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The inverse problem for the classical scattering of a particle by a spherically symmetric gravita- 
tional field is formulated and solved within the framework of the general theory of relativity. The 
method used in the solution generalizes the inversion algorithms employed in classical mechanics 
in the case of a central potential in a flat space to the case of a curved space-time. The hydrody- 
namic model of a static fluid sphere is considered. In the problem the well-known dependence of 
the classical cross section for scattering of ultrarelativistic particles on the angle of deflection is 
used to reconstruct the radial density and pressure distributions of gravitating matter. The solu- 
tion of the problem reduces to the integration of a nonlinear second-order differential equation 
whose explicit form is determined from the scattering data. The established method allows the 
determination of the matter distributions that correspond to ideally focusing gravitational sys- 
tems. For weak gravitational fields the problem reduces to the Firsov inversion algorithm in 
geometrical optics. The latter case is of interest in connection with the recently detected pheno- 
menon of gravitational distortion of the images of distant galaxies. The constructed method 
affords us the only (albeit remote) possibility of directly determining the internal structure of stars 
in astrophysics. Some results obtained for the case of scattering of relativistic particles of finite 
mass are discussed. 

PACS numbers: 95.30.Sf 

1. INTRODUCTION 

At present there are in the approximation of classical 
mechanics three methods of solving the inverse scattering 
problem (i.e., of reducing it to quadratures), that allow, upon 
the fulfillment of certain uniqueness conditions, the recon- 
struction of a static, spherically symmetric potential V(r) 
from the given anglex of deflection of the particle. These are 
the algorithms obtained by Firsov in Ref. 1 (the angle x is 
given in the form of a function of the impact parameter b, 
with the energy E fixed), by Hoyt in Ref. 2 (here the energy 
dependence of the angle for a fixed angular momentum is 
known), and by the present author and Demkov in Ref. 3. In 
the last method the energy dependence of the angle of deflec- 
tion is prescribed for a constant impact parameter. In Ref. 4 
the Firsov inversion formula is extended to relativistic parti- 
cles. 

There naturally arises the question how we can genera- 
lize the indicated inversion algorithms, which are applicable 
in a flat space, to the case of a strong gravitational field. Here 
we shall formulate and solve the inverse problem for the 
classical scattering of a particle by a static, spherically sym- 
metric gravitational field that is also considered in a purely 
classical (non-quantum) manner in the approximation of the 
Einstein equations. 

As probing particles we shall, for simplicity, use zero- 
mass particles (we shall arbitrarily call them neutrinos) scat- 
tered by a spherically symmetric distribution of gravitating 
matter having a finite radius a. The problem will be investi- 
gated within the framework of the hydrodynamic model of a 
static fluid ~ p h e r e . ~  

The assumption that the particles have zero mass is not 
essential to the solution of the indicated inverse problem. 
The case of the scattering of particles of finite mass is more 
tedious, since here we must construct three methods of solv- 
ing the inverse problem in a curved space: for the cases of 
fixed energy E, angular momentum 1, and impact parameter 
b (in confirmity with the inversion algorithms found inRefs. 
1-3 for a flat space), whereas in the ultrarelativistic case the 
differences between the first two problems disappear and the 
last problem has no meaning. These three variants of the 
inverse problem require special treatment. 

As the initial datum in the problem under discussion, 
we choose the dependence of the neutrino-scattering cross 
section u on the scattering angle X. Then with the aid of the 
formula6 

we determine the functions b (.y) andx (b ). The gravitational 
inverse problem in the indicated approximations consists in 
the reconstruction of the radial density p(r) and pressurep(r) 
distributions of matter (i.e., the parameters of the state of a 
fluid sphere) from a given angle x (b ) of deflection of neu- 
trinos probing the matter. Eliminating next the radial vari- 
able, we find the equation of statep =p(  p) of the matter. 

The method established here of solving the inverse 
problem in the theory of gravitation offers us in essence the 
only possibility of directly determining the internal struc- 
ture of stars (e.g., neutron stars) within the framework of the 
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fluid-sphere model from the cross section for classical neu- 
trino scattering. 

As is well k n o ~ n , ~ * ~ , ' , ~  we can, by using the inversion 
algorithms, obtain force fields possessing the various focus- 
ing properties connected with the intrinsic symmetry of the 
corresponding problem of mechanics (classical or quantum- 
me~hanical).~ This circumstance pertains in equal measure 
to the inverse problem solved here for the gravitational field, 
a fact which allows us to construct gravitational lenses (e.g., 
"cat's eyes") that focus relativistic particles in a specified 
fashion. We shall say a few words in the Conclusion about 
focusing systems for ultrarelativistic particles. The question 
of the symmetry groups of such focusing metrics of space 
remains for the present open. 

2. METHOD OF SOLVING THE PROBLEM 

To describe the gravitational field inside matter that 
can be probed, we shall use the inner Schwarzschild metric1' 

ds2=eVdt2-e"r2-r2 (dO2+sinz BdrpZ) , (2) 

where the velocity of light in free space c = 1. As usual, we 
denote differentiation with respect to time by a dot and with 
respect to the radial variable by a prime. The condition for 
the distribution to be static (i.e., to be an equilibrium one) is 
given by the equality5 

Here T i  is an element of the energy-momentum tensor of the 
matter. Its diagonal components are given by the Pascal law 
for an isotropic (fluid) medium: 

The Einstein equations for the metric (2) in the indicated 
approximations have the form5 

e-'(v'lri- I/?) -Ilr2=xp, (3) 

where the Einstein gravitational constant 7t = 877k (k is the 
"usual" gravitational constant). 

The system of field equations (3)-(5), together with the 
boundary conditions, which require the regularity of the 
metric functions at the origin and their vanishing at infinity, 
can be reduced to quadratures. Furthermore, we can derive 
from this system an integro-differential relation between the 
pressure and the density, which expresses the condition for 
hydrostatic eq~ilibrium.~ Let us set f =e -', and represent 
this solution (the inner Schwarzschild solution) in the form 

I 
X 

/=I - - J 
r (6 )  

0 

(ID 

v= j [Af-x (pCp)reA]dr. (7) 

Let us introduce the function 

p (r) =4n p i  dr. 
0 

The value,u(a) = M has the meaning of the mass of the distri- 
bution. The hydrostatic-equilibrium equation then has the 
form 

it is a consequence of the field equations. The expression (9) is 
called the Oppenheimer-Volkoff equation. 

From (5) and (7) we find 

Let us now consider the scattering problem. Let us find the 
equation of the plane trajectory (we fix the "plane" 8 = n/2) 
of particles of zero mass in a gravitational field with the met- 
ric (2) in the integral form. To do this we employ the Hamil- 
ton-Jacobi formalism.'' The ultrarelativistic Hamilton-Ja- 
cobi equation for the classical action S is 

or, with allowance for (2), 

Let us seek the solution to Eq. (11) in the form 
S = - Et + Iq, + S, (r); then for the radial part S, of the ac- 
tion we obtain an ordinary equation, which can be integrated 
immediately. After this we find S,: 

The trajectory of a particle in a spherically symmetric field is 
given by the condition dS/131= const. From this we deter- 
mine the trajectory equation in polar coordinates: 

Let us introduce the frequency w = E and the impact param- 
eter b = I /o of the incoming particles. Then the trajectory 
has the form 

In the absence of a gravitational field (i.e., as f-1, v 4 )  the 
expression (1 3) goes over into the well-known6 formula for a 
free particle in a flat space. 

The metric function ~ ( r )  is a monotonically increasing 
function (as can be seen from (10)); it is known from the gen- 
eral theory" that it is nonpositive in all of space. This guar- 
antees the existence of a single zero of the denominator in 
(13)- 

If ro is the distance of closest approach of the particle to 
the center of symmetry of the problem (the zero of the de- 
nominator in (1 3)), then the polar angle corresponding to this 
distance is 

In the inverse problem the equality (14) is a nonlinear 
integral equation for the metric functions f (r) and v(r) for a 
given scattering angle x (b ). 
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Let us split the last integral into a sum of two integrals: 
from ro to a and from a to a, and let us denote them by p, 
and p, respectively. In this case the anglep, is determined by 
the outer Schwarzschild solution, and can easily be found; it 
can be expressed in terms of the Legendre elliptic integrals. 
Below we shall assume that the function eV/? is monotonic 
in the interval from ro to a .  We can, using (lo), show that this 
requirement will be fulfilled if the function 

does not have zeros in the indicated interval. 
Let us set x=b - 2  in (14) and introduce the functions 

~ ( r )  and F ( r )  such that 
Uzr-Zev, ~ ' _ , ~ - z f - ' h ~ v / Z .  (15) 

Going over from r to u, we have 
I d 

q1 ( x )  =- 5 ( I - u )  -% - F ( r  ( u )  ) du. 
du 

(16) 
U(0) 

This is the Abel integral equation for the function F(r(u)). I t  
can be solved analytically." The result of the inversion has 
the form 

After integration by parts, we find that 

F ( r )  - - h ( u ) ,  (17) 

where 

For a given gravitational radius r, of the distribution, the 
polar angle in this expression is given by 

dl; 
rp2 ( X I  = J 

(rgl;3-%2+.z) ' Iz ' 

and the value u(a) = ~ - ~ ( a  - r,) (it is determined from the 
condition for matching with the outer Schwarzschild met- 
ric). Thus, the function h (u) is known in the inverse problem. 

Let us now differentiate both sides of (17) with respect 
tor. Taking (1 5) into account, and setting dh /du=$, we find 

f =e-" (v'-2/r) -"$-2(ev/r2).  (20) 

This expression can be called the inversion formula for the 
gravitational field. It gives a relation, determinable from the 
scattering data, between the metric functions f and v. 

If the radial function f has been found, the fluid density 
is 

p= ( I - f - r f ' ) / x r 2 ,  (21) 

as follows from (6). 
U'e determine the pressurep(r) of the fluid by differenti- 

ating (10): 

p= ( f - f+r fv ' ) /x? .  (22) 

In the static-distribution approximation, the metric func- 
tions f and vare connected by some differential equation: it 
can easily be obtained from the Oppenheimer-Volkoff equa- 

tion (9). Indeed, with allowance for the formulas (6),  (8), (21), 
and (22), this equation has the form 

Now calculatingp' from (22), and comparing with (23), we 
find that 

The last equation can also be derived directly from the 
field equation; it must be considered together with the inver- 
sion formula (20). 

Substituting the values off and f '  determined from the 
formula (20) into (24), we obtain a closed-with respect to 
v(r)-nonlinear second-order equation: 

The explicit form of this equation is determined from the 
scattering data after the construction of the function $ and 
its derivative $, . 

Let us introduce in (25) the new function 

and the logarithmic derivative @ =$, /$. Then the indicated 
equation assumes the form 

I"+r[m (E') -2 exg 2 J m  ( a 2 )  d ( ~ ' )  IE"+ 2 8  ( t i )  E S " + ~ S ' / ~ = O .  

It must be integrated with the boundary conditions 

E ( a )  =a-"'(a-r,) '", g'(a) =a-"~(a-r , )  - l iZ (3rg-2a) /2 ,  

which follow from the condition for matching with the outer 
Schwarzschild metric. 

The boundary-value problem for the nonlinear second- 
order differential equation (27), (28) is the final result of the 
above-established algorithm for reconstructing the hydro- 
dynamic parameters (the density and pressure) of gravitating 
matter from the classical cross section for scattering of ul- 
trarelativistic particles. It can be solved, for example, by nu- 
merical methods. 

Let us consider the weak gravitational field approxima- 
tion in the method obtained; this can be done by going over 
to the equivalent geometrical optics problem of the propaga- 
tion of ultrarelativistic particles in a spherically inhomogen- 
eous optical medium with refractive index n(r) in a flat space. 

In this space the local velocity of light will depend on 
the local gravitational potential. Thus, the gravitational field 
can be replaced by an equivalent refracting medium in the 
flat space, and the effective refractive index can be comput- 
ed. For a weak spherically symmetric gravitational field 
with a small gravitational potential U the equivalent refrac- 
tive index1' n = 1 - U. 

Further, let us proceed from the inversion formula (20) 
for the gravitational field. It is clear that the method con- 
structed in the present paper should, in the weak field limit, 
give the Firsov inversion algorithm, by which a spherically 
symmetric refractive index can be reconstructed in geomet- 
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rical optics7 (or a spherically symmetric potential, in classi- 
cal mechanics1) from the scattering data. Entering into the 
inversion formula (20) are the metric tensor elements 
gwEe - v and ~"EJ  It is well known that, in the limiting 

case of a weak field, go, = 1 + 2 U, and the correction in g,  , is 
of the same order of magnitude as the correction in go,. But 
the correction in g, ,, though of the same order of smallness 
as the correction in go,, gives rise in the Lagrangian (and, 
consequently, in the equations of motion) of the particle to 
terms of higher order in smallness (see Ref. 10, p. 246 of the 
English translation). 

The Firsov formula is a consequence of the equations of 
motion6; therefore, we set gw = 1 - 2U and g" = 1 in the 
expression (20) in the case under discussion. Then it assumes 
the form 

where f = g g / r z ( l  + U)/r, and, after introducing the 
equivalent refractive index, we have f =:r-In-'=q. 

Let us extend the inner Schwarzschild metric to all 
space. Under the assumptions made, u zq2 ,  q2-0, u (a ) -4 ,  
and a-a in the relation (18), and, after integrating by parts, 
we have 

1 qz 
h ( g 2 )  =-q - ; (q2--z)"~' (z) dx. (30) 

0 

Now, remembering that IC, = dh /du, we obtain after separat- 
ing the variables in Eq. (29) and integrating the relation 

Then, changing the order of the integrations in (31), going 
over to the variables b and n, and integrating by parts, we 
finally find that 

This is the well-known Firsov inversion formula,'.' which 
solves the inverse problem in geometrical optics. 

Let us now summarize the above-presented method of 
solving the inverse problem for a spherically symmetric gra- 
vitational field. First, we must calculate b Cy) (and then qo(x)) 
from the given scattering cross section uCy ), using the for- 
mula (I), and construct the function h (u) with the aid of the 
definition (18). The explicit form of Eq. (27) is then known, 
and, solving the boundary-value problem (27), (28), we ob- 
tain the function 5- (r) and, on the basis of the formula (26), 
one of the metric functions, namely, v(r). Further, using the 
inversion formula (20), we calculate the other metric func- 
tion f (r). Then the expressions (21) and (22) allow us to deter- 
mine the radial density and pressure distributions of the mat- 
ter. Finally, eliminating the variable r, we find the equation 
of state of the matter. 

Thus, the solution scheme for the considered inverse 
problem has the following form: 

3. CONCLUSION 

The results obtained here for ultrarelativistic particles 
show that the classical spherically-symmetric inverse prob- 
lem for the case of a strong gravitational field can also be 
solved. The basic nonlinear integral equation (14) of the 
problem reduces to the Abel equation. 

In the case of scattering of particles of finite mass the 
inversion algorithms for the gravitational field can be con- 
structed, using a method similar to the one found here. As 
for massless particles, the inversion process leads there to 
boundary-value problems for nonlinear second-order differ- 
ential equations whose explicit forms are determined from 
the scattering data. This circumstance is valid for all the 
three inverse problems indicated in the Introduction: for 
fixed energy, angular momentum, and impact parameter. In 
the ultrarelativistic limit, the above-named equations for the 
problems with fixed E and I go over into an equation (27) for 
neutrino scattering. In the Newtonian (i.e., weak field) ap- 
proximation, we can derive from the relativistic equations 
obtained for the cases of constant energy, constant angular 
momentum, and constant impact parameter the formulas 
established respectively by Firsov,' H ~ y t , ~  and the present 
author and Demkov3 for inversion in a flat space. 

We shall assume that the inner Schwarzschild metric is 
specified in all space (i.e., that a - t a  ). Then the analogue of 
?he Firsov formula for the gravitational field has the form 

dr  f (6 ' -1g2 ) - "X  db ,  
rg  erp{-J f-"*T) = e r p ~  

The system of equations composed of the inversion formula 
(33) and the equilibrium equation (24) allows us to find the 
metric functions j'and Y.  In the weak field limit we take 
j ( r ) z  1, g ( r ) z ( l  - V/&)'I2, and then the expression (33) 
yields the usual Firsov formula.' For the case of a finite radi- 
us of the matter distribution, the relation of the type (33) is 
slightly more complicated. 

Thus, the spherical symmetry of the field allows us to 
construct an explicit algorithm for solving the classical in- 
verse problem, even for the general case of strong gravita- 
tion, i.e., of curved space-time, as well as for the simplest 
potential scattering. In this connection, the range of centro- 
symmetric inverse problems considered in various papers 
turns out to be, to a certain extent, settled and completed 
(although additional generalizations are, of course, possible, 
e.g., for charged-particle scattering in the presence of a gra- 
vitational field). 

As has already been noted in the Introduction, the de- 
scribed method of solving the inverse problem can be used to 
construct gravitational fields that focus ultrarelativistic par- 
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ticles in a specified manner. Thus, for example, we can calcu- 
late the metric of the space inside gravitating matter that 
reflects a particle incident on it strictly backwards (a gravita- 
tional "cat's eye"). For this focusing system, the function 
@ (6 ') in Eq. (27) can be expressed in terms of the Legendre 
elliptic integrals, and can be integrated numerically. 

The passage to the weak-field limit in algorithm ob- 
tained for ultrarelativistic-particle scattering yields the Fir- 
sov inversion formula' in the form (32), i.e., in geometrical 
optics (in terms of the refractive index). In this form the Fir- 
sov formula is valid for both nonrelativistic particles7 (in 
view of the existence of an optical-mechanical analogy) and 
relativistic particles in classical mechanics (generalized opti- 
cal-mechanical analogy4) and, of course, for ultrarelativistic 
particles in geometrical optics. This case of a weak gravita- 
tional field is of interest in connection with the recently dis- 
covered phenomenon of gravitational distortion of the im- 
ages of distant galaxies. 

Let us extend the inner Schwarzschild metric to all 
space. Then, just as in Maxwell's "fisheye" p r ~ b l e m , ~  we can 
seek a gravitational field in which every particle with energy 
E = m moves along a circle. The establishment of the intrin- 
sic symmetry in the corresponding classical-mechanics or 
quantum-mechanical problem is apparently tied with the 
possibility of determining such a metric (the metric of a gra- 
vitational "fisheye") in its analytic form. 

The author is grateful to Yu. N. Demkov for the formu- 
lation of the problem and for useful discussions and A. A. 
Grib for interest in and attention to the work. 
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