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The possibility of realizing phonon instability in nonequilibrium superconductors is considered 
on the basis of the kinetic equations for electrons and phonons. This instability can lead to an 
acoustic quantum-generator (AQG) regime, i.e., to coherent and monochromatic phonon emis- 
sion from a superconducting film. The general conditions for phonon instability are derived and 
the possibility of satisfying them is analyzed in the case of microwave pumping and tunnel injec- 
tion at low temperatures. I t  is shown that when electrons are injected from a bulky superconduc- 
tor into a thin superconducting film, conditions that realize the AQG regime are satisfied in the 
film. The analysis is carried out with effective allowance for the inelastic electron-electron colli- 
sions. The departure of the electron subsystem of the superconductor from equilibrium can lead 
to a number of other instabilities that compete with the phonon instability and whose develop- 
ment might impede the onset of the AQG regime. The most typical of these instabilities are 
analyzed and it is shown that a subthreshold AQG regime can in principle be attained in experi- 
ment. 

PACS numbers: 73.60.Ka, 74.30. - e, 43.35.Gk, 63.20.Rr 

The degree of ordering of a physical system that is very 
far from thermodynamic equilibrium can become higher 
than in the equilibrium state (see, e.g., Ref. 1). Superconduc- 
tors are no exception in this respect. Thus, factors that casue 
the electron subsystem of a superconductor to deviate from 
equilibrium can make the system nondissipative, inhomo- 
geneous in space, and nonstationary in time.2 Another mani- 
festation of ordering of a nonequilibrium semiconductor is 
the "phonon instability" '' discussed in the present article. 
This instability can lead to a "quasi-laser" generation of 
phonons, wherein phonon emission from a nonequilibrium- 
superconductor film is coherent and monochromatic. 

The possibility of transition into "quasi-lasing" is con- 
nected with a circumstance common to Bose fields, namely 
that the phonon source contains terms proportional to the 
phonon occupation numbem3 This possibility was discussed 
independently in Refs. 4 and 5 for the cases of tunnel injec- 
tion and microwave pumping, respectively (we note also a 
paper by Buly~henkov,~ which borders quite closely on our 
problem). As shown in these papers, phonon instability calls 
for population inversion (n, > 1/2 in some energy region 
above the gap, where n, is the distribution function of the 
electronic excitations), but this condition is still insufficient 
for instability development. Population inversion can result 
from both microwave pumping and tunnel injection, but in 
the former case no phonon instability is apparently pro- 
d ~ c e d , ~  whereas in the case of tunnel injection from a bulky 
superconductor into a thin film (in the so-called S-I-S ' junc- 
tion) this situation seems to be more fa~orable .~  

We analyze in this paper the problem of reaching the 
threshold of "quasi-lasing" from the point of view of the 
kinetic equations for phonons and electrons. We note that 

back in 1974 Chang and Scalapino, assuming a quasi-Fermi 
distribution function of the electron distribution function 
(with a certain effective chemical potential), calculated the 
sound absorption coefficient and found it to be negative at a 
high degree of disequilibrium; this enabled them to deduce 
the feasibility of sound amplification by a nonequilibrium 
supercond~ctor.~ However, in their following paper, devot- 
ed to the stability of the resultant picture, they reached the 
conclusion that at such a disequilibrium the system ceases to 
be in a spatially homogeneous state, and therefore "phonon 
instability has no physical meaning."8 Later papers, particu- 
larly Refs. 2 and 9-13, give grounds for assuming that the 
stability problem is by far not trivial and the conclusion of 
Ref. 8 seems in our opinion to be excessively categorical. 

The complicated nonlinear relation between the elec- 
tronic excitations, the Cooper condensate, and the phonons 
leads to a great variety of phenomena in nonequilibrium su- 
perconductors, including to onset of instabilities of various 
kinds. The kinetic equations that describe the nonequilibri- 
um behavior of a superconductor admit of a multitude (de- 
pending on the external conditions) of sollutions, and this 
multitude is the internal source of the instabilities that 
evolve as a result of inevitable fluctuations. From the experi- 
mental viewpoint primary interest attaches to the possibility 
of choosing the external parameters such that a subthreshold 
acoustic quantum generator (AQG) regime is attained in the 
simplest manner. Obviously, the simplest case is one in 
which the phonon instability (more accurately, the subthre- 
shold regime) is realized in a spatially homogeneous and sta- 
tionary situation, and the role of fluctuations capable of 
causing some other instabilities can be neglected. It follows 
from the results presented here that the threshold AQG re- 
gime can apparently be attained in this case for a definite 
choice of the system parameters. The influence of the devel- 

1059 Sov. Phys. JETP 57 (5). May 1983 0038-5646/83/051059-07$04.00 @ 1983 American Institute of Physics 1059 



opment of some instability on the investigated regime, as 
well as the dynamics of the AQG itself, is of course quite 
interesting, but calls for a separate examination. 

92. POPULATION INVERSION IN NONEQUILIBRIUM 
SUPERCONDUCTORS 

Let us ascertain what general condition must be satis- 
fied by the nonequilibrium electron distribution function if 
phonon instability is to occur in a superconductor. 

We assume that external factors that cause the electron 
subsystem to deviate from equilibrium establish, in a super- 
conductor connected to an external thermostat, a dissipative 
stationary state wherein the nonequilibrium electronic exci- 
tations are characterized by a distribution function n,, 
where& is the energy of the quasiparticle excitation. It will be 
assumed below that the distribution function n, is even, as 
well as spatially homogeneous and isotropic (as is also the 
order parameter A ). 

Consider the influence exerted on the electron subsys- 
tem by an external phonon flux characterized by occupation 
numbers N,, (we assume that N,, ) 1). In nonequilibrium 
superconductors the phonons can be absorbed (and emitted) 
both in pair-breaking (respectively, recombination) pro- 
cesses and in relaxation processes. At small deviation of the 
electron subsystem from equilibrium, the relaxation pro- 
cesses predominate.14.'5 AS shown by Aronov and Spivak,I2 
there is no phonon instability in this case (at any rate for 
microwave pumping). At a strong deviation from equilibri- 
um, the recombination processes in superconductors are 
much faster than the relaxation processes,I5 and in this case 
one must consider the stability to recombination emission of 
phonons. 

The number of phonons absorbed per unit time at a 
frequency o, in an interval dm, is given by (fi = 1) 

wherep(o,) = Vwi/2n%3, Vis the volume of the supercon- 
ductor, u is the speed of sound, and I(@,) is the phonon- 
electron collision ~pe ra to r .~  In the case of interest to us, 
when the electronic excitations in the presence of an external 
perturbation can be described in terms of the distribution 
function n,, this operator takes the form 

(we recall that N,, % 1; R - 1 is the dimensionless electron- 
phonon interaction constant). The recombination part of the 
collision integral (2) can be represented in the form2) 

and the relaxation part in the form 

It can be seen from (3) and (4) that phonon instability 
(I (a,) < 0) due to recombination processes (at frequencies w, 
2 24 ) can occur only if the condition 

n,>'/, (5) 

is satisfied in some region of values of E above the gap." By 
virtue of Elesin's known such a situation cannot 
occur when pumping a "broad"source, when the external 
action generates quasiparticles in a large energy region 
(Emax -A % A ). The picture is different when a "narrow" 
quasiparticle source acts, wherein the quasiparticles are gen- 
erated in a narrow energy region (Em,, -A ( A  ). In this 
case, as shown by Aronov and SpivakI2 as well as by Genkin 
and Protogenov' ' (see also Refs. 4 and 5), n, can exceed 1/2 
and therefore the necessary condition for "phonon instabil- 
ity" can in principle be satisfied. Assuming "narrowness" of 
the quasiparticle distribution, we simplify expressions (3) 
and (4) and represent the "sufficient" condition for phonon 
instability in the form 

for some frequency w, 224.  An analysis of (6) shows that this 
condition can be satisfied if the deviation from equilibrium is 
strong enough: ni - 1, Z<S,,, . Indeed, in this case, for the 
frequencies w, =Emax + A the first integral in the curly 
brackets is equal to ( - T),  whereas the second does not ex- 
ceed 2(CmaX /A - 1)"* and is small by virtue of the "narrow- 
ness" of the electron distribution. In this case we have there- 
fore not absorption but amplification of the sound wave. 

We shall analyze in the following sections the extent to 
which the condition (6) can be satisfied in the case of micro- 
wave pumping or tunnel injection. 

93. SELF-CONSISTENT KINETIC EQUATIONS 

We are interested in the possible stationary energy dis- 
tributions of the electrons in a superconducting film con- 
nected to a thermostat, following the action of various exter- 
nal perturbations which take the electron subsystem out of 
equilibrium. Let the film thickness be small enough to pre- 
vent back action of the nonequilibrium phonons on the elec- 
trons. If the film is ideally acoustically matched to the ther- 
mostat (for details see Refs. 16 and 3), this situation obtains 
already for films of thickness d -{,(go is the correlation radi- 
us of the superconductor). In this case the kinetics of the 
electron and phonon subsystems of the superconductor are 
no longer coupled and the usual model with a phonon ther- 
mostat can be used to investigate the electron kinetics. We 
assume in addition that the film contains enough electron- 
elastic-scattering centers to make the electron d!stribution 
function and the order parameter isotropic. The Eliashberg 
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kinetic equations, which determine the electron distribu- 
tion, then take the form 

~ = Q ( F ,  A ) + J ( e ) ,  (7) 

where Q (&,A ) is the external source of the nonequilibrium 
electronic excitations (it will be specified for the different 
cases below), and the collision integral contains an electron- 
phonon and an electron-electron part, J(E) = Jy) + JF) .  
The electron-phonon part takes a t  T = 0 the form 

nh O'EE' 
J:'" = ---.- J dFf J 

~ ( U P E ' )  A 
d" %.-a;) ( E 1 2 - 4 . ) .  

The electron-electron part is 

1 - d e ,  de ,  dea  
J:" =I J J J .- 

LC, (&2-42)  'I' ( F , Z - A Z )  'I' ( & 2 Z - 4 2 )  'I' ( F ; Z -  4,) ' I  
A 

where a and b are numbers of ttl:, x d e r  of unity, and are 
connected with the electron-electron interaction potential. l 6  

The quantity A in (7)-(9) should be determined from the self- 
consistency equation 

The self-consistent system of equations is strongly non- 
linear even if no account is taken of the inelastic electron- 
electron collisions described by the term (9). However, the 
(assumed!) "narrowness" of the energy distribution of the 
electronic excitations makes it possible to find the solution 
effectively even when (9) is taken into account. 

We introduce the variables S =Em,, - A  and 
Z = (E - A )/a, S > 0. We put (our definition differs some- 
what from that used in the literature, cf. Ref. 2) 

and represent the self-consistency equation (10) in the form 
[the reduction of ( lo )  to (12) calls only for satisfaction of the 
conditions (A,A,) < o,] 

l n ( A / A o )  =-2E, (12) 

where A ,  is the gap at T = 0 in the absence of an external 
perturbation. The narrowness of the quasiparticle distribu- 
tion means, as can be seen from (1 I), smallness of ii, therefore 
the gap 

A=Ao( l -2 i i )  (13) 

varies little. 
We turn now to the collision integrals. If n, - 1 and is 

concentrated in the immediate region above the gap, the re- 
laxation terms in (8) are negligibly small compared with the 
recombination terms, so that the operator JFh)can be simpli- 
fied to 

Electron-electron collisions can lead to a substantial 
change of the distribution function if they are intense 
enough. In the case considered by us, when the quasiparti- 
eles are concentrated in a narrow layer near the Fermi sur- 
face and n, - 1 in this layer, it is necessary primarily to take 
into account the "impact pairing" processes (the second 
member in the term proportional to the factor M, in the 
collision integral J F'), when three electronic excitations with 
energies &>A collide and form a bound state (a Cooper pair) 
and a free quasiparticle with energy >3A. The inverse pro- 
cesses of "impact multiplication" are not very effective in 
this case, so that the collision integral J t ' c a n  be reduced to 
the form 

Comparing (14) and (15) we can verify that the electron-elec- 
tron collisions are inessential if the parameter 

is small (we have put w, =up,). For metals with relatively 
high Debye frequencies (such as aluminum) c, may be not 
very small and allowance for c becomes essential. Unfor- 
tunately, the factors a and b in (16) are not well known from 
experiment, and we therefore confine ourselves below the 
values c, = 0, 1, and 10. 

54. RESONANT PUMPING BY AN ELECTROMAGNETIC FIELD 

Let the external action that takes the electron subsys- 
tem out of equilibrium be a high-frequency electromagnetic 
field of frequency w,>2A. The quasiparticle source in (7) 
takes then the form 

Here a = ( ~ / C ) ~ A , ~  A -,,, D, D = + u: T , , ~  is the diffusion 
coefficient, and A," is the vector potential of the electromag- 
netic field, the later assumed to be monochromatic. Equa- 
tions (7), (17), and (18) were solved in the "recombination 
approximation" (14), without allowance for electron-elec- 
tron collisions, by Aronov and Spivak.12 Also neglected in 
the solution was also the Eliashberg mechanism [the terms 
U ,  in (17)], which leads to a field redistribution of the gen- 
erated particles. This neglect valid in the case of weak fields 
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(with small parameter a/y, where y is the electron energy 
damping). In the approximation indicated, it is easy to ob- 
tain from (7), (17), and (14) the distribution function (we are 
interested only in the part of n, above the gap, while the far 
and small tail is approximated by the equilibrium equation) 

whereA = (r/r)'12,1" = a&/27rilA 3 ,  with,?,,, = wo - A.  
The quantity 1" is proportional to the factor a/y. It follows 
from (19) that n, = 1 at z = 1. In the remaining region z < 1 
the quantity n, is small if the value ofA is small. In the case of 
high-intensity fields one can expect (19) to yield an overesti- 
mate of n, (by virtue of the aforementioned approximations). 
Nonetheless, approximating (1 9) in the region A ) 1, we have 
a saturation regime 

Substitution of (29) in (6) leads to vanishing of the first of the 
integrals at the frequency w, =ao ,  and while the second 
integral is small, it is positive so that the instability condition 
( 6 )  is not satisfied (at other frequencies w, the first integral is 
also positive, therefore the frequency o, = wo is the least 
stable). 

Thus, in a microwave field there is no phonon instabil- 
ity even if the field is ~ t rong .~ '  

45. PHONON STABILITY IN SYMMETRIC TUNNEL INJECTION 

In this case (S-I-S junction) the electron kinetics is also 
described by the ~ l i a s h b e r ~  equations, except that the fac- 
tors U & and Vin the quasiparticle source ( 17) are now equal 
to20-22 

where V, is the electric potential applied to the junction (the 
chargee is included in this quantity), and the factor 2a in the 
field term (1 7) is replaced by I, = (8e2RN (0)Sd ) - ', where R is 
the normal resistance of the dielectric film of the junction, S 
is its area, while d is the thickness of the injected film, and 
N (0) = mp, /22 .  is the density of the electron levels in it on 
the Fermi level. We note that single-particle tunneling leads, 
generally speaking, to unbalancing of the branches in the 
superconductors, 23 an unbalancing not accounted for by 
Eqs. (7)-(9), (17), and (21). But under the action of a "nar- 
row" injection source at low temperatures, when the elec- 
tronic excitations are injected directly into the region above 
the gap, the role of the unbalancing process can be neglected. 
The equations are analyzed in the same manner as in the case 
of a microwave field. The distribution function of the non- 
equilibrium electrons is again given by (19), but A is now 
equal to5' 

Even though the value of 1" (now T-Io/y) is assumed as 
before to be small, narrowness of the injection source can 
lead the distribution function to the saturation regime (20) if 
S /A < r < 1; this substantial difference is the result of the 
difference between the factors V in (18) and (21).2 As already 
noted, (§4), even in the saturation regime there is no phonon 
instability. It  can be easily seen that allowance for the elec- 
tron-electron inelastic collisions [in the effective approxima- 
tion (15)] likewise does not change this result. 

46. ASYMMETRIC S-/-Sf JUNCTION 

The picture changes radically in the case of an S-I-S' 
junction, when the quasiparticles are injected from a bulky 
superconductor into a thin film. This case was considered by 
Genkin and Protogenov," who have shown that the func- 
tion n, in the region of E above the gap can be close to unity. 
Since their analysis is in~omplete,~' we present here a solu- 
tion of Eqs. (7)-(10) in a more accurate approximation need- 
ed for our purposes. 

The initial equations for the case of an S-I-Sf junction 
are similar to those of a symmetrical S-I-S junction, except 
that the distribution function contained in Eq. (17) for the 
source Q (E )  with shifted arguments pertains to the bulky su- 
perconductor, while the factors U + and V are2' 

(A ' is the gap of the bulky injector). 
If the injector thickness is much larger than that of the 

thin film, which in turn does not exceed the quasiparticle 
diffusion length, the electron subsystem of the bulky super- 
conductor can be regarded as unperturbed even in the case of 
a strong deviation of the thin film from equilibrium. Assum- 
ing "narrowness" of the resultant strong-nonequilibrium (n, 
- 1) distribution of the quasiparticles at T = 0, the solution 
of Eqs. (7)-(10) with allowance for (12), (14), (15), (17), and 
(23) can be represented in the form 

where 

B=A/ri(I+ c),  A= ( A 1 / 2 6 )  "I?, I'=rolA3, 

~ ,=Z ,ooz /4nh ,  A=A, exp ( - -2E) ,  
(25) 

and the parameter E must be determined from the "self-con- 
sistency" equation 

We recall that the quantitiesd, S, c, and A in (25) depend 
on E and that Eq. (1 8) determines the values ofB for the given 
injection parameters. We shall find it more convenient to 
transform (26) into 
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(27) 

Equation (27) can be analytically investigated in limiting 
case (for simplicity we put for the time being c = 0). 

a) Let the external parameters Vo and To be such that a 
self-consistent value of E leads to B ( 1. Then (27), with ac- 
count taken of (25), reduces to the form 

We note that in this case the roots of (28) do not depend on 
the parameter S, but what depends on S is the region of appli- 
cability of Eq. (28), inasmuch as by virtue of the condition 
B < 1 it is necessary that the steady-state solution satisfy the 
inequality 

roc (28/A') IhA3ii. (29) 

The left-hand side of (28) has a maximum at n = 2/7. 
This value of n is a root if 

(here e is the base of the natural logarithms). At large values 
of ro there are obviously no solutions with small B, at 
smaller values there are two roots, and with decreasing To 
the smaller of the roots varies like 

A' ' la  r0 '12 

( )  dl ' 
while the other increases quite rapidly and goes ultimately 
beyond the applicability of our analysis (we recall that we 
assume E to be small). Near the characteristic value ro zr ,*, 
using (29) and (30), we have the following condition for S: 

6/A0> (32) 

Thus, if To 5 T,*, the self-consistent kinetic equations 
always have two solutions with B 4 1, since it is easily seen 
that the condition (32) is satisfied only if 6, is not too small 
(So is the initial excess above threshold, So = V, -A ' - A; 
for small 5 we have S - So z 25). 

b) In the opposite limiting case B ) 1, the right-hand 
side of (27) becomes equal to unity, so that (27) has a small 
root only at small S. Using (13) we obtain from (27) the fol- 
lowing expression for the small root: 

Em2 [I- ( i+80/2Ao)  "'I, (33) 

which is meaningless at So > 0. Thus, at a negative initial 
displacement (So < 0) the self-consistent system of equations 
has a solution with 

ii=--'/z60; (34) 

in this case B ) 1 if IS,[ is small enough. 
c) Of greatest interest is the case B =: 1, for it is precisely 

at these values of the parameter that phonon instability is 
attained. In this case the right-hand side of (27) is equal to (T/ 
2 - 1) and we obtain for the small root the same value (34). 
Thus, the roots of interest to us coincide in the cases b) and c), 

and differ only in the value of B, which is determined by the 
external parameters So and r,. 

A numerical analysis of the transcendental equation 
(27) confirms the arguments advanced here. Thus, for the 
parametersr, = lOW3,SO = - 0.02, co = O,A ' = 2 (in units 
of A,) we have three roots of Eq. (27): El  ~ 0 . 0 1  (Bz 14), 
E,z0.05 (Bz0.1); E3z0.95 (Bz0.3). At r o >  T,*, however, 
e.g., To = 0.05, we have (at So = - 0.3, A ' = 0.5) only one 
solution 5, z0 .2  (in this case Bz2.9;  8 ~ 0 . 0 2 ;  A z0.67) for 
the case c, = 0. With increasing co the value of B decreases 
( B z  1.9 at c, = 1) and at sufficiently large c, (e.g., c, = 10) 
there are no roots at all. Thus, the behavior of an S-I-S ' junc- 
tion is found to be extremely sensitive to the initial param- 
eters of the injection and of the junction itself. 

The situation we encounter now has been under thor- 
ough study in recent years in the theory of nonequilibrium 
superconductivity. In particular, for symmetric tunnel in- 
jection there is also a multiplicity of solutions of the self- 
consistent kinetic equations (see, e.g., Refs. 2 and 13). We 
note that besides the solutions E,-, obtained by us there ex- 
ists at So < 0 also the solution no = 0 corresponding the situa- 
tion when there is no excess of quasiparticles, as well as a 
solution corresponding to the normal state (A = 0). Disre- 
garding solutions with large Ti," we assert that in the general 
case there exist only three solutions, and the caseB 2 1 corre- 
sponds to the intermediate value 5,.  We have in mind the 
analogy with theS-I-Sjunction, we can expect this state to be 
unstable, the S-I-S ' junction current-voltage characteristic 
to be S-shaped, and a spatially inhomogeneous state to be 
realized in the superconducting film. The possibility of real- 
izing an AQG regime in this case calls for additional analy- 
sis. We, however, shall not deal with this question since, as 
noted above, at To > r ,* and So < 0 (see, in particular, the 
case mentioned above with To = 0.05) there is only one solu- 
tion corresponding to a superconducting state with an excess 
of electronic excitations. This simplifies greatly the analysis 
of the stability needed to attain the AQG threshold regime. 

97. THE STABILITY PROBLEM 

Analysis of the stability problem is exceedingly impor- 
tant for the attainment of the AQG regime. Many factors 
influence the stationary state in nonequilibrium supercon- 
ductors (e.g., fluctuations of the superfluid velocity,10 high- 
frequency fluctuations of the order parameter9 or of the elec- 
tromagnetic field,12 and others). 

We begin with the stability to high-frequency fluctu- 
ations of A. The corresponding instability criterion was ob- 
tained by Aronov and Gurevich9 and is connected with the 
reversal of the sign of the damping coefficient of the modes of 
the natural collective oscillations of the semiconductor's 
electron subsystem. The limiting stable value of A is deter- 
mined by the reversal of the sign of the expression 

where the frequency of the ith mode is determined by the 
equation 

n (oi/2) = ' / 2 .  (36) 
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In addition, the mode wo = 0 can be unstable. In the case 
B> 1, which we have in mind, expression (35) takes (for a 
narrow source) the forms' 

Po ( A )  = (1-2ii)/A2, (37) 

and consequently the rapid "disintegration" of the Cooper 
pairs can take place only at ii> 1/2. In other words, no insta- 
bility sets in at small n. 

We consider now the instability to fluctuations of the 
superfluid velocity V, (Ref. lo), which is due to the fact that 
the response of a nonequilibrium superconductor to an ex- 
ternal magnetic field becomes paramagneti~?~ in which case 
the sign of the "superfluid-component density" N, reverses 
sign: 

It follows from (38) that at the small values of 6 used by us 
and at B- 1 we have negative N,. Actually, however, the 
reversal of the sign of N, still does not mean development of 
instability. A rigorous analysis based on the solution of the 
Maxwell-London equations and carried out by Genkin and 
Protogenov," shows that the contact .with the bulky super- 
conductor stabilizes the situation in a thin film if 

A'd< I ha I '  (39) 

(here R ' and R are the penetration depths of the magnetic 
field and are connected with the London relation 
R -' = R L N,). This instability should therefore likewise 
not occur if the parameters are suitably chosen. 

Slow spatial and temporal fluctuations of the distribu- 
tion function of the electronic excitations and of the order 
parameter, with allowance, for the multiplicity of the self- 
consistent solutions of the Eliashberg kinetic equations, can 
lead, as noted in the preceding section, to the onset of a spa- 
tially inhomogeneous state. In the case when a single small 
value ii #O exists for a distribution of the form (24), the prob- 
lem was considered (in the relaxation-time approximation) 
by Genkin and Protogenov." The results of Ref. 11 offer 
evidence of stability of a homogeneous distribution (24) at 
arbitrary B. 

As for stability to high-frequency 'fluctuations of the 
electromagnetic field, it was indicated in Ref. 11 (see also 
Ref. 25) that instability to generation of electromagnetic 
waves is indeed possible in London superconductors. It must 
be kept in mind, however, that such an "instability" still 
does not mean destruction of the homogeneous supercon- 
ducting state. The reason is1' that the conductivity has a 
large imaginary part that suppresses the possible instability. 
Nonetheless, such a system can operate as an amplifier of 
electromagnetic wavesz5 in reflection. 

We note finally that the longitudinal-electric-field fluc- 
tuations due to the unbalance of the branches of the elec- 
tronic-excitation spectrum are also possible in superconduc- 
tors. In the case T =  0 investigated by us (of "narrow" 
distributions), however, the unbalance is negligibly 
 mall'^.^' and it can apparently be assumed that no instabil- 
ity to longitudinal-field fluctuations develop. (In our ap- 
proximation, there is no longitudinal field at all.) 

Of course, the foregoing analysis cannot be regarded as 
exhaustive, since it is difficult to investigate all the instabi- 
lilty-development channels possible in the system. We re- 
gard, however, the AQG problem as sufficiently interesting 
and important, and it would therefore be of interest, in addi- 
tion to further analysis, to perform the pertinent experi- 
ments. 

58. CONCLUSION 

Analysis shows thus that, notwithstanding the presence 
of "competing" instabilities when the electron subsystem of 
the superconductor deviates from equilibrium, that these in- 
stabilities do not arise in a number of experimentally realiza- 
ble situations and a threshold AQG regime can be attained in 
a spatially homogeneous and stationary state. We present 
numerical values of some possible parameters. Most fre- 
quently and easiest, as shown by experiment, nonequilibri- 
um states are reached in aluminum films, owing to the rela- 
tively long lifetimes of the electronic excitations. Typical 
values of the damping y for aluminum are estimated at lO7- 
108sec- ' (Ref. 26). Returning f i  to the equations, we have for 
the junction resistance 

R=h/8e2N (0) Sdl, ,  (40) 

and if I,-O.Oly, we obtain from (40) for aluminum at 
d-10-4 cm and N(0)-1034 erg-' cm-3 the estimate 
RS- L! cm2. Junctions with such low resistances can 
be fully realized (see, e.g., Refs. 27 and 28), but in the experi- 
mental studies known to us the junctions were symmetrical 
and this is probably one of the reasons for not observing 
phonon instability. Another factor to be considered is the 
need for satisfying the inequality (39) that imposes additional, 
conditions on the pair making up the S-I-St junction. Even 
though N, may not be small (e.g., IN, 1-0. I), there are no 
grounds for expecting the condition (39) to hinder greatly the 
attainment of the AQG threshold. To avoid misunderstand- 
ings, we note once more than we are dealing with the possi- 
bility of just the AQG threshold. It is natural to expect that 
when this threshold is reached and phonon instability devel- 
ops, a radical restructuring of the system will take place and 
will be accompanied, in particular, by a change of the distri- 
bution function of the electrons and the onset of a dynamic 
regime. The investigation of the AQG dynamics, however, is 
not the purpose of the present study. 

We note that the speed of sound in a superconductor is 
much lower than the speed of light, and the dimensionless 
electron-phonon interaction constant exceeds the corre- 
sponding electromagnetic interaction constant. As a result, 
the AQG gain is quite high. Indeed, using the collision oper- 
ator (2), we easily obtain for this gain the expression 

nh on A 
K ( a q ) =  --- 

2 E p  U 
z0 , (41) 

where - 10(o,) is the quantity in the curly brackets of (6), 
and for typical metals (Pb, Sn, Al) we have from (41) 
K (w, ) - lo3 cm- ' at pumps corresponding to I '(w,) - 1. 
This is higher than the working gain of gas, solid-state, and 
semiconductor lasers. Therefore in contrast to the ordinary 
laser, the AQG'regime can in principle be attained without 
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the use of a cavity, and the coherent phonon flux will propa- 
gate along a thin film. In addition, if necessary one can use 
the circumstance that at the interface of a metal and liquid 
helium the phonons undergo strong internal reflection, and 
a ring AQG regime can be realized (likewise in the plane of 
the film). 

Finally, we wish to note one circumstance that can 
make AQG most attractive from the practical point of view. 
The wavelength of the phonons emitted by an AQG is of the 
order of lop5 cm, whereas the energy of light of the same 
wavelength is larger by five orders of magnitude. This energy 
feature of AQG based on superconductors is most interest- 
ing. 

"Phonon instability can be understood as the reversal of the sign of the 
sound absorption coefficient of the nonequilibrium electron system of 
the superconductor. 

"The factor (1 - n, - n, - .) under the integral sign in (3) can be reduced 
by changing the variables in the last term to the form (1 - 2n,). 

"We note that the distribution n, produced in the superconductor need 
not be a monotonically decreasing function, so that the mode o, = 24 is 
not the least stable one and, in addition, the condition n, > 1/2 indicated 
in Ref. 4 is not, generally speaking, necessary. What is necessary is the 
weaker condition (5). 

"'In principle, the situation can change at finite temperatures, if account is 
taken of the contribution of the inelastic electron-electron collisions si- 
multaneously with the Eliashberg mechanism (cf. Ref. 19). Unfortunate- 
ly, this problem has so far not been sufficiently studied for the case 
o,>2A. 

"We assume that S and A in (22) are self-consistent values if the external 
parameters are given, but in view of the absence of the sought effect (i.e., 
of the phonon instability) we shall not go into the details of the behavior 
of an S-I-Sjunction (for details see Ref. 2). 

6'Unfortunately, no detailed analysis was made in Ref. 11 of the kinetic 
equations with allowance for the self-consistency equation and it was not 
discovered that the latter causes the solutions of the kinetic equations to 
be multiply valued. Therefore without going outside the framework of 
the approach of Ref. 11 it is impossible to make unequivocal predictions 
concerning the state of a nonequilibrium superconductor. 

"Cases corresponding to large E must be treated outside the framework of 
the approximations employed. It must be borne in mind, however, that 
states with large 7i are separated from states with small E by a large 
energy barrier, and transitions between them are usually exceedingly 
improbable." 

"No instability sets in at i f 0  in the case B > 1 (cf. Ref. 9). 
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