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The equations of motion of superfluid helium, taking account of a chaotic cluster of vortex 
filaments (superfluid turbulence), are obtained by means of a method close to the Bekarevich- 
Khalatnikov theory. These equations are used for an investigation of the propagation of linear 
and nonlinear second sound in a supercritical helium countercurrent. A relation is obtained 
between the transit time of a nonlinear wave and the parameters of superfluid turbulence. This 
relation can be considered as a new method of probing the vortex cluster. 

PACS numbers: 67.40.Vs, 67.40.Pm 

Following the terminology introduced in Refs. 1 and 2, 
we designate as superfluid turbulence an assembly of chaoti- 
cally oriented vortex filaments, i.e., a state which develops in 
superfluid He I1 when the velocities are significantly in ex- 
cess of the critical values. A first attempt at a quantitative 
description of superfluid turbulence was made by Vinen.' 
Vinen's theory, which is based on Feynman's qualitative pic- 
t ~ r e , ~  has a phenomenological character. In order to con- 
struct his theory, Vinen resorted to experiments, among 
them the experiment on the propagation of second sound 
across a supercritical flow of He 11. In analyzing the experi- 
ments Vinen has assumed that the total interaction of second 
sound with the superfluid turbulence reduces to the damping 
caused by the friction of the normal component against a 
"frozen" system of immobile vortex filaments. Measuring 
the damping one can thus investigate the evolution of a vor- 
tex cluster, its equilibrium value, and other characteristics. 
Such an approach, i.e., considering a vortex cluster as a sys- 
tem of "frozen" filaments which only cause additional fric- 
tion, has been in wide use recently. The authors of many 
papers describing supercritical helium flows limit them- 
selves to adding a friction force to the right-hand sides of the 
Landau-Khalatnikov equations, which is incorrect, particu- 
larly in nonstationary situations. 

It seems reasonable to assume that as soon as the cluster 
of vortex filaments exhibits some dynamics, as follows from 
Vinen's theory (vide infra), this should be taken into account 
ab initio, in the derivation of the equations. In other words, 
the hydrodynamic equations of supercritical helium must 
contain the equation of motion of a vortex cluster and also 
describe the supplementary contribution of vortices to the 
momentum flux tensor, to the dissipative function, etc. The 
Bekarevich-Khalatnikov theory3 is a prototype of such an 
approach. 

In the first section of the paper we investigate the 
Vinen-Schwarz equation, which is the basis of closing the 
system of fluid dynamics equations for He 11. In Sec. 2 the 
equation of motion is derived by means of the Bekarevich- 
Khalatnikov method. In Secs. 3 and 4 these equations are 
used for an investigation of the propagation of second sound 
(both in the linear and nonlinear case) in a supercritical 
countercurrent. 

1. THE VINEN-SCHWARZ MODEL 

As already mentioned, Vinen was the first to attempt a 
quantitative theory of superfluid turbulence. In doing this he 
was guided by the following qualitative picture, developed 
by Feynman. Assume that the vortex cluster forms a homo- 
geneous state characterized by the total length L (t ) of the 
filaments per unit volume. It is clear than one may talk about 
homogeneity only if the average distance6 = L -''2 between 
the filaments is much smaller than the size of the system. 
Due to the Magnus effect the friction against the normal 
component causes the elements of the filaments to reduce 
their curvature, and this leads to an increase of the quantity 
L (t ). For large densities intersection effects come into play. 
As a result of intersection the filaments get fragmented, 
forming rings of smaller sizes, which in turn fragment, etc., 
until clumps are formed of a size for which the hydrodynam- 
ic description is no longer applicable, and kinetic theory ef- 
fects become appreciable. Something of the nature of a diffu- 
sion in the space of sizes of vortex rings takes place. This 
situation is very reminiscent of classical turbulence, where 
an energy flow takes place from large scales to small scales, 
with subsequent disipation. On the basis of these consider- 
ations Vinen has derived a rate equation for the quantity L (t ) 

Here V,, = v, - v, is the relative velocity and a and/? 
are the empirical paramaters of the theory. The first term 
describes the increase of the length on account of the Mag- 
nus effect, and the second term describes the fragmentation 
effect. 

It follows from Eq. (1) that the characteristic relation 
time of a vortex cluster is of the order r = p /a2 Vz, .  This 
time can be large, of the order of the damping time of hydro- 
dynamic modes, and then it becomes necessary to take into 
account the dynamics of the cluster itself. It is necessary here 
to make an important remark. In general, the quantity L 
represents an integral characteristic (a moment) of some 
function (the distribution function) which carries the de- 
tailed information about the vortex cluster." There arises 
the problem of the damping of the other moments of this 
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function, or of vortex-cluster characteristics different from 
L. Strictly speaking, there are no theoretical reasons to as- 
sert that the relaxation of the other degrees of freedom of the 
cluster occurs faster, justifying the fact that we have limited 
our attention to the quantity L. However, numerous experi- 
ments on the evolution of the vortex structure show that this 
evolution agrees well with the Vinen equation (1). We there- 
fore make the natural assumption that the relaxation of the 
other degrees of freedom occurs at a faster rate than the 
relaxation of L. 

The statistical nature of the quantity L brings up an- 
other problem. Although we restrict our attention to the 
function L, it is nevertheless important to deal with quanti- 
ties which are higher moments of the distribution function. 
Such quantities are: the mean velocity vL of the cluster as a 
whole and the work R ' done by the friction forces against the 
frozen filament system. Continuing to assume consistently 
that their relaxation times are small, we make use of empiri- 
cal relations obtained under static conditions for their deter- 
mination. Thus, for vL we make use of the following depen- 
dence determined in Ref. 5: 

vL=bVnr (2) 

Here b = b (T) is a known function of the temperature. 
To calculate the work of the friction forces against the 

"frozen" filament system we make use of the well-known 
Gorter-Mellink formula' for the mutual friction between the 
normal and superfluid components: 

F ~ ~ A  ( T )  pSpnvn:v,.. (3) 
The work done by this force per unit time is, accordingly 

R G M = ~  (2') ps~nVnII. (4) 

This work consists of the total work R ' plus the energy that 
the vortex cluster drains in order to increase its length and 
then transports along the turbulence spectrum to smaller 
scales. As can be seen from Eq (I), this energy equals 
R " = cbV,, J L  312 ( E ~  is the energy of the unit length of the 
filament). HereR GM = R ' + R ".Hence, assuming thatR 'is 
proportional to L we obtain 

R'=aiLVnS2, ( 5 )  
where, recognizing that L = (a//3)2V:,, we obtain for a ,  
from Eq. (5) 

B2 u2 
ai=A ( T )  p,p, - - EI,  - . 

az P 
In the sequel we shall describe the state of a vortex clus- 

ter by means of the quantity L (r,t ). In distinction from the 
case discussed by Vinen, we attribute to this quantity a coor- 
dinate dependence, having in mind the investigation of non- 
homogeneous and nonstationary cases. Equation (1) will be 
the basis for closing the system of equations of motion. 

2. THE HYDRODYNAMICS OF TURBULENT SUPERFLUIDITY 

In deriving the equations of motion we make use of a 
method analogous to the one used in the derivation of the 
Bekarevich-Khalatnikov3 equations. In distinction from 
these equations we cannot relate the number of vortex fila- 

ments to the curl of the average velocity, since the vortices 
are randomly oriented. Therefore we adopt Eq. (I)  in lieu of 
the missing equation, rewriting it in the form 

d L  - + div Lv,=al V,,I L'h-pLZ. 
at (6) 

In addition, we complement the equations of two-velocity 
fluid dynamics with as-yet unknown terms which may ap- 
pear on account of the vortices: 

a p  - + div j=O, a t 
as R - + div (Svn+Z) = - , 
at T 

a E - -I- div (Qf q) =O. 
at  

Here R, T,, , f, q, and I; denote the dissipative function, 
the momentum flux (stress) tensor the force acting on the 
superfluid component, and the respective energy and en- 
tropy fluxes attributable to the presence of the vortex clus- 
ter. The remaining notation and definitions agree with Ref. 
3. We also write out the expressions for H,, Q, and B 

~ i k = p v s , v s h f ~ s i j O h + ~ n k j O ~ + p 6 ~ k ~  (I2) 

Q= (p+vgV2) j+STvn+vn (v,, jP) , (13) 
E=pv,2/2+v,jo+Eo. (14) 

The energy E, in the superfluid system is a function of S, p, 
and j,, as well as of the quantity L. The following thermody- 
namic identity holds: 

dE,=pdp+TdS+ (V,,, d j , )  +&bdL. (15) 

Here E, is the energy per unit length of the vortex fila- 
ment, defined asp, (2rrfi/m)2(1/4~ln(6/a,). The quantity S is 
a characteristic intervortex distance, and a, is an assumed 
core radius. Owing to the logarithm, the dependence of&, on 
L is weak, and for realistic conditions (1/4~)ln(6 /a,) is close 
to unity. 

The equations (6)-(11) together with (12)-(15) are 11 re- 
lations for the 10 quantitiesp, L, S, E, v,, an j,. This overde- 
terminacy suffices for a unique determination of the addi- 
tionally introduced  term^.^' For this we proceed in the same 
manner as in Ref. 3. We differentiate Eq. (14) with respect to 
time and in place of the derivatives 5'p/dt, &, /at, 5'L /at, and 
aj,/at we substitute their values from Eqs. (6)-(10). After 
straightforward but tedious transformations we arrive at the 
energy balance equation 

101 0 Sov. Phys. JETP 57 (5), May 1983 S. K. Nemirovskiland V. V. Lebedev 1010 



In order to take into account the entropy flux we add to 
both sides of Eq. (16) the quantity 

div [SLT (vL-v,) ] =SL (vL-v,,) VT+TVSL (vL-V,) . 

Here SL is the additional entropy due to the vortices, a 
quantity which cannot be determined within the framework 
of the proposed formalism. Its determination is an indepen- 
dent problem. Some considerations on the magnitude of SL 
can be found in Appendix I. 

After these transformations we obtain 

+ eaalV,,IL"-&,pLZ+(vL-v,)SL VT. (17) 

Comparing (17) with the conservation equations for energy 
and entropy, we obtain 

q,= (nlk-L&b6,!,) u~~+LEDB~AvLR+S~ (UL,-U~,) T, (1 8) 

+ E S , $ L ' - E ~ ~ I V , ,  I L"- (vL-v,) SL V T ,  (19) 
2= (v,-v,) SL. (20) 

The meaning of the equality (20) is as follows. The total en- 
tropy flux consists of the entropy transport by the normal 
fluid component plus the entropy carried by the vortices. 
But a thermodynamic definition of the entropy does not nat- 
urally account for this separation, and contains the total en- 
tropy (renormalized to take into account the vortices). 
Therefore 2 contains the term - SL V, which subtracts 
from the flux Sv, the "extra" addition. A similar situation 
prevails for the expression (1 8) of the additional energy flux 
4. 

In addition, supplementary quantities make their ap- 
pearance in (18). The first of these L E ~  vL describes directly 
the energy flux of the vortices. The other, as can be seen, is 
related to the renormalization of the pressure. 

In Eq. (19) the first term for the dissipative function R 
has the form of a viscous stress tensor T,,, hence 
n-,, = T,, E~ LS,,. In the sequel we shall neglect the effect of 
normal viscosity: T,, = 0. For this reason we have not con- 
sidered the irreversible entropy flux before. 

The relation (19) connects two so far undefined quanti- 
ties R and f. Usually (see Ref. 3) R is chosen so that for 
certain assumptions (e.g., linearity in the grandients) R 
should be a positve definite form. Here we construct R di- 
rectly, starting from the model of the vortex cluster (Sec. 1). 

The dissipative function R consists of the work R ' of the 
friction forces against the frozen system of vortices plus the 
energy transported by the cluster and released in the region 
of small scales. According to Eq. (1) we write 

R=a1LVns2+eb~L2. 

Comparing this with Eq. (19) and making use of the fact 
that from symmetry considerations the vector f is collinear 

with V,, , we obtain 

(21) 
The quantity f contains V T  and V E ~ ,  the so-called reactive 
terms. The other two terms describe the dissipation. The 
dissipative parts of the equations for v, and L will be written 
in matrix form 

Since dE /dusk = p, (v, - v, ), , aE /aL = E ~ ,  the rela- 
tion (22) describes the Onsager reciprocity principle for the 
kinetic coefficients. The antisymmetry of the coefficients fol- 
lows from the different behavior of v, and L under time re- 
~ e r s a l . ~  

Before writing the definitive form of the equations we 
express the chemical potential ,u entering into them as a 
function of pressure and temperature. For this purpose we 
use the expression (1 5) for E, and the following expression 
for the pressure: 

p=-Eo+TSf yp+ (v,,-v,, j,). 

Taking account of the weak dependence of E, on L we 
obtain 

P=IL (P, T) + (pn/2p) (vn-v,) '+EIL. (23) 
Going over to the renormalized pressurep, = p  + L E ~ ,  one 
can obtain from Eq. (23) 

~i=y(p,, TI + (pn/2p) (vn-v8)'. (24) 

In the sequel we shall deal only with the renormalized pres- 
surep and omit the index r. 

The final equations of motion are: 

dP - + div j=O, 
at 

as I 
- -k div [Svn+SL (vi-v,) ] = - [alL (v,-v,) 2+~baL2]1 (27) 

d t T 
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We have thus obtained a system of equations of motion 
applicable to the case when superfluid turbulence develops 
in the volume of the flowing helium. The equations can be 
used to solve problems such as the propagation of strong 
pulses (in a regime which is supercritical with respect to the 
vortex-formation parameters), the kinetics of propagation of 
turbulent fronts (as observed experimentally by Peshkov and 
Tkachenko7), the motion of helium near a strongly heated 
wall, etc. 

It is interesting that the equations (25)-(29) can be ob- 
tained by means of the method of Poisson brackets. This is 
shown in Appendix 11. In (25)-(29) the additional reactive 
terms are small, and can be neglected in most cases. How- 
ever, the dissipative terms can be seen not to reduce simply to 
the addition of mutual friction forces, and have a more com- 
plicated structure. 

We discuss the domain of application of these equa- 
tions. We note first that the Vinen equation ( I ) ,  which we 
used as a basis for the closure of our system of equations, 
describes in principle situations which are close to equilibri- 
um. Indeed, the balance of Magnus or Hall-Vinen forces was 
considered by Vinen in the stationary case. The requirement 
that the system should be close to equilibrium has also been 
used in our derivation of the dissipative function, since in a 
strongly nonequilibrium situation the absorption by the 
cluster of energy from the motion of the helium and its subse- 
quent dissipation are a process which is nonlocal in time. On 
account of what was said above one should expect that the 
equations of motion {including Vinen's equation) in a strong- 
ly nonequilibrium case would be nonlocal in time. It is hard 
to estimate the influence of this nonlocality, however one 
may expect it not to be large. The following fact may be 
considered a basis for this assertion. Terms in the equations 
which are nonlocal in time must lead to a change in the ve- 
locity of the second sound excited in a direction perpendicu- 
lar to the supercritical countercurrent. Such a phenomenon 
was indeed observed.' But at the same time the magnitude of 
the effect was quite small: Ac,/c, = 

There is another difficulty here. Being an equation bal- 
ancing the growth and decay of a vortex cluster, this equa- 
tion does not contain any information about the develop- 
ment of turbulence. In order to solve equations with initial 
conditions which vanish (in L ), it seems to be necessary to 
introduce a preordained term, as was done by Vinen.' 

Boundary conditions require a special discussion. In 
addition to the usual viscous conditions (in these cases one 
cannot, of course, neglect the viscosity), conditions are add- 
ed which are related to the pinning of vortices, as well as 
possible annihilation or creation of vortices at solid inter- 
faces. 

As a result the equations obtained here are valid only 
for sufficiently wide channels and in cases which are close to 
equilibrium. 

3. PROPAGATION OF LINEAR SECOND SOUND 

We use the derived equations to investigate the problem 
of propagation of second sound in a supercritical counter- 
current (j = 0). As mentioned before, experiments on the 

damping of second sound were Vinen's experimental basis. 
Assume that the main flow is along the x axis and is 

characterized by the values of V, , V,, L, T, and p. We as- 
sume that j = p, V, +p, V, = 0 (at the same time Vp = 0). 
We impose the same condition on the perturbations of the 
velocities. For the perturbations (deviations from the aver- 
ages) v:, T ', L ' we obtain the following system of equations3': 

dv,' -- a$' *aL3" ( v a ,  - V .  (V.V.') ) aVT'=--Lv8' -- 
d t P*Pn p,v. I r e  

alp (30) 

- 2a1pL Y'vs. ; V.'L. + 2 ~ b f J L  
+- 

pnZT P T 
L' , 

TpnZ 
(31) 

d L' apL" pb V s V L f =  - 
L ' pb LVv.' - - v"Vs - -, 

a t  pn Pn  pn Vs z 
(32) 

Here T = [20L - (3/2)(ap/p, )L ' I 2  V, 1- I is the relaxation 
time of a vortex cluster. 

As always, we look for the solution of Eqs. (30)-(32) in 
the form exp i(ot - k,x - k,y) with they axis perpendicu- 
lar to the countercurrent. The nontriviality condition, i.e., 
the vanishing of the determinant of the system (30)-(32), 
yields an equation of the fourth degree relating w and k-the 
dispersion law. The fourth-degree determinant stems from 
the vector nature of Eq. (30), thus yielding x- and y-compo- 
nents. One can solve the dispersion relation in the following 
way. We make use of the smallness (compared to the usual 
second sound) of the additional terms in Eqs. (30)-(32). Then 
the solution of the dispersion equation can obviously be writ- 
ten in the form 

Here c, is the velocity of second sound for a "frozen" 
cluster. Linearizing the dispersion equation with respect to 
4 ( k )  and solving it, we obtain the following result: 

Here we have introduced the following notations: 

The following relation holds between the vectors v: and k: 

The relation (33) describes the spectrum of second sound 
oscillations. As can be seen, this spectrum is anisotropic. 
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The first three terms describe absorption and the last term 
describes both absorption and dispersion of the sound veloc- 
ity. For small k the addition to the velocity of sound depends 
only on the direction of the vector k, and estimates show that 
it has the order of magnitude Ac2z  10-3c2. For large k this 
addition behaves approximately like 10W3 V:/k 2. In addi- 
tion the sound absorption depends both on the direction of k 
and on the magnitude k. The source of the dispersion and of 
the k-dependent absorption is the following. The equation 
(32) for the quantity L ' has typically a relaxation form, i.e., 
we encounter the classical Mandelshtam-Leontovich situa- 
tion.'' A cluster which has been taken out of equilibrium by 
some external action relaxes to its equilibrium state during a 
characteristic time T. As is well known, this leads precisely 
to dispersion and to additional damping. It follows from the 
result (35) that the vector vf is not collinear with the vector k. 
This signifies that when sound is excited in a certain direc- 
tion at an angle to the flow there will also appear a sound in 
the x direction. The reason is that the sound "latches on" to 
the cluster, modulating the value of L, and thus leading to 
oscillations in the x direction. 

The case k, = 0 (sound perpendicular to the flow) re- 
quires special consideration. In this case v: also vanishes. 
The interaction of sound with the flow reduces then simply 
to a damping with decrement T. This is caused by the disap- 
pearance of the "latching on" of the sound to the cluster for 
perpendicular excitation. Indeed, the Vinen equation for L 
contains only the magnitude of the relative velocity, which 
in first approximation does not change at vf lV,. (The cou- 
pling via temperature is negligibly small in this case.) In this 
sense Vinen's consideration of the cluster as a system of fro- 
zen vortex filaments is justified, one must however make one 
important restrictive remark. If the main flow is stationary, 
then 15 = (a/P)21Vn,12, and the decrement equals 
$4 ( T ) p n  (B /U)~L ,  i.e., isequal tothequantity usedby Vinen. 
However, if L changes with time, then r is a complicated 
function, and the interpretation of Vinen's experiment 
should be based on Eq. (34) for T. 

4. THE PROPAGATION OF NONLINEAR SECOND SOUND 

The nonlinear acoustics of superfluids opens up great 
possibilities for He I1 diagnostics. Thus, in Ref. 11 the turbu- 
lence which appears in the wake of an intense heat pulse is 
probed by a nonlinear second-sound pulse. It is known that 
the transit time of a nonlinear wave depends on its amplitude 
(for the case of helium the calculations can be found in Ref. 
12), and the latter, owing to damping on vortex clusters, 
depends on their parameters. It is therefore of practical in- 
terest to follow the evolution of a nonlinear second sound 
pulse in a turbulent medium and to relate its transit time t ,, 
to the parameters of the vortex cluster. 

As the analysis of the preceding section shows, the main 
result of the intraction between the countercurrent and the 
perpendicular sound wave is a damping with decrement. Ac- 
count of the nonlinear terms introduces a small correction 
both into the main motion (without consideration of the vor- 
tices) and into the damping, which is already small. There- 
fore the terms related to the vortex cluster will be retained 

only in expressions which are linear in v:. As a result we are 
led to the following system of equations for vf (see Ref. 13): 

30 dT' p a p ,  du, p, dv,  p,v. do dT' -- +--v8--o ---.------ 

d~ dt p,2 a~ at pn dy p ,  a~ a~ 

If the right-hand side were absent from Eq. (37) we 
would have a system of two quasilinear equations. It is 
known that such a system has solutions of the form of so- 
called simple waves, i.e., flows with a unique relation 
T ' = T '(v:). The addition of a small damping should change 
this relation, but in a higher order of smallness: 

T'=T'(v,') +\Y (y, t ) .  (38) 
Since !P( y,t) is of higher order of smallness than the first 
order, it must satisfy the wave equation d P / a t  = c2dP/ay. 
We call the solutions (38) quasisimple waves. 

Substituting further (38) into Eqs. (36) and (37), and 
making use of the known13 expression T ' = T '(vf ) and of the 
fact that Pt  = c2P,,, we obtain a system of nonhomogeneous 
algebraic equations for dvf/dt and dv:/dy. The requirement 
of compatibility of these equations allows one to express P in  
terms of vf and to obtain the following equation for vf by 
itself (see Ref. 13). 

Here a ( T )  is the nonlinearity coefficient (see Refs. 3, 12, 13). 
Equation (39) can be integrated, and one can pose for it, 

e.g., the Cauchy problem vf 1, = , = o( y). We show how this 
is done. First we go over to a comoving (velocity c,) coordi- 
nate system and introduce the new variable u = vie". In the 
comoving frame we obtain for u the equation 

a u  a u  - + a ( T )  - = 0. 
at  a Y 

We note that for a signal of finite extent (compact support) 

i.e., the total area under the signal in the coordinates u, y is 
conserved in time. 

The Cauchy problem with the initial condition 
u = a( y) is solved by means of the method of characteristics. 
The characteristics in the y, L space satisfy the following 
equations with their respective solutions 

We determine the characteristic curve passing through 
the point to, yo, u,: 

a (T) uecr' a (T) ~ e - ~ ' o  
Y=- +yo+ 1 u=uo. (43) 
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Let us relate the points to, yo, uo and the initial condition 
to = 0, uo = (yo). Then Eq. (43) gives a parametric solution of 
the problem. Eliminating the parameter yo we obtain the 
solution in implicit form 

We note that for T-0, as expected, the solution goes over 
into the usual Riemann solution for a simple wave. 

The result (44) is however valid only for smooth solu- 
tions. It is known that the nonlinear term a(T)ujdv:/dy may 
lead to a steepening of the wave profile and ultimately to a 
discontinuity, when the solution (44) is no longer valid, if 
only because it gives an ambiguous answer (Fig. 1). In order 
to find the subsequent evolution of the signal one must make 
use of the area conservation law (41). Equation (41) implies 
that in a virtual "overspill" (Fig. 1) the profile has to be cut 
off by a shock front so that the two shaded regions should 
have the same areas: 

1 ( y  ( u )  - y p )  du=O. 
at 

U' 

This yields 

u1 

Recognizing that according to the solution (44) dy(u)/ 
at = a(T)ue - " , and combining this with Eq. (46), we obtain 

We have thus derived an equation for the motion of the dis- 
continuity. The solution is smooth to the right and the left of 
the discontinuity, and one can use Eq. (44) 

The equations (47)-(49) are a complete set of equations 
for yp , u,, and u, (compare this derivation with Ref. 14). 

As an example we calculate the evolution of a triangular 
profile (Fig. 2). In this case the Cauchy condition w (  y) is: 

uu- 

FIG. 2 

Y <o, 
o ( y )  = (uo/lo) y ,  OCy-=lo, I :, ~OCY.  

We obtain the following equations for the coordinate of 
the discontinuity yp and the velocity at the crest u,: 

Solving this system we obtain, e.g., for u,( t )  the following 
expression: 

u, ( t )  = ( louo)"~[ louo- ' -a  ( T )  r-' ( e - r t - l ) ]  -'". (52) 
Making use of the result (52) one can determine the 

transit time of a pulse for a given distance B, according to the 
following equation: 

'tr 

I L c 2 +  

a ( T ) u , ( t )  e-,,] ,jl=B, 
2 

Equation (53) relates the transit time of a nonlinear signal 
with quantities characteristic for superfluid turbulence, and 
thus solves the problem we have posed. One can similarly 
calculate t ,, for more complicated cases. 
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rovskii, A. A. Sobyanin, E. B. Sonin, and I. M. Khalatnikov, 
for discussions of this work and a series of remarks. One of 
the authors (S.N.) is grateful to Academician S. S. Kutate- 
ladze for his attention to this work. 

APPENDIX I 

In Appendix I we estimate the entropy LL transported 
by the vortices. That part which is related to the vortex com- 
ponent of the superfluid must be determined from the identi- 
ty 

dp=pdp+SdT+ (j,, dV, , ) .  (1.1) 

The dependence of the pressure on the relative velocity has 
the form 

Taking into account the fact that in view of the hydro- 
dynamic equations the quantities T, p + u:/2, and v, cannot 
have singularities (as well as dp,/d,u = p),  we obtain for the 
singular part of the pressure 

pslnB=-'/Zps VsZ.  
In agreement with Eq. (I. 1) the singular part of the en- 

tropy density is now equal to 

This involves the partial derivative for constant chemi- 
cal potential 

Integrating this expression near the vortex, one can ob- 
10 Y tain the entropy SL carried away by them: 
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The lower cutoff is, however, not the radius of the vortex, but 
I, the mean free path of excitations, i.e., the limit under 
which the hydrodynamic discussion is no longer justifiable. 
In the region -1 the distribution function of the excitations 
differs from an equilibrium distribution, and this region con- 
tributes toSL an addition which, on account of the smallness 
of the volume of the region, can hardly exceed the contribu- 
tion (1.2). The same can apparently be said about the proper 
entropy of the vortices, although it is extremely difficult to 
estimate it, without having an idea on the structure of the 
vortex cluster. Consequently, in the hydrodynamic equa- 
tions one must consider SL as a prescribed function (which 
should be obtained from microscopic considerations), trans- 
ported with the velocity v,, and estimated by Eq. (1.2). 

APPENDIX II 

It is convenient to formulate the nondissipative hydro- 
dynamic equations in the language of Poisson brackets (see 
the  review^'^.'^).*' There arises a problem related to the fact 
that the Poisson brackets must satisfy the Jacobi identity. 
However, it is by far not always possible to construct ade- 
quate hydrodynamic equations by means of a system of Pois- 
son brackets satisfying the Jacobi identities. For this reason 
Volovik and Kats," who considered the hydrodynamics of 
liquid crystals, were forced to introduce the auxiliary quan- 
tity L, which later had to be eliminated from the final equa- 
tions. 

The reason for this is that the hydrodynamic degrees of 
freedom are slowly relaxing, surviving after one excludes 
from the complete set degrees of freedom the rapidly relax- 
ing variables. Since the latter are not constants of the mo- 
tion, such an exclusion from the expressions for the Poisson 
brackets (which for a complete set of observables satisfy the 
Jacobi identities) inevitably leads to Poisson brackets for the 
remaining quantities not satisfying the Jacobi identities. The 
Jacobi identities may accidentally still be valid**' (for exam- 
ple in the case of a classical fluid, or for superfluid He 11), 
owing to limited number of hydrodynamic variables. In the 
sequel, formulating the hydrodynamic equations, we do not 
impose the Jacobi identities, but leave in force the require- 
ment of antisymmetry of the Poisson brackets. 

The hydrodynamic variables split into the densities of 
conserved (or slowly relaxing) quantities, and into variables 
describing the order parameter degrees of freedom. The ex- 
pressions for the Poisson brackets involving densities gener- 
ally do not depend on the concrete system under considera- 
tion and have a universal character determined by symmetry 
considerations. lX These universal considerations guarantee 
that the corresponding conservation laws are satisfied for 
any system. The arbitrariness related to the violation of the 
Jacobi identities appears only in the expressions of the Pois- 
son brackets for quantities related to the order parameter. 
We note that the antisymmetry of the Poisson brackets suf- 
fices for automatic validity of the energy conservation law. 

In the case considered here we have densities of massp 
and momentum j, and in addition there is the entropy den- 

sity S. Related to the order parameter***' are the superfluid 
velocity v, ,  and the length L per unit volume of the vortex 
filaments. The enumerated quantities form a complete set of 
hydrodynamic variables for turbulent He 11. The Poisson 
brackets for the densitiesp and j have the following universal 
form: 

{j(ri),  p(r2)}=p(ri) V6(ri-r2), (11.1) 

{ i i ( 2 )  i ( I )  V ( )  i ( 2 )  6 ( )  (11.2) 

Also universal are the brackets 

{p (rl) ,  v8(r2) } =V6(rl-r2), (11.3) 

{ I )  ) ) - 6  ( - 2  . (11.4) 

The Poisson brackets between the momentum density j and 
the densities S and L are similar to (11.1) 

{j (ri) ,  S(r2) 1 =S(ri) V6 (r1-r2), (11.5) 

{j(rl),  L(r2) }=L(ri) V6 (ri-r2). (11.6) 

The expressions for the Poisson brackets involving the su- 
perfluid velocity can be derived on the basis of the fact that 
the quantities L and the entropy SL are convected with the 
velocity vL . This fixes the following expressions: 

(b-  1) SL 
{v.(rt),S(rz))= - (rl) V6 (rl-r2) 

The nondissipative hydrodynamic equations for turbu- 
lent He I1 can now be formulated by means of the Hamilton- 
ian 

p ~ , ~  
H= d3r (? +- v.jo+Eo (p. 4 4 jo) ) . (11.10) 

These equations have the following form4': 

as - = ( H ,  S )  =-- V (Sv,+SL (vL-v~) ) , (11.12) 
at 

Here the pressure is 

p=-Eo+pp+ TS+ (V,,, 10) +E&. (11.16) 

Equations (11.1 1)-(11.15) lead to the following form of the 
energy conservation law 
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dE of the Bose-Einstein condensate (of which v, is the gradient) and a -- = - 
at 

V [STv,+SLT (v, -v,) fe,,v,Lfj ( p + v S Z / 2 )  Clebsch potential(s) describing the vortex filaments. (Cf. the corre- 
sponding discussion of a relativistic superfluid in the translator's pa- 

+(vn.jo)v,].  (11.17) per quoted in footnote*'). 

"Schwarz4 has introduced the function /Z (v, t ) representing the length of 
the filaments per unit volume, such that the selfinduced velocities (i.e., 
the velocities caused by thelocal curvatureof the filament) are within the 
interval (v,, v, + dv,). However, his attempt at deriving a kinetic equa- 
tion for A directly from the dynamical equations of motion is incorrect. 
The Bogolyubov chain (BBGKY hierarchy) does not contain a small 
parameter in this case and its artificial truncation, as proposed by 
Schwarz, is illegitimate. 

2'0ne does, of course, appeal to additional considerations or empirical 
facts for the construction of the dissipative function (cf. Ref. 3). 

"As is well known, in a countercurrent one encounters a "drag" of the 
second sound, i.e., c, = c, + Acd,,,, .9 In order not to complicate the 
already long formulas we omit from the equations all terms leading to 
this effect. In view of the fact that both the Khalatnikov correction 
PC,,,, , as well as the corrections we have found, are small they will 
simply contribute additively to final effect. 

4'In calculations one should substitute j, = j - pv, . 
"[Translator's note] The use of Poisson brackets and Poisson structures 

in continum mechanics has become widespread during recent years. In 
addition to the reviews,15,'" the following references written in better 
English (albeit in the less familiar language of modern differential geom- 
etry)couldbeconsulted by the reader: R. Abraham, J. E. Masden, and T. 
Ratiu, Manifolds, Tensor Analysis, and Applications (Sec. 8.2), Ad- 
dison-Wesley, Reading, MA, 1983; V. Guillemin and S. Sternberg, Ann. 
Phys (NY) 127,220-253 (1980); J. E. Marsden and A. Weinstein, Coad- 
joint Orbits, Vortices, and Clebsch Variables for Incompressible Fluids, 
Physics D, in the press; M. E. Mayer, Plasma Kinetic Theory and Differ- 
ential Geometry, Proc. XI Intern. Conf. on Differential-Geometric 
Methods in Physics. S. Sternberg, Ed., Reidel, Dordrecht, 1983, A Pois- 
son Structure for Realistivistic Superfluids, to appear in Proc. of AMS 
Summer Conference, 1983. Additional references can be found in these 
books and papers. 

**'[Translator's note] In this connection, see the papers quoted in the 
preceding footnote. The existence of "good" Poisson brackets is not 
quite accidental, but is related to some form of "gauge invariance," 
and can be understood in terms of the geometric formulations (the 
"momentum map") quoted in the previous footnote. 

***'[Translator's note] For superfluids the order parameters are the phase 
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