ni"= (2n,+ I )  '". 

This quantity does not differ in practice from the equilibri- 
um value 

Sn/n"= (n,+ 4 )  ". 
If, however, r#O, the choice of the phase shift q, - $/2 be- 
comes important. For the choice cos(q, - $/2) = 0 and un- 
der the assumption 2r)y, the joint action of the force and 
parametric generators during the time 

t b t C = ( 2 r )  -' ln (2r ly )  

leads to 

Ill" lfl" 
n ( t J  = w, 6n2( tc )  (2nT+1)-- 1pl-r ' 

It was assumed here in the calculation that the deviation 
from the equilibrium state is appreciable, i.e., the terms con- 
taining 1 f ( predominate, and, concretely, 

l f l V I p l 2 ~ ( 2 n T + 1 )  ( 2 r l ~ ) ~ .  

As a result we obtain a squeezed state with a value 

6 n l n ' " ~  (Zn,+l)  ( y /Zr)  'h,  (15) 

which is better by a factor (y/2r)'I2 than in the coherent 

state. The obtained squeezed state can be used to record a 
weak force within a time interval that is short compared with 
r*, i.e., small compared with the decay time of this state. 

Large deviations in the choice of the parameters used in 
the derivation of (1 5) make this estimate worse. The choice of 
the phase cos(q, - $/2) = 0 when considering (n(t )) andSn2 
follows the same purpose as the choice of the phases I/ = 0 
and cosq = 0 when considering the most effective decrease 
of SX : (t ) and the most effective increase of (X,(t )). 

In the derivation of (15) it was assumed that the force 
and parametric generators act jointly during the characteris- 
tic squeezing time t, . A longer action of the generators is not 
advantageous, since it leads to dominance of terms that do 
not contain 1 f 1, and then 

Gn/n'"= ( 2 n T + l )  ' b  exp [ ( r - y / 2 )  t ]  . 

At the same time, after a short time t, the average number of 
the quanta does not increase strongly enough to permit it to 
grow under the influence of only the force generator in a time 
r* k t ~ t , .  Indeed, at t z r* we have 

Under the experimental conditions it may be desirable 
to increase the oscillator response An that is proportional to 
the initial fi, with the preservation of the condition (15). 

It is possible to obtain the same estimate (15), but with 
larger n, if the force and parametric generators act separate- 
ly and in succession. The idea is to produce first with the aid 
of the force generator a large (n(t )), and then turn off the 
force action and turn on the parametric action. Then, at a 
suitable choice of the phases, after a short squeezing time t, 
the variance Sn2 decreases strongly, and (n(t )) does not 
change so much within the same time. 

Let us consider the proposed method in greater detail. 
Assume that an oscillator in equilibrium with the thermostat 
is acted upon by a force during a time t,. Then by the instant 
t, we have 

and the Hermitian-adjoint expression for a + (t,). The values 
of (n(t,)) andSn2(tl) are determined by Eqs. (13) and (14). At 
the instant tl the force is turned off and r is turned on. The 
subsequent evolution of the oscillator can be calculated from 
the general formulas (7) and (9) with the already known ini- 
tial data. In this case @ r O  and it is convenient to reckon the 
time from the instant t = t,. We then obtain for (n(t )) 

(n ( t )  )=e-"Jal "ch 2rt-~1121-t cos ( $ - 2 v l )  ]+no, 

where q,, = q, - a t l  - 7~/2 and the term no stands for 
expression (A2) in which we must put (@ 1' = 0. For Sn2(t ), 
using the notation of the Appendix, we can obtain 

+] a1 (2nT+4) [ch 4rt-sh 4rt cos ($ -2q l )  ] 

+1/2yIa12 ( 2 n T + l )  {eb"[ l -cos  (2q1--9) ] (I,-I.)  

+e-Jr'[ l+cos ( 9 - 2 9 )  ] (Z,+I,)) 

+'/ ,[sh2 art-elt+ l + y  (2n ,+1)2(Ic  ch 2rt-I. sh 2rt)  1. 
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The principal growing terms in (n(t )) and Sn2(t ) are eli- 
minated by choosing the phase cos(2pI - $) = 1. We assume 
also that 2r) y and 

Ia/2> [n,  (n,-tl) i(2nT-l-1) ] (2ri.r)'. 

By the instant of time t, we then have FIG. 1 

7 n t ) a 2 -  Sn2(nl, t,) =la2(2nT+1) (5)'. (16) 
2r 

i.e., ~ n / ( n ) - ' / ~  we return to Eq. (15) for, but now we have 
n(t,) larger by 2r/y times than the value of n reached in the 
variant with joint action off and r. We note that by that 
instant of time the average values of the operators a and a+ 
are equal, apart from a phase factor, to the quantity lal(y/ 
2r)-I/2, i.e., to (n)-'I2. 

Worthy of special consideration is the case 2r = y. In 
Eqs. (12) and (10) for (X,(t )) and SX12(t )this case is not at all 
remarkable, but in the expressions for (X2(t )) and SX (t ) it 
leads to a singularity: 

< X ,  ( t )  ) =-211 f 1 o t  cos cp 6XZ2 ( t )  =12 (2n,+l) ( l+yt) .  (17) 

If the experimenter can use time intervals that are long 
compared with the relaxation time, then at t>yV1 we can 
obtain (at cos p = - 1) 

8x21X2- [ (2nT+1)'"/2 I f l ol (y/t) '",  

i.e., SX2/X2 -P 0 at t + a,. We note that at 2r)y and t -+ 
we would obtain a nonvanishing and rather large quantity 

1SX~/X~=(2n,+l)'~(r/2lflo). 

For (n(t )) and Sn2(t ) at 2r = y, cos( p - $/2) = + 1 and 
yt> 1 we have from (A2) and (A4) 

( n ( t )  > = I  f 1202t2, 8n2= (2nT+1) 1 f 1202yt3. (18) 

As will be shown in $3, the case 2r = y can be used to im- 
prove the sensitivity if the signal can be accumulated during 
many relaxation times. 

The variance Sn of the number ~f quanta must be set in 
correspondence with the variance Sp  of the phase operator, 
even though this operator is known to be defined subject to 
some stipulations. We present nevertheless illustrative argu- 
ments from which it can be seen that in squeezed-states a 
decrease of Sn is accompanied by an increase ofFp and an 
increase of Sn is accompanied by a decrease of Sp. We con- 
sider first coherent states. On a plane with coordinates (XI) 
and (X,) the coherent state la) is mapped by a circle with 
center at the points 21a in accordance with the equation 
(XI) + i(X2) = 21a. The diameter of the circle is deter- 
mined by the variance SX, = SX, = 1 (2nT + 1)'". The un- 
certainty of the number of quanta at 

( ~ ( ~ ( 2 n , + l )  hz,(n,+l) 

is Sn -(2nT + 1)"2[a1, i.e., Sn = S(mu/2?T.li), whereSis the 
area of a ring made up by rotating the circle around the 
origin (see Fig. 1). The phase uncertainty 6; is expressed in 
terms of the (doubled) angle from which the diameter is seen 
from the origin, so that 
6% (2n,+l)'"/lal. 

As a result we obtain 

In the squeezed state, the variance circle is transformed into 
an ellipse compressed along the axis for which the variance is 
a minimum. If the phases $ = 0 and cos p = 0 are chosen, 
the ellipse is compressed along the XI axis, and its center is 
located on the XI axis; at $ = 1 and cos q, = + 1, the ellipse 
is compressed along the same axis, but its center is located on 
the X, axis (see Fig. 2). Accordingly, in the former case the 
area of the ring decreases, and the angle increases, so that [cf. 
(1611 

612% (molh)  <X,)bX,= (2n,+l)'"lal (y /2r) ,  ,. 
6r+~28X~/<X,>= (2n,+l)'"laj-'(2rly) 

and 

8n8& (2n,+l). 

In the latter case Sn increases and 6; decreases, so that again 

43. USE OF SQUEEZED STATES TO DETECT A WEAK FORCE 

The possibilities of using squeezed states can be natural- 
ly separated into two versions, depending on whether the 
duration of the signal and other conditions of the experiment 
will permit accumulation of a signal during several relaxa- 
tion times, or whether the accumulation time is much 
shorter than y-'. If yr< 1, it is reasonable to first "prepare" 
the squeezed state, and then use it to observe the force before 
the variance of the measured quantity manages to increase 
substantially. The action of the signal itself in the course of 
preparation of the state is immaterial. We consider this tech- 
nique for the measurement of X,(t ) and of the number of 
quanta. 

FIG. 2 
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Assume that at the instant when the laboratory genera- 
tors are turned off (we choose this instant of time to be zero 
time) the squeezing reached (at 2r) y) is 

6 X I Z ( 0 )  =I' (2n,+l) ( ~ 1 2 r ) .  (19) 

Subsequently SX : (t ) increases in accordance with (8): 

The expression (20), which is approximate at ytg 1, makes it 
possible to refine the permissible observation time r .  It is 
desirable for this time to be such that the growing term in 
6X: , i.e., the term proportional to yt, still has not exceeded 
the initial value SX :(0). In other words, if r 5 (2r)-', the 
variance did increase by not more than a factor of 2, but if 
(2r)-'(7 < y- ', the variance is still smaller than the equilib- 
rium value, but comes close to it. The change of (Xl(t )) un- 
der the action of the gravitational force & to be observed 
proceeds in accordance with (5), where we must put r = 0, 
f = f,, and p = p,. This yields 

Taking AX, to be the signal Sand SX, the noise Nand assum- 
ing also sin p, = 1, we obtain within an observation time 
75 1/2r 

S / N -  [21 !,I o z / ( 2 n T + 1 ) ' " ]  (22) 

and after a time 1 / 2 r ( ~  5 l/y 

If the oscillator were to be in a coherent state, then after 
an observation time 0 < r<y-  we would obtain the estimate 

which is worse by (2r/y)'I2 times than (22), and worse by 
( ~ 7 ) - '  times than (23). Of course, if it is possible to accumu- 
late a signal within a time on the order of y-', the minimum 
observable force during that time is, according to (24), 

f,,i,= (2n,+l) '"y/2c1), 

much better than the estimate 
(2n,+l) '" 

f m i n  ( 2 r y )  "' 
2 0  

that follows from Eq. (22) at T=: 1/2r, and somewhat better 
than the estimate that follows from (23). This is so because 
the time required to reach the maximum AX,, as follows 
from (21), is y- ' while the decay time of the squeezed state is 
also y- '. Thus, it is advantageous to use squeezed states that 
are prepared beforehand if the time of observation is strong- 
ly limited for some reason or another. 

Perfectly analogous conclusions are obtained also by 
analyzing measurements of the number of quanta. The ac- 
tion of the force changes (n(t )) in accordance with (7): 

2 i o  < n  ( t )  )=noe-T'+ n ,  (1-ecTt) + -- e-Tt(eTt/z-l) 
Y 

where no is the initial average number of quanta. 
Inasmuch as in the squeezed state (a,) # O  and (a,+ ) 

# 0, the term linear in the small quantity f, is preserved, just 
as in the case of the coherent state (but not in the n-quantum 
or equilibrium state). We are interested in such squeezed 
states in which at a given average number of quanta the vari- 
ance6n2 is much less than in the coherent state with the same 
n. In such states, as can be seen from a discussion of Eqs. (16), 
(a,) and (a: ) are equal, apart from phase factors, to 6. 
Thus, according to (25) the change of the number of quanta 
under the action off, and at ytg 1 is 

The variance Sn2 increases from an initial value 6ng, 
which we choose in accordance with (16) in the form 

6noz=nO (2n,+l) y/2r. 

The law of variation of the variance is determined by the 
general formula (9) at r = 0, but we assume f, to be so small 
that the increase of6nZ is determined by the interaction with 
the thermostat and not with&. Then 

6 n Z ( t )  =no (2iz,+l) (y /2r+yt)  

and for r 5 (24 - ' we have 

which coincides with (22). At 1/2r(r 5 y-' we obtain a for- 
mula that coincides with (23). 

We consider now the observation of prolonged signals 
with the aid of the variant 2r = y. As seen from (17) and (18), 
the mean values ofX, and n and of their variances increase in 
the course of time, but the growth of the mean values is fas- 
ter. The oscillator is acted upon jointly by the laboratory 
forcef, and by the gravitational&; i.e., 

f -  I f  1 eiv= 1 f i  I eivl+ I f,I eiqg. 

The increment of (XZ(t )) due to the force& is, if the phases 
are suitably chosen 

AXz=21j f 8 1  o t ,  

and the variance is 
6XzZ-1' (2nT-I-1) yt, 

from which we obtain at an observation time ~ = : y - '  or 
7,y-I 

S/N=[2j  f,] o/(2n,+ I ) " ' ]  ( t ly) '" .  

Exactly the - same formula is obtained for S / N  = A n/Sn. 
Thus, the minimum observable force decreases without limit 
with increasing observation time. The actual sensitivity lim- 
its will be determined by the accuracy with which the neces- 
sary relations between the phases and the parameters are 
satisfied. 
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94. COMPARISON OF THE SQUEEZED-STATES TECHNIQUE 
ANDQNDMEASUREMENTSINTHEPROBLEMOF 
OBSERVING A WEAK FORCE 

The squeezed-states technique and the use of QND 
 measurement^^-^,^^-^^ have common features. In both cases 
one of the tasks of the method is to decrease the variance of 
the measured quantity. In QND measurements the decrease 
of the variance is reached by the very act of the first measure- 
ment, as a result of which a reduction of the wave function 
takes place, while in the squeezed-states technique the vari- 
ance is decreased by specially chosen force and parametric 
action on the oscillator. Although the postulates of quantum 
mechanics permit the variance to be decreased after the mea- 
surement to zero, its actual value is determined by the cou- 
pling constants and by the measuring instrument, by the 
measurement time, etc. In addition, as already noted, the 
variance will inevitably increase with time as a result of the 
interaction of the system with the thermostat. In this sense, 
we lose the fundamental difference between the final vari- 
ance obtained by squeezing, and that (final) dispersion which 
can be obtained after the first measurement performed in a 
realistic situation. 

The initial requirement and theory of QND measure- 
ments is to choose quantities that can be measured with arbi- 
trary accuracy without demolishing the state of the system. 
The system, by assumption is, after the first measurement in 
one of the eigenstates of the QNDF operator or of the QNDP 
operator, and it is precisely this quantity which is measured 
subsequently. The squeezed-states technique does not pre- 
suppose an obligatory measurement of the QND-variable. 
Prior to the arrival of the gravitational signal and during the 
time of its action, the oscillator is in a squeezed state and not, 
say, in an eigenstateX,(t ) ofthe QNDF-operator. In this case 
the force can be detected, e.g., by the changes of the energy, 
i.e., of a quantity that is not a QNDF-variable. However, the 
experimenter must not claim too high an accuracy of the 
measurements and, consequently, too large a perturbation of 
the system. The accuracy of the measurements must not be 
better than the (a priori) variance of the measured quantity. 

To compare the two considered methods, we assume 
that we measure the QNDF-variable X,(t ). In accordance 
with the QND-measurement principle, we assume that at 
the initial instant of time an exact measurement ofX,(t ) was 
performed on the equilibrium oscillator, as a result of which 
the oscillator is brought to an eigenstate of the operator XI 
with a value Xl(0) = 0; then SX: (0) = 0. Subsequently, the 
variance will increase in accordance with the general for- 
mula (8), and the average value will change under the influ- 
ence off, in accordance with (5). The S / N  ratio after a time r 
of the action of the force will be 

SIN=[2 l fgIwl (2n ,+ l ) '" ]  ( ~ l y ) ' " .  (26) 

We assume now that at the initial instant of time the 
oscillator is in a squeezed state. We measure again the quan- 
tity XI, but not too accurately, within the limits of the vari- 
ance. Then the S / N  ratio is determined by Eqs. (22) and (23). 
We know that the measurement of the energy leads to similar 
equations. The difference from formula (26) takes place only 
at 0 < 7 5.1/2r. In this time interval the sensitivity of (26) is 

generally speaking better than that of (22). However, when 
2r tends to a definite limit equal to h, the difference vanish- 
es, since the duration of the action off, is assumed at any rate 
to be not shorter than 2n/w. Of course, as r + w the conclu- 
sions concerning the sensitivity are only qualitatively valid. 

Summarizing, we can state that when account is taken 
of the inevitable damping in the oscillator (y # 0, n #0) the 
QND-measurement method loses its advantages to a consid- 
erable degree. At large squeezing parameters the state- 
squeezing technique is not inferior to that of QND measure- 
ments, having the advantage that the quantity measured 
must not necessarily be a QND variable. 

The use of squeezed states can improve the realizability 
of laboratory experiments on the study and detection of gra- 
vitational waves. In Ref. 15 was considered a concrete 
scheme, in which the radiation and detection were proposed 
to be effected with electromagnetic fields. The estimate of 
the sensitivity started out with the fact that it is possible to 
observe the change of the number of quanta fi against the 
background of the n quanta present in the cavity-detector. In 
other words, estimates were used for an oscillator in a coher- 
ent state. In this case the technical requirements on the fa- 
cility are very stringentI5: the total volume of the system 
V = 25 x lo9 cm3, characteristic field intensity 
E - H - 3  X lo5 G, signal frequency w = 2 X 1018 sec-', Q- 
factor of the cavity-detector Q = o r *  = 7 X lOI3, time of sig- 
nal accumulation (equal to the relaxation time) = 4~ lo5 
sec. Were it possible to improve the Q of the resonator-detec- 
tor, e.g., to Q z 8  x 10'' and produced in it a squeezed state 
with value 2r/yz lo2, the sensitivity could be increased dur- 
ing the same accumulation time by a factor of 10, and conse- 
quently relax the requirements on the other parameters of 
the system. These values of Q are apparently perfectly attain- 
able. l6 

It is advantageous to use squeezed states also when de- 
tecting monochromatic cosmic radiation, e.g., from a pulsar 
in the Crab nebula. Experiment is being presently planned 
on detection of gravitational radiation from this pulsar." 
The parameters of the resonant antenna are the following: 
v = 60 Hz, Q = 2~ 10' M = 1400 kg, antenna length 
L = 1.65 m, and the temperature at which the antenna will 
operate is T = 3 X K. The signal accumulation time r 
should amount to z 5 x 10' sec. At a frequency v = 60 Hz, 
however, the Q of the antenna can possibly be raised to 
Qz 10'' (Ref. 16). The relaxation time in such a system will 
be approximately 9 years. If the technique of squeezed states 
is used, the time of signal accumulation up to satisfaction of 
the observability criterion S/N = 1 could be decreased to 
approximately lo3 sec. 

APPENDIX 

We present first an expression for the quantities con- 
taining the operators Tand T +, which do not depend on the 
initial state of the oscillator. We introduce the notation 

1 

rT7 ch 2r (r- t )  d r ,  I.= J eu sh 2r (r- t )  d l .  
0 
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Then 

The general formulas (5)-(9) become simpler if at the initial 
instant of time the oscillator was at equilibrium with the 
thermostat. Then 

( T + T > = y  (n,+'12)I,--t12yE, (2'2"') =y ( n , + ' / 2 ) ~ c + 1 1 2 y E ,  < X I  ( t )  )=le-7t'2[cD ( t ) + @ * ( t )  1, 

< X z ( t )  >=le-7t/zi[cD*(t)--cD ( t ) ] ,  

We write out also the expression, which is used in the test for r 
@: ( n ( t )  >=e-1' [I @ ( t )  l 2  +- i-(2n,+l)  (* - - y-2r 

@ ( t )  

For the variances we have 
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