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The scattering of light by conduction electrons of metals with anisotropic Fermi surfaces is 
considered over a broad range of scattering frequencies w = wi - a, >(vF/S, restricted only by the 
condition w)v, where v is the electron relaxation frequency and 8 is the penetration depth of light 
into the metal. It is shown that detailed analysis of the frequency dependence of the light-scatter- 
ing cross section can give Fermi-surface-structure information that supplements data obtained by 
other methods. 

PACS numbers: 71.25.Hc, 72.40. + w 

The scattering of light by electrons in metals (in the ume and surface scattering of the electrons, is given in the 
normal and superconducting states) has been studied theore- Appendix. The cross section can be written down in the form 
tically'.' in the range of low scattering frequencies d" o oi 
61 = w, - w,pvF/6. The frequencies of the incident wi and -=-- rozJm, 

dodP 2n o, 
(2) 

scattered w, radiations belong to the optical range: Szc/wp 
is the light penetration depth, w% = 4rne2/m, is the square where df2 is the element of solid angle, ro = e2/mocz is the 
of the plasma frequency. In this case, it follows from the classical radius of the electron, mo is the mass of the free 
conservation laws that only electrons from a strip of the Fer- electron, and 
mi surface (FS) take part in the scattering: 

J,=S 
2A +m dk 

(1) I-exp (-h/T) 
R . 8 ;  J - Warla (k, o) u2 (k). (3) 

nv=O, E (p) =&a, V = ~ E  (p) lap, - rn 2n 

where n is the direction of the normal to the surface of the 
sample. This leads to anisotropy of the scattering cross sec- 
tion: upon change of orientation of the surface of the sample, 
i.e., of n, the strip moves over the FS. In this case the depen- 
dence of the cross section on the polarization of the incident 
and scattered light is due to the anisotropy of the effective 
mass of the electrons of the strip (1) on the FS. However, the 
magnitude of the cross section in the low-frequency region is 
small, which makes experimental study of the effect diffi- 
cult. 

In the present work we consider the scattering of light 
by the conduction electrons of a metal with an anisotropic 
FS over a wide range of scattering frequencies w><v,/S, re- 
stricted only by the condition w>v, where v is the relaxation 
frequency of the conduction electrons. The scattering cross 
section is maximal at frequencies o =: vF/S. In this region of 
frequencies, it is determined by the contribution of all the 
electrons of the FS and can exceed in order of magnitude the 
cross section of electron scattering in semiconductors (in 
which, in contrast to metals, the phenomenon has been well 
studied3). A detailed analysis of the frequency dependence of 
the scattering cross section gives information on the struc- 
ture of the FS, supplementing data obtained by other meth- 
ods. 

1. The expression for the differential cross section for 
light scattering by conduction electrons in a metal d 'a/ 
dwdf2 has been obtained in Refs. 1 and 2 for the case of 
specular reflection of electrons from the surface of a metal 
and under the condition v-+O. A more general derivation of 
the cross section, taking into account, in particular, the vol- 

Here S is the area of the metal surface; the function U (k ) is 
determined by the field distribution of the incident and scat- 
tered waves in the metal. In the case of a simple exponential 
dependence of the fields on the z coordinate (chosen along 
the normal to the surface into the metal) U(k ) has the form 

U (k) =46 [4+ (k6)'J -'. (4) 

The factors Ra,p are expressed in terms of the projections of 
the unit polarization vectors of the incident eh and scattered 
e"paves and the coefficients C (a&), which are determined 
with the help of the Fresnel formulas. Thus, for example, 

R==e,' (e.") 'C ( x ,  x )  , 
2 cos cp 

) ( 
2 cos cp' 

C ( x ' x ) s  ( [ ~ - s i n ~ ~ 1 ~ ~ + c o s  cp [ ~ - s i n ~ c p ~ ] ~ + c o s  cpl 1.. 
(5) 

Here p and p' are angles of incidence and reflection. In what 
follows, we limit ourselves to the case of almost normal inci- 
dence and scattering, p',p" 4 1, for which all the coefficients 
C (ad ) are identical: 

where E is permittivity and 6 = n + ix. 
The quantity WapY6 (k,w) in (3) represents the general- 

ized susceptibility of the electrons relative to an external 
field with frequency w = wi - w, and wavelength 2 r / k ;  at 
h g ~ ,  and f i k ~ ,  it can be written down in the form of an 
integral over the FS: 
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2 asp 
Wan7a ( k ,  a )  = 7$ - LB(P, k ,  a )  P T ~ '  ( P ,  k ,  a )  Here V ( E ~ )  is the density of states on the Fermi level, and 

(2nfi) v averaging over the FS is denoted by the angle brackets: 

where u, = n0vp and paB(p) is the dimensionless tensor of the 
reciprocal effective electron mass. Screening of the external 
force acting on the electrons is taken into account in the 
quantitypaB( p, k, w). In view ofthe relatively low frequency 
of the external field and its strong inhomogeneity (k- I/@, 
the susceptibility (6) has strong spatial dispersion. 

2. Proceeding to the analysis of the frequency depen- 
dence of the scattering cross section, we first note that, 
thanks to the condition w)v, we can write 

Here the function Wao,, depends only on the ratio w/k =u; 
this allows us to establish in general form the frequency de- 
pendence of the scattering cross section in the region of small 
(w(u,/S ) and large (w)u,/S ) scattering frequencies. Actu- 
ally, transforming in (3) to integration over u we obtain 

where 

F ( o )  =Am [l-exp ( - A w l T )  -' 
and 

~ ( ' 9  ')=e;pae ( p ,  k ,  o )  ( e o s )  '. (10) 

It follows from (9) that W(u) a u as 24-4; therefore 
J ,  aF(w)  ln(u,/wS) at small w. On the other hand, 
W (u)  = 0 at u > u,,,, ; therefore at w,u, ,,, /S we have 
J ,  a F (@)/a4. 

The analytic properties of the susceptibility (6) allow us 
to obtain for the scattering cross section integral expressions 
of sum-rule type.4 In the case of low temperatures T(tiu,/S 
we have from the Kramers-Kronig relation. 

The relation (12) has an explicit physical meaning: in the 
classical limit, the integrated cross section is determined by 
the mean square of the fluctuations of the effective mass ten- 
sor of the electrons located in the volume SS and having 
energy in the range - Tnear the FS. It should be noted that, 
just as in the initial formula (6), these relations do not take 
into account transitions between energy bands, i.e., the con- 
sidered frequencies are given by &I(&, , where &, is the min- 
imum separation of the bands near the FS. Therefore the 
integration in ( I  1) and (12) is actually limited to these fre- 
quencies (see Refs. 5 and 6). 

3. The frequency dependence of the scattering cross sec- 
tion in the interval w2uF/6 is determined by the behavior of 
the function W(u), which in turn depends on the structure of 
the FS as follows from its definition (9). 

The relation (8) can be regarded as an integral equation 
for finding the function W(u) from the experimentally mea- 
sured differential scattering cross section. The reconstruc- 
tion of the function W(u) requires solution of Eq. (8) in gen- 
eral form. Its solution is similar to the solution of the Stieltjes 
equation, which is considered, for example, in Refs. 7 and 8. 
In place of u we introduce the dimensionless variable u' = u/ 
u (u  is the characteristic value of the velocity, and we shall 
omit the prime in the following). The substitution 

u=er, W (e ' )  e'=Y ( T )  , 

(13) 

converts Eq. (8) to an equation with a difference kernel: 

which reduces by the Fourier transformation 

+a 

m ( p )  = J ~ ( q )  olPqdq 
- m 

to an algebraic one: 

Z ( P )  = ( n p l s h  np)Q' ( P ) .  (15) 

Finally, the solution of Eq. (8) can be written down in the 
form 

At high temperatures Bfiu~/6'  when It should be noted that the poor convergence of the integral 
tant frequencies, the similar relation takes the form in (16) does not permit us to carry out the integration in 

d2cs 
ro2( 1 p ( t s a ) - ( p ( l v a ) )  1 2 ) S 6 ~  ( E ~ )  T, general form. For this reason, it is more convenient to have J Z G ~ @  = [ ( n + l ) ' + x 2 ] '  the solution of Eq. (14) in the form of a series. To find it, we 

p('p 8)=ea'paB(eos)  *. (12) use the formula 

1067 Sov. Phys. JETP 57 (5), May 1983 lpatova et aL 1067 



We operGe on the right and left sides of Eq. (14) with the 
operator R. Using the expansion for !P (7) in a Fourier series, 
it is not difficult to establish the fact that the operator inverts 
the integral operator in the right side of (14). Carrying out 
the substitution inverse to (13), we obtain 

Use of the formal solution of (16) or (18) for finding W(u) 
from the experimental frequency dependence of the scatter- 
ing cross section presupposes a sufficient accuracy of the 
measurement of the cross section. Reliability in the estab- 
lishment of the function W(u) can be achieved by the inclu- 
sion of the corresponding mathematical reduction of the ex- 
perimental data in the measurement process itself.'? 

4. The function W (u) satisfies definite integral relations 
with respect to u that follow, just as do (1 1) and (l2), from the 
analytical properties of the generalized susceptibility (as 
usual, the variable has the dimension of velocity). In particu- 
lar, 

Actually, the interval of integral in (19) should be limited by 
the condition fiu/S < E ~  which separates the range of fre- 
quencies in which there are no interband transitions. 

Analysis of the singularities of the behavior of the func- 
tion W(u) is similar to the analysis of the singularities of the 
sound absorption coefficient in Refs. 10 and 1 1. 

According to (9), electrons of the strip v, = u make the 
contribution to W(u) at a specific value of u. With increase in 
u, the strip contracts to the limiting point on the FS where 
v, = u ,,,, ; at u > v ,,,, there is no strip and W = 0. Singu- 
larity of W(u) corresponds to disappearance (generation) of 
the strip. For an everywhere-convex FS, such a singularity 
(and, furthermore, only one) exists at arbitrary orientation of 
the surface of the metal. However, in real metals, the FS are 
irregular and have hollows, necks, and open directions, 
which complicate the dependence W = W(u). Further, the 
character of the function W(u) depends significantly on the 
direction of the normal n to the metal surface. Strips on FS of 
a dumbbell shape are shown in Fig. 1 in the case of various 
directions of the vector n. Each change in the topology of the 
strip (at u = u,) leads to a singularity in the function. As 
shown in Ref. 10, topological changes in the strips can be of 
two forms: the appearance (disappearance) of a loop of (or of 
the entire) strip (accompanied by an 0-type singularity), 
break of the strip (singularity of the X-type). In the calcula- 
tion of singular part of W(u) it is impossible to make direct 
use of the results of Refs. 10 and 1 1, since, as a consequence 
ofscreening, the integrand in (9) vanishes at the critical point 

FIG. 1. 

(at the point of generation of the strip or at the point of its 
self-intersection). Actually, the intergal 

irrespective of the type of singularity, diverges logarithmi- 
cally as u-u, : if the singularity is 0-type, 

Re (R)mln I v,lAu 1 ,  
if it is X-type 

Im (R>mln I v,/Au I, (Au=u-u,) .  

From (7) and (lo), omitting the indices, we have 

The integral ( pR )+p, ( R  ) as u-+u, ,  where pC is the value 
of ,u at the critical point. It is seen that p-0 as U-U, . With 
the help of (7') and (9), we can calculate the singularity of 
W (u) as u-u, . 

Upon the approach of u to v, ,,, we have 

here m, is a parameter of the dimensions of mass, deter- 
mined by the curvature of the FS at the critical point, near 
which we can introduce the set of coordinates such that 
v, = u, u,K + v2) (in the case of a singularity of the 0- 
type the sign is of v2 + ; in the case of a singularity of the X- 
type, the sign is - ). The parameter m, is determined by the 
equation dS/vf = rnfdgdv, in order of magnitude it is equal 
to the mass of the electron and can be calculated in terms of 
the derivatives of the components of the effective mass ten- 
sor with respect to the quasimomentum. In the general case, 
BC -1. 

If the strip has a point of self-intersection at u = u,, 
then 

It is seen that the derivatives of W (u) to the left and right 
at the point u = u, are equal to f W .  Under certain condi- 
tions (and with sorne "rough" approximation) the vicinity of 
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FIG. 2 

the point u = u, will be perceived as the vicinity of a sharp 
maximum. 

We note: W, and the coefficients of ln-21uc /Au 1 and 
ln-' lv, / A  u I contain integrals over the entire FS, and are not 
expressed in terms of the value of the electronic characteris- 
tics at the critical point. 

The qualitative behavior of the function W(u) for a sur- 
face of the "dumbbell" type at the orientations shown in Fig. 
1, a d  of the normal to the surface relative to the axes of the 
dumbbell, are given here in Figs. 2, a-d. 

As is seen from the foregoing, the character of the sin- 
gularity of W(u) depends essentially on the local geometry of 
the FS. For example, the existence of local flattenings on the 
FS should enhance the singularity. The vanishing of p at the 
critical point (which led to a significant roughening of the 
singularity) was connected with the assumption that to each 
value of u, on the FS there corresponds a single critical 
point. If there are several, and they are nonequivalent, then 
W(u) at u = u, has a jump or a logarithmic singularity: 

Here 

p, and m ,  are the values of p and m, at the n-th point. 
5. The function W (u) can be calculated in explicit form 

in the nearly free electron model, in which the deviation of 
the FS from spherical is significant only near the Bragg-re- 
flection planes. Near one of the edges of the Brillouin zone, 
the energy of the electrons is described by the equationI2 

1 1 
E (p) = - ( E ~ + ~ / ~ + E ~ - G / ~ )  T -[ (E~+G/z -E~-G/z )  '+41 V~ 1'1 

2 2 

Here VG is the Fourier component of the pseudopotential of 
the lattice corresponding to the reciprocal lattice vector G/ 
Ci. Equation (23) describes both "necks" (here and below 
these correspond to the upper sign) and "lenses" (the lower 
sign). The reciprocal effective-mass tensor entering into the 
cross section (7) is as a whole determined by the anisotropic 
contribution to the spectrum. Here 

It should be noted that Eq. (24) and what follows are valid for 

the description of the scattering processes under the condi- 
tion V, )tiw. In the opposite limiting case the Bragg reflec- 
tion of the electrons can be taken into account by perturba- 
tion theory. The value of the cross section in this region is 
proportional to (V,/E,)'. 

For a FS with a single neck (lens) it is not difficult to 
calculate tfie quantity which, according to (12) and (19), de- 
termines the scattering cross section: 

It is seen from (25) that the presence on the FS of a portion of 
large curvature leads to an increase in the integrated cross 
section by a factor -EF/V,, while in the approximation of 
lowest order in VG/&, the scattering cross section is deter- 
mined by the immediate vicinity of this portion. In this ap- 
proximation, if the FS has several necks (lenses) their contri- 
butions to the cross section are additive. 

In the calculation of the function W(u), we take it into 
account that the quantity paB(p) is anomalously large in a 
narrow region of small pG.  Just this region determines 
(apart from corrections - VG/~,) the value of W(u) for all 
strips which pass through it. Thus, for example, for a lens at 
nlG, all the strips pass through the region of small pG.  Cor- 
respondingly, by using (24) and carrying out integration in 
(9) over the vicinity of the region of small pG,  we obtain 

Equation (26) is valid up to 

In the narrow interval 

uo<~<Urnox' [ (2~~/mu)-(G/2mo)~l '" 

the function W(u) falls off, as a result of screening, from its 
maximum value - (E,/ VG) to zero. 

At arbitrary orientation of the vector n relative to the 
axis of the lens, the W (u) dependence has two characteristic 
portions: 1) the portion u < u, = v,,,, sina [where 
cosa = (n-G)/G] in which the strips n.v, = u intersects the 
region of large p(p); here W(u) cc (v, - u)-"'; 2) the region 
u ,  < u < u,,,, , in which the quantity W(u) is determined by 
the vicinity of the 0-type point. The function W(u) for the 
lens is shown in Fig. 3. 

In similar fashion, we can determine W (u) for a sphere 
with several necks. Additional information on the anisotro- 
py of the electron spectrum and the shape of the FS is con- 
tained in the dependence of W(u) on the polarization of the 
incident and scattered radiations. Thus, at the polarization- 
vectors orientations e' 1G and eslG, where G is the recipro- 
cal lattice vector parallel to the symmetry axis of the region 
of large curvature, the contribution of this region to W ( u )  is 
sharply reduced, in accord with (25). 

6. In conclusion, we discuss the effect of volume and 
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surface collisions of electrons on the spectrum of the light 
scattered by the electrons. 

The singularities in the dependence of W(u) appear 
upon satisfaction of the condition w)v, at which the contri- 
bution to the distribution function of the electrons, deter- 
mined from the kinetic equation (A7), has a delta-function 
character. For this reason, as in the problem of the anoma- 
lous skin effect,'' we can take the scattering of the electrons 
into account by the introduction of a finite relaxation time 
T[E(P) ] ,  which has the meaning of the time of "departure" of 
the electron from the strip n0vp = u. As is well known, the 
relaxation time decreases rapidly when the excitation energy 
rises above the Fermi level, so that the quantity ~/T[E(P)] 
becomes equal to the energy of excitation at [ ~ ( p )  - E ~ ] /  
fi--(3-6)-1014 s-' (see Ref. 12). Correspondingly, in the re- 
construction of the function W(u) from the frequency depen- 
dence of the light-scattering cross section, the singularities 
in the region u 5 + fiuS-I) will be smeared out. In 
view of the strong dependence of T on the energy, better 
conditions for the determination of the shape of the Fermi 
surface should obviously be achieved in semimetals and al- 
loys with sufficiently large penetration depth of the radi- 
ation, in which the inequality ugS/r[~(p)] can be satisfied 
with sufficient margin. 

Scattering of electrons by surface defects is taken into 
account in the boundary conditions (A8) to the kinetic equa- 
tion (A7), as in the problem of the anomalous skin e f f e ~ t . ~ . ' ~  
However, in the problem of light scattering (in contrast to 
Refs. 5 and 12), the response of the system is determined at a 
specific distribution of the external field (see the Appendix), 
which materially simplifies the problem. Use for Sn, of the 
integral boundary condition (AS), which describes the scat- 
tering from surface roughnesses, leads to the appearance of 
an additional term J :  in the expression for the function J, 
that determines the scattering cross section (2): 

J,'=S 32F (o)  
[ ( n + l ) 2 + ~ 2 ] 2  

i i 1662~2 
X du dulW(u, u') 

[4uZ+ 0262] [ 4 ~ ' ~ + 0 ~ 6 ~ ]  ' (27) 
0 0 

W (u, u') 

This term does not change the asymptotic values of the scat- 
tering cross section and of its integrated intensity, and has 
the smallness of (a/d )2 in the case of a sufficiently smooth 
surface [see (A8)]. 

APPENDIX 

The effective Hamiltonian of the interaction of the elec- 
tron with the field of the incident and scattered electromag- 
netic waves has the form'.2 

Here A h (r,t ) and A i ( r , t  ) are the vector potentials of the 
fields of the incident and scattered waves. As was shown in 
Refs. 1 and 13, at w, - w, go, the terms in the interaction 
Hamiltonian that are linear in the field of the electromagnet- 
ic wave give a small (-v/c) contribution to the scattering 
cross section in comparison with the quadratic term (Al).  
The vector potentials entering into (Al)  correspond to the 
field within the metal and are expressed in terms of the field 
outside the metal with the help of Maxwell's equations. The 
Hamiltonian (Al)  corresponds to the point potential energy 
of interaction of a photon with an electron. This allows us to 
express the scattering cross section of the photon, by a stan- 
dard m e t h ~ d , ~  in terms of the correlator of fluctuations of 
the effective mass tensor of a unit volume, namely the func- 
tion J, in (2) is equal to 

Here A and A are the amplitudes of the electromagnetic 
waves outside the metal, and Sn, = n, - no. The correlator 
in (A2) can be expressed in terms of the generalized suscepti- 
biity of the electrons relative to the weak external field 

e2 
UaB= - Aai (r, t) A@'' (r, t) . 

mocZ (-44) 

We represent the response of the system to the external field 
(A4) in the form 

Then, according to the fluctuation-dissipation theorem, the 
correlator from (A2) is expressed in terms of the generalized 
susceptibility aaB, by the equation 

Lrc 
<tipao (r, t )  6pT* (r', 0) ),= Im U ~ O T O  (r, r', a ) .  

1 - exp ( - f i o / T )  
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The generalized susceptibility a can be found from a solu- 
tion of the kinetic equation for Sn, (r) 

with the boundary condition determined by the character of 
the reflection of the electrons from the boundary of the met- 
al. Under sufficiently general assumptions, this condition 
can be written in the form5.I4 

Here V(p, - p ; )  is the Fourier component of the binary cor- 
relator of the surface roughnesses. It differs from zero in the 
region / p l  - p; I 5 W d ,  whereits value is V(0) -a2d '; a is the 
mean amplitude, d is the correlation length of the rough- 
nesses. The electric field E is found from the condition of 
neutrality. 

The sign > at Sn, denotes: v, 30. 
Calculation of the response (AS) with the boundary con- 

dition (A8) is similar to finding the current in the problem of 
the anomalous skin e f f e ~ t . ~ . ' ~  The final result for the quanti- 
ty J,  , which determines the scattering cross section, is given 
in the case of specular reflection of the electrons from the 
surface, when V(pl - p ; )  = 0, by the equations (3)-(7), and 

allowance for the surface scattering leads to the appearance 
of the additional term (27). 
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