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The spectrum of quasicharacteristic radiation of channeled particles is studied as a function of the 
crystal parameters and the energy and directivity of the beam. A theory of dechanneling which 
takes into account elastic scattering of the channeled electrons by nuclei is developed. It is shown 
that the dependence of the dechanneling length on the form of the wave function has a strong 
effect on the ratio of the intensities of individual spectral lines in thick crystals. A scheme for 
creation of population inversion between levels of the transverse motion is proposed. The band 
structure of the superbarrier levels of a channeled electron is investigated. The pulsations of the 
width of the allowed and forbidden superbarrier bands on variation of the beam energy or the 
crystal parameters is calculated. The values of the matrix elements of transitions between super- 
barrier and sub-barrier levels are compared. 

PACS numbers: 6 1.80.Mk 

The use of relativistic electron fluxes moving in external 
electromagnetic fields to obtain radiation has increased in 
interest in recent years in connection with the problem of 
creating sources of short-wave radiation. Particularly prom- 
ising in this connection is the recently predicted and ob- 
served radiation of relativistic leptons channeled in single 
crystals (see the review by Wedell'). In a number of experi- 
ments devoted to study of the radiation of channeled parti- 
cles, in the background of an extended spectrum one clearly 
distinguishes peaks corresponding to transitions between 
discrete energy levels of the transverse motion. This circum- 
stance provides an analogy between channeled particles and 
a relativistic beam of excited atoms. Here the questions 
which have become traditional in laser physics naturally 
arise. What are the probabilities of spontaneous and induced 
transitions in a system of channeled particles? What infor- 
mation on the medium (the crystal) can be obtained from 
analysis of the radiation spectrum? And finally, is it possible 
to create a short-wave laser based on channeled particles? 
The last question is especially interesting for possible appli- 
cations. However, for an answer to these questions sufficient 
experimental and theoretical bases do not yet exist. There- 
fore the study of questions related to the thorough elucida- 
tion of the fundamentals of radiation during channeling 
(such as determination of the transition matrix elements, 
creation of population inversion, estimates of level widths, 
and so forth) is extremely important. 

The present article is devoted to investigation of the 
influence of the parameters of the channeled-particle + 
crystal system on the spectrum of quasicharacteristic radi- 
ation. In the first section we determine the rate of redistribu- 
tion of the population of the levels of the transverse motion 
of a channeled particle under the influence of elastic scatter- 
ing of the particle by the atoms of the crystal lattice. The 
interest in such investigations is due to the fact that these 
processes lead both to a broadening of the radiation line and 
to a change of the ratio of intensities of individual spectral 
lines in crystals of various thicknesses. In the second section 

we show that the dependence of the dechanneling length on 
the form of the "transverse" wave function can be used to 
invert the levels population. Calculations carried out have 
shown that in production of radiation it is more efficient to 
use levels in a nonunimodal (i.e., multihumped) interplanar 
potential, since in this case the maxima of the probability 
density of the electrton coordinates at the upper working 
level are reached in the interplanar space, thereby increasing 
the partical dechanneling length decreasing the level width, 
and consequently lowering the threshold for production of 
radiation. The third section is devoted to calculation of the 
spectra of the quasicharacteristic radiation. The values of 
the dipole moments of transitions between sub-barrier levels 
calculated for various forms of potential are compared. For 
the first time an accurate calculation is made of the band 
structure of the superbarrier levels for an interplanar poten- 
tial other than the Kronig-Penney potential. Values of ma- 
trix elements are estimated for transitions between superbar- 
rier levels and from them to sub-barrier levels. 

1. INFLUENCE OF THE DISCRETENESS OF AN ATOMIC 
PLANE ON THE POPULATION OF THE LEVELS OF THE 
TRANSVERSE MOTION 

The radiation spectrum of a channeled particle is quite 
well described in the framework of the model of an averaged 
potential of the planes of the form 

KZu2 
V,  ( r )  = V K  exp ( i ~ r  - - ) , 

J i ~ ~ 0 . 0  
2 

here V(r) is the static potential of the crystal lattice, f2 is the 
volume of the unit cell of the crystal, and u is the rms ampli- 
tude of the thermal vibrations of the crystal atoms. The x 
axis is chosen perpendicular to the plane of channeling. The 
spectrum calculated for a number of simple approximations 
of the interplanar potential is actually in good agreement 
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with the experimental spectrum, as has been shown in Refs. 
2 and 3. The averaged potential approximates the real poten- 
tial best for levels in which the probability of finding the 
particle near an atomic plane is small. In some low-lying sub- 
barrier levels this probability is rather large, and therefore a 
more complete description of the motion of particles which 
are in these levels requires inclusion in addition to the aver- 
aged of the Coulomb divergence of the potential 
near the centers of the nuclei. These perturbations of the 
potential produce transitions of electrons between levels of 
the transverse motion in the averaged potential, which leads 
to a dependence of the level width on its number. It is most 
natural to choose the perturbing potential as follows: 

V ,  ( r )  = V ( r )  -Vo ( r )  = VK e r p  ( iKr-K2u2i2) ,  (2) 

where KII = (O,K,,K, j . 
From the Dirac equation it is possible to obtain the fol- 

lowing equation for the spatial part of the wave function of a 
channeled electron with energy E: 

here 

kz= (E2-mOZc4) /h2cZ, U ( r )  = 2 m V ( r )  /tiz, m=m,y. 

We shall choose a system of reference such that the z axis is 
perpendicular to the entrance face of the crystal and lies in 
the channeling plane, and thex axis as before is normal to the 
channeling plane. We shall represent the solution of Eq. (3) 
in the form of the following sum: 

Here we assume summation over all sub-barrier levels and 
integration over the allowed bands of superbarrier energies; 
u, (x) are the eigenfunctions of Eq. (3) with the potential 
Vo(x). If we take as the potential of an individual atom the 
screened Coulomb potential 

Vi  ( r )  = (-Ze2/ 1 r-ri 1 ) exp (- I r-ri I lbo), 

then the average potential Vo(r) = Vo(x) has the form 

wheres- ' is the density of atoms in the channeling plane and 
@ ({ )is the probability integral. It is easy to see that 1 w, (y,z)* 
has the meaning of the density of population of the nth level 
in the channel at the point with coordinates in the channel- 
ing plane ( y,z). 

Substituting (4) into (3) and using the orthogonality of 
the functions u, (x ) ,  we obtain the following equation for 
wn(y,z): 

here 

Note that the coefficients M,, with n # m  describe transi- 
tions of electrons to a given level n from other energy levels, 
and M,, describes transitions of electrons from the level n 
to all other levels of the system. 

Since channeling, i.e., motion in the averaged potential 
of the planes, is the main process in comparison with de- 
channeling, Eq. (6)  can be solved by successive approxima- 
tions, representing w, ( y,z) in the form 

(0)  w , ( y , z ) = w ,  ( Y , z ) + L L ' : ) ( Y , z ) + . . .  (7)  

Here wfl( y,z) is the solution ofEq. (6) without the right-hand 
side. This term determines the form of the wave function at 
the entrance face of the crystal (z = 0) 

where - m 

w:" ( 9 )  = dx j dy q ( x ,  y, 0) u. . (I)  e-lqY.  (9 )  
-m -m 

The term wjf'(y,z) is the solution of the following iterative 
equation: 

With inclusion of the boundary conditions of the problem, it 
can be written in the form 

(1) 1 "  w,  ( y ,  z )  = _ dqw::) (z)e"', 
An . (11) 

where 

Fnp ( z ' )  e r p  { ik , ,  ( z - z ' )  ) dz' 

L 

+J F., ( z l )  exp{- iknq ( z - z f  ) } dzf  (12) 

here 
1 

fi-nq ( z )  = - 1 dqtw:) ( 9 ' )  Mnq,rnqr ( z )  e sp  ( i k m g * z ) ,  ( 1  3) 
2n n, 

M,,,,,,. ( z )  = dx d Y ~ ~ , .  ( x )  e - i 4 ~ U l  ( r )  urn ( ~ ) e ' q ' ~ .  (14) j 5 
The boundary conditions were chosen by us as follows: the 
components which have a positive projection of the wave 
vector on the z axis are defined at the entrance face of the 
crystal by the wave function of the incident electron 
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w',: '(0) = w',O'(q) [see Eqs. (8) and (9)]; the components with 
negative projection on the axis satisfy at the exit face of the 
crystal the condition of total absorption: w',; '(L ) = 0. 

In order to determine the rate of change of the popula- 
tion in the nth level with propagation of the beam into the 
interior of the crystal, we shall assume that as in ordinary 
perturbation theory the condition w,, (0) - S,, , is satisfied 
at the entrance face. Then for the population of the nth level 
at the exit face of the crystal we can obtain the following 
expression: 

where 

Substituting into this formula the expression for U,(r) in the 
form (2), we can easily transform it to the following form: 

(UI P, , (L )  = J l u,. ( y )  I '  d q - L  Im d x u > , . ( z )  tin ( x )  { J 

where ~ , ( x , K I I  ) is a function which coincides in form with 
the expression (5) and with the screening radius b, replaced 
in it by 

Taking into account the smallness of the perturbing 
terms, we can rewrite Eq. (16) in the form 

and the partial dechanneling length L $' is determined by the 
following expression: 

- 
( 6 " ' )  -'= 1 J dxu: ( r )  u. ( r )  G ( x )  ] / J I zc,!'' ( q )  I' dq; 

here 

G ( x )  = lm C, (I, K, , )  exP (- y) 

Thus, the dechanneling length is determined by the overlap 
of the square of the modulus of the wave function of the 
transverse motion of the channeled electron and the function 

G(x). The function G(x) is a sum of averaged potentials 
~ o ( x , ~ I I  ), i.e., of bellshaped functions with maxima in the 
atomic plane and screening radii b (K ) smaller than b,. The 
contribution of each component K is determined by the 
Gaussian factor. Therefore as u-0 the half-width of the 
function G (x) will approach zero, and for finite u it can be 
estimated as 

b , f t ~ b o ~ ( b o Z + ~ 2 ) - ' A .  (20) 

The integral over q in the expression for G (x) leads to unim- 
portant phase factors. For example, if the beam incident on 
the crystal is approximated by a spherical wave with a diver- 
gence Aq and a direction of the wave vector 
k, = [O,q,, (k - qo2)"2 determined by the geometry of the 
experiment, then for Aq((k - q,2)"2 this integral will have 
the following form: 

where 2? is the distance between the target and the source. 
Thus, according to Eqs. (18)-(20) the partial dechannel- 

ing length will depend on the form of the wave function of 
the given level, on the radius of the distribution of electronic 
charge of the atom, and, through the amplitude of the ther- 
mal vibrations, on the temperature of the crystal. Using 
these dependences, we can control the value of the popula- 
tion of distinguished levels in the crystal volume." 

2. INVERSION IN NONUNIMODAL POTENTIAL WELLS 

It follows from the investigations presented above that 
the particles which are dechanneled most rapidly are those 
in levels in which the wave function reaches a maximum in 
the atomic plane. In unimodal symmetric interplanar poten- 
tials, such levels will be levels with even numbers, which 
gives the possibility of obtaining by choice of the sample 
thickness an inversion of the population between even and 
odd  level^.^ A deficiency of this scheme is the relative small- 
ness of the dechanneling length of the particles in the two 
selected levels. This is due to the fact that in a unimodal well 
the maxima of the wave functions of the first few levels, for 
which the inversion mechanism indicated is most effective, 
are reached at distances comparable with the amplitude of 
thermal vibrations of the atoms. Optimization of the process 
of creating a population inversion, as we shall see below, is 
possible if we form the channel using atomic planes in which 
the interplanar potential is nonunimodal, such as the (1 11) 
plane in a diamond-like lattice (Fig. 1). 

In nonunimodal wells we can introduce the concept of 
levels of molecular and atomic types. In levels of the atomic 
type the electron moves in a potential dtermined mainly by 
the distribution of the charge of one of the crystal planes. In 
levels of the molecular type the potential is a superposition of 
the potentials of two nearest neighbor planes. In Fig. 1 the 
levels of the molecular type lie above the "hump" of the 
potential, i.e, they have energies En < U(0). 

To produce an inversion, as was noted in Ref. 6, it is 
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FIG. 1. Form of averaged potential of (1 11) planes of silicon and location 
of levels in this potential for channeling of 12-MeV electrons. 

necessary to take a crystal of thickness L such that 
L e)(L(L $", where L 2) and L 2)  are the partial dechannel- 
ing lengths of electrons in the lower and upper working lev- 
els. 

Since the width of the line produced is inversely propor- 
tional to the dechanneling length of the lower working level, 
it is desirable that the upper of the levels of the atomic type be 
odd. In Fig. 2 as an illustration we have shown the pattern of 
the distribution of probabilities for the coordinates of elec- 
trons in the levels of the transverse motion in channeling in 
the (1 11) plane of silicon for a beam energy E = 10 MeV. 

An idea of the magnitude of the population of levels of 
the molecular type is given in Fig. 3, in which we have shown 
the transformation of a plane electron wave incident on crys- 
tal from outside as it propagates in the crystal. It is evident 
from the figure that the probability of population of level 3 in 
this case is rather high, since just this level makes the maxi- 
mum contribution to the region xzO. 

In addition to the increase of the partial dechanneling 
lengths corresponding to levels of the molecular type, the 

FIG. 2. Distribution of probability density of transverse coordinates of an 
electron with E = 10 MeV channeled in the (1 11) plane of diamond. The 
dashed lines mark the region (a, - u, a, + u), where a, is the coordinate of 
the equilibrium position of the nuclei. 

FIG. 3. Pattern of transformation of the wave function of a channeled 
electron in the transition region near the crystal boundary. The curves 
were constructed at equal intervalsdz. A plane wave with transverse mo- 
mentump, = 0 (a) andp, #O (b) is assumed incident on the entrance face 
of the crystal. 

half-width of the wae functions of these levels also increases 
appreciably, and consequently the matrix elements of radia- 
tive transitions from them also increase. In Table I we have 
given values of the matrix elements in the potential of the 
(1 11) plane of silicon for y = 10, 16, and 24 (compare with 
Table 11). 

Using these data, we can easily evaluate the threshold 
density of the electron current at which the gain due to in- 
duced radiation exceeds the loss. For a single hump poten- 
tial, corresponding estimates were made by us in Ref. 6 (see 

TABLE I .  

IX,,,~~, A 

Transition 
y=lU / I n  y=16 ''I / y=2& / 0 1 1 y = 2 i  

1-0 3.347 0.333 0.328 4-3 - - 0.535 
2-i 1 0.i"6 1 2 1 0 . 2  1 I 1 0 - 4 4  0.059 
3-2 0.393 0.005 

1020 Sov. Phys. JETP 57 (5) ,  May 1983 Andreev eta/. 1020 



TABLE 11. 

also Ref. 7). Using the values given in Table I, it is easy to see 
that the combined action of the factors enumerated above 
decreases by at least an order of magnitude the threshold 
current density in comparison with the case of a single-hump 
potential. In the optical region, the calculated value of the 
threshold current density reaches the quite achievable value 
j = 10' A/cm2 (compare with Ref. 6). 

Similar methods can be used to create an inversion in 
channeling of positive particles; indeed, in channeling in the 
(1 11) plane of crystals of the NaCl type the interplanar po- 
tential for postively charged particles is nonunimodal. In 
this case also it is not difficult to achieve a situation in which 
the first of the levels of the molecular type will have a maxi- 
mum of the wave function in a plane consisting of the atoms 
with smaller atomic number. 

- N " . o f I  level 0 1 i 2 \ I 3  I b 

3. ENERGY SPECTRUM OF THE TRANSVERSE MOTION 

0 
1 
2 
3 

In the energy spectrum of the transverse motion of a 
channeled particle it is possible to distinguish two groups of 
levels: sub-barrier (with transverse energy E, < 0) and super- 
barrier with EL > 0. The role of the sub-barrier levels, both in 
channeling and in radiation during channeling, has been 
studied in considerable detail in the literature. We note here 
only the fact that these levels are not very sensitive to the 
form of interplanar potential, and therefore sufficiently good 
approximations for the potential exist. This permits accurate 
calculation of the characteristics of the interaction of chan- 

PIG. 4. Comparison of a modified Moliere potential, a Pijschl-Teller po- 
tential (dashed curye), and the potential (22) (dotted curve]. 

- 
6.34. lo-? 

- 
5.2.10-" 

neled particles with electromagnetic radiation. 
As an illustration we compare below a modified Mo- 

liere potential and a Poschl-Teller potential. 
In Fig. 4 we have given the potential of the (I 10) plane of 

silicon obtained by averaging over the channeling plane the 
Moliere potential of an individual atom (the modified Mo- 
liere potential), and its approximation by a Poschl-Teller po- 
tential: 

and by a potential of the form 

6.240-2 - 
1.01~10-' 

- 

We note that the latter potenttial is convenient for calcula- 
tion of radiation spectra by computer. 

In Table I1 we have given values of the matrix elements 
of transitions between levels with numbers which coincide 
with the numbers of the columns and rows at the intersection 
of which the given element appears. Above the diagonal of 
the table are located elements calculated by computer for a 
modified Moliere potential, and below the diagonal are ele- 
ments calculated analytically for the Poschl-Teller poten- 
tial. Calculations were carried out for channeling of 56-MeV 
electrons in the (1 10) plane of silicon. It can be seen from the 
table that rather good agreement is observed between the 
two calculations. 

A question which has been little investigated in chan- 
neling theory is that of the form of the energy spectrum of 
superbarrier levels. The studies which have been carried out 
up to this time8v9 apply to the case of a Kronig-Penney rec- 
tangular potential. In the present section we shall discuss the 
question of the shape of the spectrum of superbarrier levels 
and its dependence on the parameters of the crystal and 
beam for the case of a potential which is closer to the real 
interplanar potential than is the potential mentioned above, 
namely, for a periodic sequence of Poschl-Teller potentials 

[ch a (x -dn )  
,,=-OD 

(23) 

- 
1.07.10-' - 
1.43.10-' 

where d is the interplanar distance. 
We note that if the condition 1 - (tanh (ad  /2)( 1 is sat- 

isfied, the potential in each of the periods is essentially no 
different from that given by (2 1). This condition is satisfied 
for all cases of channeling of interest to us; for example, for 
the (I  10) plane of silicon we have 1 - tanh (ad  /2) = 0.003. 

If we take as linearly independent solutions in one inter- 
val of periodicity even and odd wave functions, then the dis- 
persion equation is well known to have the form 

u (a) up ( a )  +v ( a )  u' (a) 
cos Kd = 

uu'-vu' 7 (244 

where u(x)  = u( - x), u(x) = - u( - x), a = d /2, and K is the 
quasimomentum of the transverse motion of the electron. It 
can be seen from Eq. (24) that the boundaries E, of the al- 
lowed energy bands are determined by the two conditions 

vs ( a )  =O (25) 

5.1.10-3 - 
1.54~10-i 
- 
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(the center of the Brillouin zone, K = 0) and 

u, , (a) =O (26) 

(the edge of the Brillouin zone, K = + r / d  ). 
In the Poschl-Teller potential the even and odd wave 

functions for positive energy values have respectively the 
forms1o 

~ ( x )  = A  ch-'(ax) F (a', b', '12; -shZ ( a x ) ) ,  (27) 

v ( x )  =B ch-" (ax)  sh (ax)F(a'+'/,, br+'lz, 3/2; -shZ (ax)  ) , 

where 

(s-ix) /2, b'=- (s+i>c) /2, x= (2mE,) '"/ha, 

The expressions (27) and (28) can be reduced to the following 
more convenient form: 

u (2)  =A [P.-IX(th (ax)  ) +pCix (-th(ax) ) 1, (274 

( x )  =B[P.-Oi(th(az) ) -P? (-th(az) ) 1, (284 

where P : (x )  is the spherical function of the first kind. Substi- 
tuting the latter expressions into the equalities (25) and (26), 
it is straightforward to obtain the following equations: 

cos (kd+rp)/ltl =*I, (29) 

where t = It lei' is the amplitude of the reflection coefficient 
(T It I * )  in the potential we11 (22); k = xa;  

FIG. 6. Depenedence of the band structure of superbarrier levels on the 
parameter ad for fixed s. 

The plus sign in Eq. (29) leads to the values of the limiting 
energy reached in the center of the Brillouin zone and the 
minus sign leads to the values at the edges of the Brillouin 
zone. 

I t  follows from Eqs. (29) and (30) that the maximum 
width if the forbidden band is reached for s = n + 1/2, 
where n is an integer. In this case It 1 = tanh rx, and there- 
fore the width of the forbidden band increases as x-0. 
When the parameters is equal to an integer, we have T = 1, 
the reflection coefficient is R = 1 - T = 0, and the width of 
the forbidden band becomes equal to zero. This is due to the 
fact that for iHtegral values of s the highest of the energetic 
sub-barrier bands reaches the top of the barrier with its up- 
per edge, i.e., the phase space of the potential well turns out 
to be completely filled. 

The form of the spectrum of superbarrier bands as a 
function of the value of the parameter 2m,yUo/fi2a', calcu- 
lated by means of Eqs. (29) and (30), is shown in Fig. 5. The 
calculation was carried out for the (1 10) plane of silicon, 
where ad = 6.6. The dependence of the width of the forbid- 
den bands on the value of the product ad for a parameter 
values = 1/2 is shown in Fig. 6. 

For integral values of s the expressions (27a) and (28a) 
are written in the form of a finite series. The corresponding 
series can be obtained, for example, from the following re- 
currence relations: 

u, ( x )  =dv,-' (x)/adx-- (s-I)  th (ax )  US-, ( x ) ,  (31) 
u, ( x )  =du,-, ( x )  /adz- ( s - I )  th (ax )  us-,  ( 2 )  , (32) 

TABLE 111. 
I 

- 
Transition I x ~ t  I x<ci  

Here do = ?r/a Y'2 is the value of the matrix element for the transition 
FIG. 5. Appearance of band structure of the spectrum of transverse ener- between the upper and lower sub-barrier levels in the potential (21) with 
gy for the ( I  10) plane of Si. s =  1. 
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where 

u, ( x )  =-cos kx, v, (x) =sin kx. (33) 

Let us estimate the ratio of the values of the matrix 
elements for transitions between superbarrier and sub-bar- 
rier bands. For simplicity we restrict the discussion to the 
cases = 1. The results of the corresponding calculations are 
given in Table 111. For the calculations we used normalized 
wave functions (31) and (32) and the wave functions of the 
sub-barrier levels in the Poschl-Teller potential. In view of 
the cumbersome nature of the formulas we have singled out 
two limiting cases E )  I E, I and E< I E, 1, where E, = fi2a2/ 
2m is the enrgy of the lower sub-barrier level; E, and E, are 
respectively the energies of the upper and lower levels of the 
transition. 

It is evident from the table that the probability of transi- 
tions between high-lying superbarrier levels, and also of 
transitions from them to sub-barrier levels, is very small in 
comparison with the probability of a transition between sub- 
barrier levels. 

The matrix elements of a transition from low-lying su- 
perbarrier levels are much closer to do. 

CONCLUSION 

In conclusion we shall discuss the possible prospects. 
1. Discrete levels of the transverse motion, as we have 

already mentioned, have appeared up to the present time 
only in spontaneous emission spectra. The analysis carried 
out above shows that there is a real promise of observation of 
induced radiation, especially in the optical range, as the re- 
sult of the difference in the partial dechanneling lengths of 
the levels discussed. Significant interest here is presented by 
the situation in which the interplanar potential is nonunimo- 
dal. 

2. In addition we would like to call attention to another 
possible direction of investigation of levels of the transverse 
motion. We are discussing stationary and nonstationary la- 
ser spectroscopy of the transitions mentioned above. Our 
calculations show the possibility of use of absorption spec- 
troscopy with the aid of a laser synchronized with the source 
of channeled particles. The data on the matrix elements can 
be used also for calculation of resonance susceptibilities. 

3. From the point of view of structural studies of crys- 
tals, the spectroscopy of superbarrier levels is most promis- 
ing; here the methods of nonlinear laser spectroscopy pro- 
vide information inaccessible in study of spontaneous 
emission spectra. 

"In Refs. 4 and 5 the theory of dechanneling as the result of inelastic 
scattering was developed and it was shown (see the last article from the 
series in Ref. 5) that the dechanneling length is determined in this case by 
the overlap of the square of the modulus of the wave function of the 
transverse motion and a function which depends on u, x ,  and the value of 
the momentum transfer [similar to Eq. (IS)]. Consequently both elastic 
and inelastic processes will tend to lower the same levels. 

'R. Wedell, Phys. Stat. Sol. 699, 11 (1980). 
*R. H. Pantell and R. L. Swent, Appl. Phys. Lett. 35, 910 (1979). 
'J. U. Anderson and E. Laegsgaard, Phys. Rev. Lett. 44, 1079 (1980). 
4V. V. Beloshitskii and M. A. Kurnakhov, Zh. Eksp. Teor. Fiz. 62, 1144 
(1972) [Sov. Phys. JETP 35,605 (1972)l. 

5 Y ~ .  Kagan and Yu. V. Kononets, Zh. Eksp. Teor. Fiz. 58,226 (1970); 64, 
1042 (1973); 66, 1693 (1974) [Sov. Phys. JETP 31, 124 (1970); 37, 530 
(1973); 39, 832 (1974)l. 

'A. V. Andreev, S. A. Akhmanov, and V. L. Kuznetsov, Pis'maZh. Tekh. 
Fiz. 7, 682 (1981) [Sov. Tech. Phys. Lett. 7, 292 (1981)l. 

'V. V. Beloshitskii and M. A. Kumakhov, Zh. Eksp. Teor. Fiz. 74, 1244 
(1978) [Sov. Phys. JETP 47,652 (1978)l. 

"E.A. Babakhanyan and Yu. V. Kononets, Phys. Stat. Sol. b98,59 (1980). 
9S. A. Vorob'ev, V. V. Kaplin, D. E. Popov, and 0. G. Kostareva, Pis'ma 
Zh. Eksp. Teor. Fiz. 31, 359 (1980) [JETP Lett. 31, 328 (1980)l. 

I0L. D. Landau and E. M. Lifshitz, Kvantovaya mekhanika (Quantum 
Mechanics), Moscow, Nauka, 1974 [Pergamon, 19741. 

Translated by Clark S. Robinson 

1023 Sw. Phys. JETP 57 (5). May 1983 Andreev etal. 1023 


