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The presently known quantum nondemolition energy measurements (including quanta counting 
without absorption) allow one to solve the problem of reliability of information transfer. It is 
shown that there exist optimal conditions for the recording of electromagnetic pulses of given 
energy and finite duration, conditions for which the reliability of information transfer is the 
highest. It is also shown that the use of quantum states of definite energy leads to a considerable 
gain in information transfer reliability for identical energy expenditure, or a significant energy 
gain, compared to those obtained using coherent quantum states. 

PACS numbers: 03.65.B~ 

1. The interest in the problems of quantum measure- 
ments was revived in recent years, on the one hand, by the 
development of gravitational antennas, where the recorded 
response of a mechanical oscillator must be smaller than the 
indeterminacy of the coordinate in a coherent quantum state 
(see the  review^,'.^ as well as Ref. 3), and on the other hand by 
the advent of electromagnetic radiation sources based on a 
new principle, sources which produce incoherent states (e.g., 
pure energy states or so-called squeezed quantum  state^^-^). 
The proposed ''Gedanken"-procedures,7~8 as well as the 
quite realizable  procedure^^^'^ for nondemolition counting 
of optical and microwave electromagnetic quanta allow one 
to create qualitatively new radiation receivers, where the 
number of quanta in an electromagnetic pulse can be repeat- 
edly measured without modifying the pulse in each measure- 
ment. It becomes possible in principle to realize the funda- 
mental recommendation of quantum theory of 
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communications,'' namely the use of orthogonal, in particu- 
lar pure energy eigenstates for the transfer of information. 

Our purpose is the following: to analyze a concrete 
model of a quantum communications channel and to demon- 
strate that the transition from now used, coherent emitters 
and receivers to emitters of energy states and quantum non- 
demolition (QND) counters will allow one to obtain either a 
substantial gain in the reliability of information transfer at 
the same energy expenditure, or to obtain a significant gain 
in energy. 

2. All applicable methods of information reception and 
transmission make use of coded states which in the limit of 
zero temperature, i.e., in the presence of only quantum fluc- 
tuations, go over into coherent states. A signal of duration 7 

and energy E f i w  has the indeterminacy ( ~ ) ' / ~ l i w  which is 
proper both to the preparation method (i.e., is characteristic 
for the transmitter) and the measuring device (i.e., the receiv- 
er). In this case the only method for improving the reliability 
of communication reliability is an increase in the energy of 
the signal. If, on the other hand, a signal is encoded in pure 
energy states, the indeterminacy in the energy both in the 
preparation and in the detection by means of a quantum 
nondemolition receiver will be of the order of f i / ~ ,  indepen- 
dently of ii (here i: is the duration of the measurement). An 
increase in reliability will be determined here only by an 

increase of the duration of the signal (reduction of the band- 
width). In particular, in the transmission of binary messages 
the transmission of a single quantum may correspond to the 
message "one" and the unperturbed state of the line corre- 
sponds to the message "zero." To increase the reliability of 
information transfer without an increase in signal energy, 
one can also make use of so-called squeezed (or two-photon 
coherent) quantum states. l2  These states ae not orthogonal, 
but the degree of their mutual overlap decreases with the 
increase of mean energy much faster than for the case of 
coherent states. However, squeezed states yield a substantial 
gain in reliability only for sufficiently large 7i; for ii -- 1 the 
reliability of information transfer is approximately the same 
as for coherent states. l2  

3. It is convenient to characterize the reliability of com- 
munications quantitatively by means of the difference 
between the Shannon amount of information at the input 
port of the communications channel (including the receiver) 
and the amount of information about the input signal exist- 
ing at the output port,13 i.e., by the information loss AI .  In 
the simplest case of the transmission of one bit of informa- 
tion, under the condition that the error probability is suffi- 
ciently small, we have 

where a ando are the statistical errors of the first and second 
kind. 

If one codes by means of coherent states, the optimal 
coding from the point of view of minimizing the statistical 
errors for a given mean signal energy is phase coding, where- 
in the unit signal is represented by the coherent state IA ) and 
the zero state is represented by the state I - A ) (\A l 2  = 7i is 
the mean number of quanta in the signal)." If the receiver is 
also coherent, it is easy to show that the loss of information 
will be (see Appendix I) 

where 
I a)(.) =- 
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is the error function. For ii>l the expression (2) becomes 
somewhat simpler: 

4. To realize a quantum nondemolition measurement of 
the energy of a travelling electromagnetic wave it is neces- 
sary that a portion of the transmission line be coupled to the 
measuring device in such a manner that the interaction Ha- 
miltonian should be quadratic in the field. As an example 
one may consider a system analogous to the one discussed in 
Ref. 10: a waveguide segment is filled with a nonlinear medi- 
um and is also part of a lower frequency test resonant cavity. 
The presence of the signal wave leads to a modification of the 
permittivity of the medium, and consequently to a change in 
the frequency of the normal modes of the test cavity, a fre- 
quency detected by usual (linear) methods. 

For the measurement erlor to be small it is necessary 
that the variable indirectly affected by a change in the signal 
(the generalized momentum of the measuring device) be 
well-defined. According to the Heisenberg uncertainty prin- 
ciple, the variance of the canonically conjugate variable (the 
generalized coordinate of the device) will be large, leading to 
an indeterminacy in the parameters of the line (the signal 
propagation speed) in the interaction segment. The presence 
of such an indeterminacy causes in turn a random phase shift 
in the transmitted wave. One can show that on account of 
this shift the following uncertainty relation holds: 

where An is the error in the measurement of the number of 
quanta. In principle the quantity An is bounded from below 
only by the Bohr uncertainty principle 

An> (An)mi,=l120t (3) 

(w is the signal frequency, ? is the duration of the measure- 
ment). However on account of the parametric character of 
the interaction with the measuring device there appears an 
additional source of loss of information, because the signal 
quantum can be reflected from the transmission-line in- 
homogeneity which arises in the measuring process, and 
thus will not be recorded by the receiving device. The degree 
of inhomogeneity, and consequently the reflection coeffi- 
cient, increases as the accuracy of the measurements in- 
creases. At the same time, the reflection coefficient decreases 
as the length of the interaction section is increased. Conse- 
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quently, for a given length of this segment there exists an 
optimal measurement-error value that exceeds the limit (3), 
and accordingly, a minimal value of the information loss. 
We note that there always exists a probability that the pho- 
ton will be reflected, but will nevertheless be recorded by the 
receiving device. In the present paper (to simplify the calcu- 
lations) we have assumed that this probability is zero. Thus, 
the information-loss estimates given below are upper limits. 

We list the results of calculations based on the described 
recording scheme (see Appendix 11). The probabilities of 
"false alarm" a and of "loss of the target" p are equal to 

An a = -- E" 
( 2 ~ )  '"E 

where L is the length of the interaction segment, A is the 
mean wavelength of the signal, f is a parameter of the data- 
reduction procedure: the decision "one" is adopted if the 
reading of the instrument exceeds f ,  and "zero" is chosen in 
the opposite case. Substituting Eq. (4) into Eq. (2) and mini- 
mizing the expression so obtained with respect to An and f 
one can determine the optimal values (An),,, and lo,, and 
the corresponding minimal value of information loss dlmi,, . 
The figure shows the graphs of Aim,, and (An),,, as a func- 
tion of L /A,  as obtained from numerical calculations. The 
same figure also shows the minimal values (An),, admissi- 
ble from the point of view of the Bohr relation (3),  as a func- 
tion of the same variable. For sufficiently large vaues of L /A 
one may use the following asymptotic estimate for the quan- 
tity AI: 

It is clear from the figure that a high reliability of infor- 
mation transfer is attained already for L /A=3 to 10, 
An?O. 1. At the same time, the use of coherent states would 
require an increase by an order of magnitude and a half of the 
power in the communication channel, to attain the same reli- 
ability. Indeed, for a coherent signal and AI~10-10-10-12 
it is necessary to have Ee22-27; at the same time, for a pure 
energy signal E = 4 (if the transmission of zeros and ones are 
equally probable), and the same reliability of transmission is 
attained for L /A=5 - 6 and An=0.07. 

We note that the increase in reliability due to the use of 
pure energy signals entails a narrowing of the bandwidthd f / 
f of the information channel (sinceA / L e d  f /f ). At the same 
time the reduction in energy necessary for the transmission 
of one bit signifies a proportional increase of the dynamic 
range, and consequently of the transmission of the commun- 
ication channel. 

5. We analyze the influence of damping in the commun- 
ication channel for the case kT < fiw (here k is the Boltzmann 
constant). If transmission of unity corresponds to a pulse 
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containing exactly n quanta and the transmission of zero 1, if IA-A,I>lA-A,] 
corresponds to inactivity in the line, then the additional % ( A ) = {  0 ,  if IA-A,l<lA-A,[  '' 
probability of signal loss due to possible absorption of all n 
quanta in the transmission line equals i.e., the value "I" is adopted ifA lies closer to A ,  than to A,, 

and "0" is picked in the opposite case. Then 
p*= [I-eap (-Z/Z*) 1 ", (6) 

where Z is the length of the line, Z * is the distance of e-fold 
decrease of the energy in the pulse. From Eq. (6) follows the 
following estimate from above for the quantity f l  *: 

B*<eap ( -2n* ) ,  (7) 

where n* = in exp( - Z / Z  *) is the mean number of quanta 
which arrive at the receiving end (assuming that the trans- 
mission of zeros and ones is equally probable). 

In the process of relaxation, a coherent state conserves 
its coherence, only its mean energy decreases. Therefore the 
statistical errors of encoding by coherent states will be equal 
to (see Appendix I) 

a = p = @  (- ( Z n ' )  'I2) 
1 

esp (-n') 
2 (an')  'I' 

A comparison of (7) and (8) shows directly that for the same 
value of n* the probability of encoding errors is considerably 
smaller for pure energy states. 

6. The calculations of the quantity A 1  carried out for the 
case of sending and recording a single quantum in an energy 
state (see Eqs. (4) and (5)) yield essentially an exact value of 
the parameter R, usually designated as the quantum yield of 
the detector; A1 = 1 - R for a quantum nondemolition mea- 
surement. In our opinion our results are useful not only for 
problems of reliable information transfer, but also for many 
cases of indirect quantum measurements. 

APPENDIX I 

We assume that the transmission of ones and zeros cor- 
respond to coherent states with parameters A, and A,, re- 
spectively. A receiver which realizes a coherent-state mea- 
surement is described by a spectral decomposition of unity of 
the form 

(A.I. 1) 
with 

P o ( A ) + Q , ( A ) - 1 ,  (A.I.2) 

where R, and n, are functions describing the data reduction 
procedure: if the measuring device reads A, then a decision 
"0" is adopted with probability R,(A ) and a decision "1" 
with probability R,(A ). The statistical errors are 

Minimizing the functionals (A.I.3) under the condition 
(A.I.2) we find that the optimal strategy is the following: 

where 0 (x) is the error function. 
If one imposes the condition that the mean energy of the 

message be a minimum: 

fi=(IAo12+ IAiI2) /2 ,  (A.I.5) 

the values A, and A ,  must be symmetric with respect to the 
origin: 

A,=-A, ,  (A.I.6) 

this corresponds to statistical errors equal to 

.=p=co ( - (an) '12) .  (A.I.7) 

APPENDIX II 

A measuring instrument is characterized by a probabil- 
ity distribution w, ( i i )  for obtaining the result i i of the mea- 
surement under the condition that the received pulse con- 
tains n quanta. One may consider that the distribution is 
normal: 

(the variance (An)2 describes the accuracy of measurement). 
The statistical errors will be in this case 

- m  

where P is the reflection coefficient of the photon from the 
instrument. To simplify the calculations, we assume in the 
computation of P that the generalized mass of the measuring 
instrument is sufficiently large so that one may neglect the 
change of its coordinate over the duration of the measure- 
ment. In this case it suffices for the determination of P to 
solve the simple static problem of reflection of a wave from 
an inhomogeneity of the transmission line: 

" 
(') + K2 ( 2 )  l ( r )  =0,  

dz2 

K(z )=Ko=2n /h  for z<O, z>L, (A.11.4) 

exp ( iKoz)  +r exp (-iK.2) for 6 0 ,  
D exp ( iK,z)  

(A.11.5) 
for z>L, 

whereil is the mean wavelength of the signal, r is the reflect- 
ed amplitude, and (0,L ) the interval of interaction with the 
instrument. 

We make use of a piecewise linear approximation for 
K '(z), partitioning the interaction interval into portions of 
length I. On the m-th portion I (m - 1) < z  < Im we have 
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Taking Eq. (A.II.6) into account, we obtain an exact solution 
of Eq. (A.II.3): 

2 K 3 ( z )  
for / ( m - I )  <z<lm, (A.11.7) 

where C t 2 '  are coefficients, and HI';:) are the Hankel func- 
tions of order + of the first and second kind, respectively. 

We consider the case of greatest practical importance, 
when K (z) is slowly varying over distances of the order A, and 
the deviation of K (z) from the value KO is small: 

I d K ( z ) / d z  I < K Z ( z ) ,  I -Y(z )  -KO 1 <<I&. (A.11.8) 

In this case the argument of the Hankel functions is much 
larger than unity in Eq. (A.II.7), and one may make use ofthe 
asymptotic expression for cylinder functions. Joining the so- 
lutions obtained in this manner at the points Im, 
m - = 0,l ,..., L / I  with allowance for (A.II.S), and taking 
the limit I-+O with (A.II.8) taken into account, we obtain: 

i d2K ( 2 )  
r = -- 5 exp ( -2i 5 K ( X )  dx) --- dz. (A.11.9) 

4Zr'o" I dzZ 

Minimizing the functional (A.II.9) with respect to K (2) with 
the boundary conditions (A.II.4) taken into account, we ob- 
tain: 

I r ~ : ~ ~ =  ( A C ~ ) ~ ( ~ - C O S  2 ~ r p ) e s ~  ( - - IC~L+I) ,  (A.II.lO) 

where A p  = J; (K (z) - KO) dz is the phase shift of the wave 
as it passes through the instrument. The perturbation of the 
phase is connected to the error in the measurement by the 
uncertainty relation: 

( ( A ~ I ) ~ )  ( A n )  22'/,. 

Consequently 

exp(-KoL+l)  
P=<lrlmi,>= 
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