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The asymptotic regime of current flow in a randomly inhomogeneous anisotropic medium (a 
polycrystal) characterized by a conductivity tensor with principal values al,a2)a3 is considered. 
A qualitative theory based on an analysis of the geometrical properties of the high-conductivity 
paths is constructed, and the effective conductivity of a polycrystal is found. 
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The problem of determining the effective conductivity 
of a randomly inhomogeneous medium and similar prob- 
lems (of effective diffusion, thermal conductivity, static per- 
meability) arise in various physical situations, and have con- 
tinued to attract attention for over a hundred years now.' 

These problems are of special theoretical interest in 
those cases in which the medium is markedly inhomogen- 
eous, and the qualitative characteristics of the current-flow 
pattern (for definiteness we shall speak in the language of the 
problem of effective conductivity) and the order of magni- 
tude of the effective conductivity are not apparent before- 
hand. In the case in which the conductivity is a scalar, the 
progress made in the understanding of the qualitative char- 
acteristics of the current-flow pattern is connected with the 
concept of percolation level,2 while the success achieved in 
the estimation of the effective conductivity is connected with 
the investigation of the statistics of the geometrical proper- 
ties characterizing infinite clusters at the percolation level.3 
This has revealed a significant inherent similarity between 
percolation theory and the theory of second-order phase 
transitions, since underlying both of them are geometrical 
critical phenomena. 

Geometrical concepts are also important in the prob- 
lem, which we shall consider here, of the determination of 
the effective conductivity of a statistically isotropic poly- 
crystal whose crystallites are characterized by a highly an- 
isotropic conductivity tensor with principal values a , ,  a,, 
and a,, though these concepts are different from those used 
in percolation theory. Specifically, a decisive role is played 
by the investigation of the structure of the integral curves of 
the family of directions of high conductivity, or, as we shall 
term it, high-conductivity lines. This structure is studied 
with the aid of methods similar to those used in the qualita- 
tive theory of ordinary differential equations. 

Although the ordinary methods of solving the problems 
of the effective conductivity of highly inhomogeneous media 
(in particular, polycrystals) are not well developed, the two- 
dimensional problem has been solved exactly: the solution, 
as noted in Ref. 4, where it was first given, is possible owing 
to the peculiar symmetry of the equations for the current 
density (div j = 0) and the electric field (curl E = 0). Specifi- 
cally, if the principal values of the two-dimensional conduc- 
tivity tensor are equal to a, and a,, then a'' = (a, a,)''*. The 
existence of the exact answer allows us to test the qualitative 
theory developed below on the two-dimensional case. There- 
fore, we shall first set forth the principal ideas as applied to 

the two-dimensional case before going on to consider the 
three-dimensional case." 

Let a plane be divided into two-dimensional crystal- 
lites, namely polygons bordering on each other along com- 
mon sides (Fig. 1). Let the directions of high conductivity a, 
be specified in each crystallite, and let the transverse direc- 
tion be one of low conductivity a, (a,$a,). We shall assume 
that the situations in which the high-conductivity direction 
in a crystallite is parallel to one of its sides are degenerate, 
and we shall not consider them. In the nondegenerate case 
we can introduce the concept of high-conductivity lines: a 
polygonal line, each straight segment of which is parallel to 
the high conductivity direction of that crystallite in which 
that segment is located. In certain cases, if a straight segment 
of the polygonal line abuts against a vertex of the crystallite, 
the high conductivity line cannot be continued into the 
neighboring crystallites (or it can be continued, but nonuni- 
quely). Except for these special cases, the high conductivity 
line can be continued from both ends. On the face of it, an 
ordinary high conductivity line bears a qualitative resem- 
blance to a self-avoiding random-walk trajectory. But the 
high conductivity line, on getting into the region near the 
common vertex of three crystallites in which the directions 
of high conductivity intersect the sides converging at the 
vertex in question, winds around the vertex (Fig. 2). We shall 
say that such vertices are traps for the high conductivity 
lines. The property of a vertex's being a trap is a stable one (it 
does not disappear when the configuration is changed slight- 
ly), so that a finite fraction of all the vertices are traps. The 
"cross section for capture" by such a trap is of the order of 
the dimensions of a crystallite, and the probability of a high 
conductivity line eluding all the traps and going far off is 
exponentially small. Therefore, the typical asymptotic be- 
havior of an ordinary high conductivity line is the winding 
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FIG. 2. 
FIG. 4. 

around a vertex trap (similar to the winding of a phase trajec- 
tory around a focus in the qualitative theory of smooth dyna- 
mica1 systems). 

Another type of asymptotic behavior of high wnductiv- 
ity lines is their winding around a limit cycle-a closed high- 
conductivity line, see Fig. 3 (we classify it with the singular 
lines). In essence, the above-discussed cases exhaust the pos- 
sible types of asymptotic behavior of high conductivity lines 
(in a plane). 

Let us now introduce the concept of high conductivity 
bundles, by which we mean continuous groups of high con- 
ductivity lines having, in particular, identical asymptotic be- 
havior (i.e., winding around one and the same focus or cycle) 
at both ends. The bundles border on each other along singu- 
lar high-conductivity lines, as shown in Fig. 4. 

Using the above-introduced geometrical forms, we can 
visualize the current flow pattern in a two-dimensional poly- 
crystal in the case of extreme anisotropy as follows: the cur- 
rent flows largely along the bundles and the resistance, de- 
termined by the high conductivity a,, of the central part is 
small. As a bundle approaches a focus or a limit cycle, how- 
ever, it narrows down, the current density increases, the re- 
sistance per unit length of the bundle rises, and, ultimately, 
the current overflows in the direction of low conductivity 
from one bundle to a neighboring bundle that winds around 
the same focus or limit cycle. In this case, because of the 
tapering of the bundles, the distance that the current has to 
get over in the direction of low conductivity is significantly 
smaller than the crystallite dimensions. 

The foregoing can be formulated in the form of ideas 
about some equivalent network in which the good conduc- 
tors (i.e., the central untapered parts of the bundles) are in 
contact with each other, forming a branched circuit in which 
the contact resistances are high, and, in the final analysis, 
determine the resistance of the circuit as a whole. Therefore, 
to determine the asymptotic dependence of dff on a, and a, 

FIG. 3. 

in the case when u,/a,> 1, we must solve the problem of the 
determination of the asymptotic form of the resistance of a 
single typical contact. If we leave out the unimportant geo- 
metrical details, and spread out the bundles, we arrive at the 
situation depicted in Fig. 5a in the case of a contact at a focus 
and in Fig. 5b in the case of a contact on a limit cycle. Taking 
account of the spiral character of the winding of high con- 
ductivity lines around a focus or a limit cycle, we can take the 
dependence of the width h of a bundle on the distance I along 
the bundle in the form h (I ) = kl in the case of a focus and 
h (I ) = k exp ( - I /I,) in the case of a limit cycle. We can then 
easily estimate the contact resistance, using the variational 
principle (see Ref. 5) in the form 

where the minimization is performed over all the j functions 
satisfying the conditions 

div j=0, j d n = ~ .  

Hence for both a focus and a limit cycle we easily find that 

where the numerical factor c depends on the geometrical 
details. Since the resistances of all the contacts of the de- 
scribed equivalent network are of the same order of magni- 
tude, and are proportional to (a, a,)-'/*, the resistance of 
the entire network behaves similarly, i.e., the conductivity 
has the asymptotic form dff=:(u, a,)'/'. It is impossible to 
determine the numerical factor in this formula with the aid 
of the above-expounded procedure. Clearly, the result ob- 
tained agrees with the exact expression for ueff (Ref. 4). 

Besides allowing the derivation of the approximate for- 
mula for aeff, the foregoing analysis enables us to draw a 
conclusion about the highly inhomogeneous distribution of 
the Joule heat evolved during the flow of current in a poly- 
crystal. Specifically, the major portion of the Joule heat will 
be evolved in that small part of the entire volume of the 
polycrystal which corresponds to the foci and limit cycles, 
where the overflow of the current from one bundle to an- 
other occurs; the ratio of this volume to the total volume is 
- ( ~ ~ / a ' ) ' ' ~ .  

The three-dimensional case differs from the two-dimen- 
sional one in that it is characterized by a more complicated 
classification of the types of asymptotic behavior of the high 
conductivity lines and, consequently, of the types of electri- 
cal contacts between the bundles. Thus, instead of a single 
trap of the focus type, several types of traps are possible. The 
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FIG. 5. 

simplest of them is formed in the vicinity of an edge contact 
of three crystallites in which the high conductivity lines are 
such that their projections on a plane perpendicular to the 
edge under consideration form a two-dimensional focus 
trap. This means that a high conductivity line winds around 
the edge, as shown in Fig. 6. The electrical contact between 
two bundles that wind around the same edge can easily be 
estimated with the aid of the same variational principle. It 
turns out in this case that the resistance of such a contact 
(with a,)a,>u,) behaves asymptotically like c(u, a,)-'I2, 
where a, and a, are the two leading-with respect to magni- 
tude-principal values of the conductivity tensor. The con- 
stant c is determined by the geometry of the trap. 

Certain other types of essentially three-dimensional 
traps that are formed at the junction of four crystallites and 
were investigated by us have a much higher resistance (of the 
order of l/a,) at a contact between bundles curling in them, 
which is due to a more rapid decrease of the cross-section 
area of the bundles as they curl in the essentially three-di- 
mensional traps. We did not find electrical contacts with 
resistances that are asymptotically lower than (a, a,)-"'. If 
we assume that there are enough good contacts with resis- 
tances -(a, a,)-'/' to join the bundles into an infinite clus- 
ter (this seems to us to be likely, since the statistical weight of 
the local configurations that give rise to essentially three 

FIG. 6. 

dimensional traps with high resistances is small), then we 
can in this case give an asymptotic estimate for the effective 
conductivity of a three-dimensional polycrystal: 

It would be of interest to verify by computer simulation the 
assumption made above that the connectivity of the equiva- 
lent electrical circuit is due to the presence of edge traps. 

It is worth noting that the self-consistent field method, 
which has, beginning with Maxwell, often been used to esti- 
mate the effective conductivity, and usually leads to qualita- 
tively correct results,"ields for a polycrystal 
a'" = (a, a,)'/' in the two-dimensional case and 
dff -- t(a, in the three-dimensional case. 

"The point is not just that we'do not know how to obtain the exact answer 
ford'  in the three-dimensional case, but also that the effective conduc- 
tivity is not only a function of u,, u2, and u,, but depends further on the 
statistical properties of the ensemble of configurations corresponding to 
the mutual disposition and orientation of the individual crystallites in 
the polycrystal. The fact that in the two-dimensional case the answer 
does not depend on these properties (under the assumption that the con- 
figuration ensemble is statistically isotropic) is an exceptional property, 
which is all explained by the same symmetry of the equations. 
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