
Suppression of mode interaction in gas lasers 
M. A. Gubin, V. M. Ermachenko, A. S. Kurlyandskii, V. V. Nikitin, V. N. Petrovskii, 
E. D. Protsenko, A. N. Rurukin, and A. S. Shelkovnikov 

Moscow Engineering-Physics Institute 
(Submitted 24 November 1982) T 

Zh. Eksp. Teor. Fiz. 84, 1686-1694 (May 1983) 

The interaction of two perpendicularly polarized modes with identical transverse structure, sepa- 
rated in space in a direction transverse to the laser axis, is investigated theoretically and experi- 
mentally for the first time. It  is shown that the interaction between such modes can be arbitrarily 
weak by varying the indicated space shift. The proposed method of weakening the interaction of 
the mode is the most universal and can be used for all gas lasers. 

PACS numbers: 42.55.Bi, 42.55.Hq 

INTRODUCTION He-Ne laser on the 3s,-3p4 transition of Ne. The results agree 

Two-mode gas lasers with adjustable coupling between well with the calculated data. 

the modes are gaining in use both in scientific research and in 
applications. Two-mode lasers employed in precision laser 
spectro~copy,~ in quantum frequency standards, in instru- 
ments for the measurements for the frequency characteris- 
tics of photodetectors, for plasma diagnostics, etc., has made 
it possible to decrease considerably the experimental appara- 
tus size and increase the sensitivity and the resolution of the 
corresponding devices compared with the use of single-mode 
lasers. 

Earlier investigations have shown that particular inter- 
est, among lasers with controlled coupling between the 
modes, attaches to lasers in which it is possible, by weaken- 
ing the mode interaction, to tune continuously the inter- 
mode distance w ,, in a range practically from zero to c/2L (c 
is the speed of light and L is the cavity length) with a large 
range of two-mode-lasing stability. However, the increase of 
the nonlinear interaction of the modes with decreasing w,, 
leads to a competing suppression of one of them if the fre- 
quency splitting of the natural modes of the cavity becomes 
less than a certain quantity, called the critical frequncy w,, . 
The intermode interaction is determined to a considerable 
degree both by the polarization of the generated modes and 
by the quantum numbers of the total angular momenta j, 
and j, of the lower and upper levels of the laser transition, 
respectively. By now there are two known methods of weak- 
ening the mode interaction: 1) the use of a transverse mag- 
netic field4; 2) spatial relative shift of the standing waves of 
the generated modes5, in the region of the active medium 
along the laser axis. 

Aimed at achieving one purpose, weakening the inter- 
action of the modes, these methods have a substantial short- 
coming. They can be used only for specific laser transitions 
and not to solve the problem for any type of gas laser. 

In the present paper we report, for the first time ever, a 
new method of weakening intermode interaction. This meth- 
od, in contrast to the previously known, can be used in any 
gas laser. The gist of the proposed method is to shift the 
generating-mode fields apart in a direction perpendicular to 
the laser axis. The method was experimentally verified in an 

1. CALCULATION OF THE POLARIZATION OF THE MEDIUM 

We write down the two-mode laser field in the form 

E (r ,  t )  =E(')  ( r ,  t )  +EC2) (r, t ) ,  (1) 
where E"'(r,t ) and E'2'(r,t ) are the electric field intensities of 
the first and second modes, respectively. Since we are inter- 
ested in the transverse distribution of the intensity of the 
generated mode, the plane-wave approximation customarily 
used for the calculations will not do in this case. We use the 
Gaussian-mode approximation, which reflects more cor- 
rectly the distribution of the electromagnetic field of the fun- 
damental mode in a gas laser.6 Denoting by z the direction 
along the laser axis, we represent E"' in the form 

exp ( ik , z )  x2+y2 
E ( l )  ( r ,  t )  =elEi  

where E, and p, are the slowly varying amplitude and phase 
of the first mode and e, is the polarization unit vector. The 
functions I ,  (z) characterize the change of the transverse 
dimensions of the mode and of the curvature of the wave- 
front along the laser axis. 

1, ( z )  =1*2i ( z - z , )  /k,aO2. (3) 
The coordinate z, determines the position of the neck of the 
mode, where its transverse dimension is minimal and equal 
to a,. 

When writing down the expression for E'2' we assume 
that devices placed in the cavity can ensure, relative to E"', 
both a spatial shift along the laser axis and a transverse shift 
of the direction of the center of the Gaussian distribution 

E t 2 )  ( r ,  t )  
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The quantity r, = ( xt + y;) ' I2  characterizes the spatial 
transverse distribution of the modes. In (4) it was assumed 
for simplicity that the position of the neck of the second 
mode is also at z, and its transverse dimension is determined 
by the same quantity a,. In expression (3) for I * (2) we must 
put k, z k, z k = ode, where w, is the central frequency of 
the considered transition and c is the speed of light. The 
plane-wave approximation in (2) and (4) is obtained by taking 
the limit as a , - + ~ .  

Expressions (2) and (4) were used to calculate the polar- 
ization of the gas medium accurate to terms E by the meth- 
od described in ref. 7. We disregarded in the calculation ef- 
fects connected with the small parametersR /ao, R /I, and u/ 
a,y, where il is the radiation wavelength of the considered 
transition, I is the length of the active medium, u is the ther- 
mal velocity of the motion of the aotms, and y is the homo- 
geneous half-width of the radiation spectral line. These pa- 
rameters are in fact small in all gas lasers. Finally, it was 
assumed that the diameter of the laser gas-discharge tube 
exceeds considerably the transverse dimension of the modes 
and the transverse shift r,. The complex amplitude of the 
polarization of the medium at the frequency o, (k = 1,2) in 
two-mode lasing can be represented in the form 

( k ,  l=1, 2 ;  kf 1).  (5) 

the coefficients introduced in (5) have the usual meaning8: a; 
determines the linear gain of the medium; 0, and O,, are the 
coefficients of the intrinsic and the crossover saturations of 
the gain of the k th mode; a, characterizes the decrease of the 
mode generation frequency at the center of the saturated 
gain curves; p,E and rklE determine the generation fre- 
quency shift of the k th modeowing to the intrinsic and cross- 
over saturation. 

All these coefficients were calculated under the as- 
sumptions indicated above for transitions with arbitrary an- 
gular momenta of the working levels and different polariza- 
tions of the mode, with account taken of the depolarizing 
collisions. Allowance for the transverse distribution of the 
field was found to lead to the appearance in these coefficients 
of certain factors that take into account the geometry of the 
field and of the resonator with the active medium, compared 
with the case of plane waves.7 By way of example we present 
the explicit form of 0, and O,, for the limiting case of an 
inhomogeneously broadened line y(ku. Apart from factors 
that are inessential in the subsequent discussion, we have 

where wko = ok - wo, wkl = wk - w,,yy)(3t = 0,1,2; 
I j  = a,b ) are the polarization characteristics of the working 
levels, which describe the relaxation of the population, the 
orientations, and the allignments of the considered excited 
states under the action of the least atomic collisions7; 
a?', by', cy' are numerical coefficients that depend on the 
angular momenta of the working levels and the polarizations 
of the generated modes. For helium-neon lasers they are giv- 
en in Ref. 7. The quantities J, ,  J,, and J3 are determined by 
the geometric characteristics of the field and of the amplify- 
ing medium: 

b 
1, = - arctg 

21/b 

21 I+ 4(zo-z , )  (z,-z,+l)lbZ' 

It was assumed in (7) that the active medium is located in the 
resonator between z, and z, + I ,  while the quantity b = ka; 
has the meaning of the characteristic dimension, along the 
laser axis, over which a substantial change takes place in the 
transverse distribution of the field. In the limit of plane 
waves (a,-+w) J, and J, tend to unity, while J3 tends to the 
ratio n,/n - of the second harmonic of the inverted popula- 
tion to its mean value; expressions (6) go over into the corre- 
sponding results of Ref. 7. 

In the case of an arbitrary ratio y/ku, allowance for the 
transverse distribution of the field in the approximation indi- 
cated above leads to the following changes in the polariza- 
tion of the medium compared with the case of plane waves7: 
the coefficients a, and a, remain unchanged; Pk and 0, are 
multiplied by J,;  in the coefficients O,, and r,, the factors n,/ 
n- are replaced by J3, while the remaining terms in them are 
multiplied by J,. 

The results allow us to investigate the stability of the 
two-mode lasing regime with transverse distribution of the 
modes in any gas laser. 

Let us estimate the influence of the transverse distribu- 
tion of the modes on the stability of the two-mode regime in 
the limit I4b and lzo - z, 1 (b. Neglecting the change of the 
transverse dimension of the field over the length of the active 
medium, we obtain from (7) 

s i n ( o l z l / c )  cos [-(l+2z0) I olzl ~ Z S ]  
C 

Thus, the transverse distribution of the modes does not alter 
the coefficient 0, in this approximation, since J, zz 1 and the 
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coefficients 8,, which characterize the coupling of the 
modes, decrease by a factor exp(6/a;) compared with the 
case of plane waves. This result does not depend on the type 
of transition, on the character of its broadening, and on the 
polarizations of the generated modes, attesting thus to the 
universality of the weakening of the mode interaction in gas 
lasers when this method is used. 

To analyze the stability of two-mode lasing when the 
modes are symmetrical, it is convenient to introduce a di- 
mensionless quantity, namely the mode coupling factor 
S  (a,,) = (p - 8 )/(p + 8 ), which characterizes the degree of 
the intermode interaction (p and 0 are the values of the coef- 
ficients /3, and 8,, when the modes w , ,  = o 1 2 / 2  and 
w2, = - w I 2 / 2 )  are symmetric about w,. Total absence of 
coupling between the modes corresponds to the value 8 = 0 
and consequently S = 1 .  Stable two-mode lasing is possible, 
as is well known, at S  (w ,,) > 0. The quantity S  decreases with 
decreasing intermode distance, for in this case the crossover 
saturation of the mode increases. The condition S  = 0 deter- 
mines the critical intermode distance w,, , below which two- 
mode lasing becomes unstable. The requirement that there 
exist stable two-mode lasing at any distance w , ,  between the 
modes denotes vanishing of w,, . Using expressions (6) for /3 
and 8, we investigate the possibility of satisfying the condi- 
tion S >  0 at w 1 2  = 0 .  For w12 = 0 we obtain from ( 6 )  

The quantity S  determined by expression (9)  depends on 
the angular momenta of the transition, on the polarizations 
of the generated modes, and on the spectroscopic character- 
istics of the level. The strongest interaction takes place for 
modes polarized in parallel. In this case aj.x' = b y )  = cj") 
(Ref. 7), and the condition S  (w ,, = 0 )  > 0 leads to an inequa- 
lity that depends on neither the angular momenta of the lev- 
els nor on the spectroscopic characteristics of the levels of 
the working transition: 

Using expressions (8) for estimates, we obtain from (10) the 
condition 

exp [- ( ro /ao)2]  (21 ( ~ + C O S  26). (11) 

It follows from ( 1  1 )  that at ro = 0 it is impossible to obtain 
stable two-mode lasing at small intermode distances by us- 
ing the longitudinal shift S (O<S<rr/2). At the same time, 
with transverse mode separation at 

Two-mode lasing is stable also without any longitudinal 
shift. At 6 = 0 ,  two-mode lasing will be stable also in the 
limit of the homogeneously broadened line if the transverse 
mode separation satisfies the condition (12). Thus, the re- 
sults point to the feasibility in principle of obtaining stable 

two-mode lasing at any intermode distance and on arbitrary 
transitions. The results presented here, with account taken 
of the results of earlier work, make it possible to calculate all 
the characteristics of the two-mode lasing regime for a spe- 
cific gas laser. 

2. EXPERIMENTAL RESULTS AND THEIR DISCUSSION 

The experiments were performed on a setup consisting 
of the investigated laser working on the Ne transition 
3s2 - 3p,, and recording apparatus (Fig. 1 ) .  The intermode 
distance w , ,  and the longitudinal spatial shift 6 were con- 
trolled with the aid of two oppositely tapered wedges of crys- 
talline quartz, located on opposite sides of the active medi- 
um. It  is known5 that in this case the laser can generate two 
axial linear orthogonally polarized modes with independent 
variation of o12 and of S at a constant cavity length L. To 
separate the modes in the transverse direction we used bire- 
fringence. At normal incidence, the displacement ro of the 
ordinary and extraordinary rays in a uniaxial crystal is a 
maximum when the angle $ between the directions of the 
incident ray and the optical axis of the crystal satisfies the 
condtion9 

In this case the displacement is equal to 

where d is the length of the crystal in the direction of light 
propagation; no and n, are the refractive indices for the ordi- 
nary and extraordinary rays. For the employed LiNbO, 
crystal we have An(n(An = (no - n, 1, n z n ,  z n , ) ,  so that 
the angle $--,45" and ro = dAn/n.  

Thus, by using sets of plane-parallel plates of lithium 
niobate with different thicknesses d it is possible to vary dis- 
cretely the ratio r,,/ao that determines the intermode interac- 
tion. 

The recording apparatus permitted observation of the 
change of the intensity of any of the two orthogonally polar- 
ized modes due to detuning of the resonator, and measure- 
ment of the frequency w ,, of the intermode beats, thereby 
yielding complete information on the behavior of the region 
A of the stable two-mode lasing in the vicinity of the symmet- 
rical position of the modes and of the critical frequency w,, 
when the laser parameters are varied. 

FIG. 1 .  Block diagram of experimental setup: I-gas-discharge tube; 2- 
system of phase-anisotropic elements that ensure independent regulation 
of o,, and of 6; 3-uniaxail crystal that introduces a transverse spatial 
shift of the modes; k a v i t y  mirrors; 5-polarizers; &photoreceivers; 
7-amplifiers; 8--oscilloscope; 9-spectrum analyzer. 
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The parameters of the investigated laser were the fol- 
lowing: 1 = 0.5 m; z, = 0.2 m; z, = 0.7 m; b = 2 m; 
a, = lo-' m, with b and z, calculated from formulas taken 
from Ref. 10, starting from the known curvature radii of the 
mirrors, R ,  = 5 m and R, = 2 m, and from the cavity length 
L = 0.9 m. 

For the parameters indicated, the stable two-mode-las- 
ing region A and the critical frequency w,, were calculated in 
the limit of an inhomogeneously broadened line, since the 
gain line of the Ne transition 3s2--3p, at mixture working 
pressures p = 1-3 Torr, is closer to the inhomogeneously 
broadened one. In principle it is easy to perform similar cal- 
culations also for the real ratio y/ku. 

Figure 2a shows the results of the calculation of the 
stable two-mode-lasing region A as a function of the inter- 
mode distance w,,. Curves 1-3 correspond to a longitudinal 
shift S = 0. They differ from each other in the values of the 
parameter rda,. Curve 1 corresponds to r, = 0. It can be 
seen that the region A vanishes in this case at o,, =: 22 MHz, 
i.e., stable two-mode lasing is impossible at w,, < 22 
MHz = a,,. Curve 2 corresponds to r,/a, = 0.2. The small 
transverse mode separation led not only to a lowering of w,, 
to 7 MHz, but also to an increase of the region of the two- 
mode lasing. At rda,  = 0.4 (curve 3), the two-mode regime 
becomes stable at practically all intermode distances. For 
orthogonal polarizations of the modes, which are the ones 
considered here, it is possible to decrease a,, and to extend 
the region of two-mode lasing also with the aid of a longitu- 
dinal shift 6. Curve 4 illustrates this fact: it corresponds to 
r, = 0 and to S = r/2, which is the optimal shift from the 
viewpoint of weakening of the itnermode interaction. It can 
be seen that the two-mode regime does in fact become stable 
at any intermode distance, but the region A is much smaller 
than in the case of curve 3. 

Figure 2b shows analogous experimental results. It can 
be seen that the behavior of the curves and the character of 
their variation with increasing r,/a, agree with the results of 
the theoretical calculation. 

A ,  MHz 
300 r 

roo C 

FIG. 2. Calculated (a) and experimental (b) plots of A (o,,) forp = 2 Torr. 
I-rda, = 0; 2-r,/a, = 0.2; 3-rda, = 0.4; 4-4 = 90', r d a ,  = 0. 6 ) 
6 = 0': I-+&,, = 0; 2-r&, = 0.32; 3-r,/a, = 0.46; 4-4 = 90", r d  
a, = 0. 

We note the substantial differences in the influence of 
the parameters S and rda,  on the mode interaction. The 
possibility of changing the coupling of the modes by varying 
S is limited. Thus, forp = 2 Torr the mode coupling factor S 
at r, = 0 is a small quantity, 0.02 even at S = 71/2, i.e., the 
mode coupling remains strong as before. With increasing r,/ 
a,, the factor S tends to unity and the intermode interaction 
can be made arbitrarily weak. In accordance with the differ- 
ent action of the longitudinal and transverse field separation 
on the intermode coupling, a region A also changes. Thus, a 
change of 6 from zero to 71/2 increases the region of the two- 
mode lasing, but not to its maximum possible value. This 
value is determined by the condition that both modes be near 
frequencies where the gain exceeds the loss, and is equal to 

Amax=2ku (ln q) '"-o,,, 

where 7 is the relative excess of the gain of the modes over 
the losses. With increasing r,/a,, the size of the stability re- 
gion of two-mode lasing tends to its limiting value A,,, . We 
note that in experiment A,,, is limited to c/2L =: 170 MHz. 

Since the transverse and longitudinal shifts act in the 
same direction and weaken the mode interaction, it is rea- 
sonable for practical purposes to use their simultaneous ac- 
tion to decrease the intermode coupling. To this end we in- 
vestigate qualitatively the dependence ofw,, on 6 at different 
values of the transverse separation r,/a,. Replacing $'by a 
certain effective width yo, denoting 

we obtain under the assumption o,, -y,(y, using (6)  and 
( ' ) 1  

oCrz=y: [ c F ( I + N )  -2(a-bF)]  /2 (a -bF) .  (13) 

F O ~  the considered transition and for orthogonal polari- 
zations of the mode Ref. 7 gives a = 17/225 and b = c = 23/ 
450. It follows from (13) that o,, is of the order of y, in the 
absence of shifts (r, = 0 and S = 0). At a specified transverse 

FIG. 3. Calculated (a) and experimental (b) plots ofo,, (6 ). alp = 2 Torr: 
1-rda, = 0; 2-r,/a, = 0.1; 3-rda, = 0.2; 4-rda, = 0.3. r d  
a, = 0.1; 5-p = 3 Torr; 6-p = 1 Torr. blp = 2 Torr 1-rda,, = 0; 2- 
r d a ,  = 0.25; 3-rda, = 0.32; 4-p = 2.5 Torr, r d a ,  = 0 

987 Sov. Phys. JETP 57 (5), May 1983 Gubin et a/. 987 



shift ro, it decreases monotonically with increasing 6, vanish- 
ing at S *, where 

We note that 6 * does not depend on the pressure of the active 
medium, in contrast to the critical frequency. These qualita- 
tive results agree with the numerical calculation. 

Figure 3a shows the values of o,, calculated under the 
same conditions as in the case of Fig. 2a. The corresponding 
experimental results, shown in Fig. 3b, agree well with the 
theoretical ones. 

In conclusion, we consider the influence of the position 
of the tube with the amplifying medium relative to the neck 
of the mode and its length, on the degree of interaction of the 
modes. This can be understood qualitatively by writing 
down approximate expressions for the quantitites J , ,  J,, and 
J,  at o,,  = 0, assuming1 /b (  1 and (z, - z, ( /b< 1, and retain- 
ing the first corrections in terms of these parameters. Denot- 
ing by m, to abbreviate the notation, the quantity 

m=4 [ (z,-2,) (z ,+z , i -  1 )  /b2+12/3b2] <<I, 

we obtain from (7) 

J I - m ,  J2-exp [- ( ro /a , )2 ]  [ I - m ( l - r O 2 / a o 2 ) ] ,  

J p e x p  [- ( r , / ~ , ) ~ ]  ( I - m )  cos 26.  (14) 

The parameter m is determined by the geometric cbqracter- 
istics of the field and of the active medium. As follows from 

(lo), the conditions for the stability of the two-mode regime 
are staisfied better the smaller the ratio J, /J ,  or J3 /J , .  In the 
approximation (14), the ratio J3 /J ,  is independent ofthe geo- 
metrical characteristics, and for J, /J ,  we obtain 

Since m > 0, the quantity J, /J ,  as a function of the position 
of the tube relative to the neck of the mode reaches a maxi- 
mum value when m has the smallest value. This takes place 
when the tube is symmetrically located relative to the neck of 
the mode. In this case the coupling between the modes is a 
minimum. At any other position, owing to the mode diver- 
gence, their overlap decreases and the interaction increases. 
The results of a numerical calculation are shown in Fig. 4. 
Figure 4a shows the dependence of a , ,  on 2,. It can be seen 
that the minimum of each of the curves corresponds to the 
position z, = zo + 1/2. An increase of the parameter b,  
which characterizes the divergence of the mode fields, leads 
to a decrease of a,, (Fig. 4b). 

Thus, the investigations of the interaction of two Gaus- 
sian modes in a linear gas laser have made it possible to sug- 
gest an effective method of weakening their coupling by in- 
troducing a transverse shift. An advantage of this method of 
eliminating the competition of the mode is its applicability 
for arbitrary gas lasers, particularly on transitions where 
other methods of weakening the intermode interaction may 
turn out to be ineffective. 

In conclusion, the authors thank I. I. Ashmarin and V. 
A. Ukraintsev for supplying the lithium-niobate crystals. 
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