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The behavior is considered of a two-level atom system in a high-frequency field of periodically 
varying intensity. An example of such a field is synchronized multimode laser radiation. Expres- 
sions for the quasi-energy levels of the nuclei in the periodic-amplitude field are obtained in an 
approximation adiabatic in the phase, and are suitable for an arbitrary number of modes of the 
synchronized radiation. The spectrum of the resonance frequencies 0, (k = 1,2,3, ...) correspond- 
ing to the crossing of the quasilevels of the system is determined. The frequencies Rk determine 
the positions of the parametric resonances. With a biharmonic field as an example, it is shown that 
if the intermode frequency interval R becomes equal to Rk the absorption (gain) of individual 
modes and of their combination tones becomes extremal. 

PACS numbers: 32.80.Bx, 42.50. + q 

1. INTRODUCTION 

The simplest case of a field whose intensity is modulat- 
ed at a frequency R is a biharmonic field with mode-frequen- 
cy difference R. The behavior of a two-level system in a qua- 
siresonant strong biharmonic field has been well 
investigated experimentally and theoretically. 

A case investigated experimentally is when the frequen- 
cy of one field component (E,) coincided with the absorption 
line center w, and the frequency o, = w, + 0 of the other 
component (El) was scanned in the frequency interval from 
w, - a, tow, + w, , where w, is the frequency of the opti- 
cal nutations (the Rabi frequency) of the biharmonic field. 
The absorption coefficient K,  of the scanned field was mea- 
sured as a function of the difference frequency R (Refs. 2 and 
3). When both field components were strong, two new phe- 
nomena were observed: a subradiative structure of the ab- 
sorption line,' wherein absorption maxima appear at fre- 
quencies'' RR / k  (k = 2,3,4), and an anomalously strong 
dependence of the absorption3 near R = 0 on the amplitude 
ratio E,/E,. 

The onset of absorption maxima was attributed in Ref. 
2 to multiphoton transitions, and an approximate theory of 
the resonances was given there for the case El<Eo. Braun 
and Miroshnichenko4 investigated theoretically the case of 
equal mode amplitudes, E, = E,. Absorption in the region 
R =:O was not calculated in Ref. 2 and 4. In Refs. 5 and 6 was 
constructed a quantitative theory for arbitrary mode ampli- 
tudes Eo and El ,  describing both phenomena in good agree- 
ment with 

The purpose of the present paper is to interpret the reso- 
nant structure of the absorption of individual field compo- 
nents as the result of the crossing of the atom quasi-energy 
levels.' Such an interpretation makes the physical results 
more lucid and makes possible a generalization of the theory 
to include the case of any number of synchronized modes. 
Just as the crossing of the magnetic sublevels of the fine or 
hyperfine structure of an excited state of an atom leads to a 
redistribution of the intensities among spontaneous-emis- 
sion components having different polarizations,\uasi-level 
crossing leads to a redistribution of the stimulated gain or 

absorption of individual modes of the synchronized radi- 
ation (see Fig. 1). As seen from Fig. 1, the absorption (gain) of 
the field E, (curve 1) coincides with the minima of the ab- 

FIG. 1. Dependences of the abs~rption coefficien~s of individual compo- 
nents of a bichromatic field K,/Kjcurve I), K,/K kurve 31 and of the 
average absorption coefficient K / K  = (K, + K0)/2K (curve 2) on the rn- 
termode frequency interval R /y (K is the linear absorption coefficient at 
the line centers, the field frequencies are w, = u , ~ ,  o, = o,, + 0, dE,/ 
-ti= 11.1, E,/Eo=0.8).  
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sorption (gain) of the field Eo (curve 3). The average absorp- 
tion (gain) of the fields (curve 2) changes little. 

The onset of resonances can be explained in the follow- 
ing manner: the elements of the atomic density matrix oscil- 
late at a frequency determined by the difference between the 
quasi-energy values. At the quasi-level crossing points the 
oscillations take place at zero frequency and enter into reso- 
nance with the constant "pumping force." These resonance 
appear in the absorption spectrum K,(R ) when the difference 
frequency R coinides with the frequency Rk  corresponding 
to the quasi-level crossing. The transition scheme is shown in 
Fig. 2; the transitions d occur at the crossing of quasi-level of 
the lower or upper states of the atom, and the c transitions do 
not oocur at the quasi-level crossing. 

In Sec. 4 is determined the number of natural oscilla- 
tions that appear in the spectrum K,. It depends on the ratio 
p = E,/E,  of the field amplitudes. This fact makes it possible 
to explain the anomalous dependence of K,(O) on p near 
p = 1. As p approaches unity in the range p ,  <p <p2 the 
number of resonances in the spectrum K, increases rapidly, 
but they are not resolved separately and form a common 
maximum with center at Q = 0. (The values ofp, andp, are 
defined in Eq. (37).) Atp  <p,  andp >p2 there appear in K, a 
limited number of oscillations k < k, , where k, is defined in 
(36). In this case there are no resonances in the absorption 
coefficient K,(R ) at IR ( < RR /k, and the values of K, in the 
region R zO is much lower than in the interval p ,  < p  <p, 
(see Fig. 3). 

FIG. 2. Examples o f  transitions between quasi-levels o f  upper and lower 
atomic state. Corresponding to each state are two systems o f  quasi-levels 
(see Ref. 14a). Several quasi-levels are shown as functions o f  O; a-low- 
frequency wing o f  the line, b-high-frequency wing, c-nonresonant tran- 
sitions, d-resonant transitions. 

FIG. 3. Absorption coefficient ~ , ( ~ , p ) / g o f  the component El o f  a bichro- 
matic field at D = 0 vs the amplitude ratiop at dE,/fiy = 10 (solid curve). 
The values o f p ,  andpz were calculated from Eq. (37). Dashed curve-the 
asymptotic expression K, (Op) /K = ( 1  + G :/$)-I at E ( E : .  

The connection between the natural oscillations of the 
atomic system and the subradiative structure of the absorp- 
tion of an individual field component can be generalized to 
include the case of synchronized multimode radiation. In 
this case, too, the resonant-frequency spectrum is of the 
form 0, = 0, /k (k = 1,2,3 ...), and the following simple 
expression is obtained for the Rabi frequency: 

where d an off-diagonal dipole-moment matrix element, 
( E  (t ))is the field amplitude averaged over the period 27~/R, 

&(t)  =Re IE(t) exp {-i(o,,t+cp(t) ) ) I ,  
a,, is the frequency of the atomic transition, and p(t ) is the 
slow phase of the field. 

Expression (1) was obtained in an approximation adia- 
batic in the phase shift. In the case when the radiation is 
modulated only in amplitude and the carrier frequency coin- 
cides with the transition frequency, the phase shift q, ( t  ) un- 
dergoes a jump at the instants of t ime0 t, = (2n + 1) and the 
adiabatic approximation no longer holds. In this case, how- 
ever, an exact solution exists. 

Thus, for harmonic amplitude modulation, $(t ) can be 
represented in the form 

8 (t) =Re {[Eo+2El cos 5211 exp (-io,,t) ), (2) 
and RR is determined only by the amplitude of the carrier, 
0, = dE,Jfi. 

Parametric resonances in fluorescence were theoreti- 
cally and experimentally investigated for the field (2) in Refs. 
9 and 10. In the experiment, measurement of the fluores- 
cence of an atomic sodium beam at the 3 'S, , ,  - 3 2A3,2 res- 
onance line yielded two resonances (k = 1,2). 

3. QUASI-ENERGY SPECTRUM OF TWO-LEVEL SYSTEM IN 
AN INTENSE PERIODIC FIELD 

A two-level atomic system is described by the wave 
function 

Y =C, (t) exp (-iW,t/fi)$I 

+C,(t) exp (-iW,t/fi) I)!, (3) 
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where I),, I), and W,, W2 are the wave functions and energies W l +  AE,,=W,+ [<G>/2*nQ] A, 
of the levels 1 (upper) and 2. 

The equations for the probability amplitudes C, and C, W,+AE,,=W,- [<G>/2*mQ] A, 
are correspondingly I '  

iAdC,/dt=V,,C, exp ( i o l , t ) ,  (4) W2+Ae1,= W 2 +  [ < G > / 2 k n Q ]  A, 

iAdC,/dt=V2,C, exp ( - i o l z t ) .  
W,+Ae,.= W 2 -  [<G) /2*mQ]  R .  

In the dipole approximation, the matrix element of the 
Hamiltonian of the interaction with the field can be written The equations for the quasi-energies were obtained for a 
in the form rather general case when the field amplitude G (t ) is an arbi- 

V,,=V,l=-'I,ilG ( 1 )  exp { - i (o12 t+cp  ( t ) ) ) +  c.c., ( 6 )  trary periodic function of the time and the condition (10) is 

wherew ,, = ( W ,  - w2)/fiand G = d~ (t !/fi. F~~~ ( 5 )  and (6) satisfied. Precisely such is strong synchronous laser radi- 

it follows in the rotating-field approximation that ation with an arbitrary number of modes. This radiation has 
a discrete spectrum with frequency interval0. A special role 

-idC,/dl= ( G  ( t ) C , / 2 )  e s p  (-icp ( 1 )  ) ,  ,,, is played in the interaction of radiation with matter by the 

- idC2/dt=(G ( t ) C 1 / 2 )  e s p  (irp ( t )  ) 
'IJ frequencies 0, determined from the quasi-level crossing 

condition = E ~ , ~  

We introduce a new variable Q,=<G>/k ,  k = m - n = l ,  2 , 3 .  (15) 

(8) In fact, the general solution of the system (7) contains 
the two linearly independent solutions (1 1). Therefore the 
density-matrix elements a,, = C, CX (i,k = 1,2) contain os- 

and change from the system (7) to the second-order equation cillating terms with frequencies vnm = E, , ,  - E,,, . Only at 
d2C,, ,  dcp dC 9 Y,, = 0, i.e., in the case when the intermode frequency +- i - 3 +C,,?=O. 

dr2  d~ d~ (9) 0 = 0, (Is),  do the oscillation occur at zero frequency and 

In the approximation adiabatic in the phase shift we 
discard the small term i(dp /dr)(dC,,, /dr ) .  This can be done 
in the case of a strong quasi-resonant field: 

I dcpidt I = 12drpJG ( t )  dt 1 << 1. (10) 
In the approximation (lo), the solution of Eq. (9) takes the 
form (after returning to the variable t ) 

1 

 ex^[^ ( i i 2 )  j ~ ( t ' ) d t ' ] ,  
0 (11) 

1 

c,=c::' exp[+ ( i / 2 )  J G ( t l )  d t ' ] ,  
0 

C',$ and CL$' are constants, and it follows from (7) that 
~ ( + l - C ( + ) ~ ~ d C ' , - l =  - C \ - l .  

1 - 2  

If the field amplitude G (t ) is a periodic function of the 
time with frequency 0 ,  

G ( t + l n / Q )  = G ( t ) ,  (12) 

one can determine from the solutions (1 1) the quasi-energy 
level~oftheatom.~ To this end weobtain themean value (G ) 
(averaged over the period) of the field amplitude G (t ): 

zn/Q 

We recall the amplitude is always positive, and consequently 
(G)  >O. 

The shifts o f t  he quasi-levels for the upper and lower 
states are 

fie,,= [<G>/2+-nQ] f i ,  f i ~ ~ , , , = -  j (G>/2*mQ] f i ,  

The quasi-energy levels themselves are 

enter into resonance with the constant "pumping force." 
As will be shown in Sec. 4, in this case the absorption of 

the radiation in the medium becomes extremal and the fre- 
quencies 0, (15) are singled out. 

We consider two concrete examples of the determina- 
tion of (G ) for different fields. 

1. Biharmonic field: 

V l z ( t ) l A = - R e  {exp ( - i (o , , - -p)  t )  [Go+Gl exp ( - iQt )  I ) ,  

n / z ~  (16) 
( G  ( t )  )= (Wn) (Go2+G,'+2GOGl cos Qt)  

where E (k ) is a complete elliptic integral of the second kind, 
and the modulus of the integral is k = ~(G,G,)"~/(G, + GI). 
The value of ( G  (t )) in the interval0 /2>p>O is independent 
ofp. The most dangerous instants of time for the satisfaction 
of the inequality (10) are 0 t  = (2n + 1)n- (n is an integer). At 
these instants the condition (10) at GI =Go takes the form 

52< ( G , - G , ) 2 /  (G ,+Go) .  (18) 

For other instants of time we can replace (10) by the weaker 
condition 

l.~+S2/2<<(G>. (19) 
The inequality (18) means that if GI = Go the approximation 
(10) turns out to be invalid, but in the case p = 0, when the 
frequency of the field GI coincides with the line center o,,, 
solutions at GI = Go were obtained in Refs. 4 and 6 outside 
the framework of the approximation (10). In Ref. 6 it was 
also shown that the solutions are continuous in the param- 
eterp = Gl/G,. We therefore extend in this paper the solu- 
tions obtained a t p  = 0 to include also the case of equal fields 
GI = Go. It follows from (17) that in this case (G ) = 4G,/.rr. 
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We note that the spectrum of the resonant frequencies (15) 
and (17) does not depend on the frequency shift p, but this 
statement does not hold in the vicinity of equal fields 
G, = Go if the condition (18) is violated. Thus, no parametric 
resonances appear in the symmetric case p = R W/2 and 
G, = Go. 

2. Three-mode field: 

Vl2(2) / t i= -Re  {exp (-i6112t) [ G - I  exp ( iQt )  

+Go+Gl exp ( - i f i t )  I ) ,  
2n/n 

(G ( t )  ) = (S2/2n) I dt [G12+G,'+G-l'+2G1G-l cos 2Rt 

0 

+2G0 ( G 1 + G - l )  cos Bt]'". (20) 

At arbitrary amplitudes of the modes G,, Go, and G - ,  the 
integral (20) must be calculated numerically. Under the con- 
dition 4GlG-, = G i  , however, the integral can be evaluat- 
ed analytically: G ( t )  = G, + G- ,. 
3. CONNECTION OFTHE RESONANT FREQUENCIES 0, WITH 
THE POSITIONS OF THE PARAMETRIC RESONANCES 

The interaction of an electromagnetic field with a medi- 
um, with account taken of the pumping and the relaxation, 
are described by the density-matrix equations. We shall use 
these equations in Sec. 4 to establish the connection between 
the resonant frequencies R, with the extrema of the absorp- 
tion of individual components of the synchronized radi- 
ation. In the present section we describe a method of deter- 
mining the parametric-resonance frequencies which, as will 
be shown, conicide with the frequencies 0, (15). 

We consider the system of equations of a two-level ma- 
trix with time-constant pumping, describing the interaction 
of a medium (in the immobile-atom model) with quasi-reso- 
nant radiation: 

dp lP /d t+  ( y + i o 1 2 )  p12=iV12 ( t )  IYIA, p,2=p21*, 

dN/dt+yN=i2V, ,  ( p l z - p z l )  / f i+yNO, N=pi1-p2?. (2 1) 

where we consider for simplicity the case of equal relaxation 
constants, yNo is the pumping per unit time, and V, ,  and o,, 
are defined by expression (5). 

We transform to the slow variables 

a=esp {-yt-icp ( t )  ) ( y + i z )  , N=2xe-7'. 
The system (21) goes over then into the system of real equa- 
tions 

It follows from (6) that the instantaneous field frequen- 
cy ism,, + d p  /dt, i.e., d p  /dtplays theroleofthedetuningof 
the instantaneous field frequency from the center o,, of the 
absorption line. 

From the system (23) we obtain in the approximation 
(10) a second-order differential equation for the functionz(t ): 

Equation (24) takes into account only the amplitude 
modulation and admits, as is known, of an exact analytic 
solution. This, however, does not mean that we neglect the 
phase modulation completely. The variable y(t ) determined 
from the second equation of (23) is proportional to d p  /dt. 
Accordingly, the off-diagonal element 0 (22), which deter- 
mines the response of the two-level system, takes into ac- 
count the phase modulation accurate to terms of second or- 
der in the small parameter (dp /dt )G -' (10). 

Equation (24) for the case of a biharmonic field, in terms 
of the dimensionless temporal coordinate T = Rt, is written 
in the form 

{d2/d.t2+k+a cos T ) Z ( T )  =f ( t ) ,  (25) 
A= (G,2+Gi2)/S2', a=2GOG1/Q2, p=Gl/GO, (26) 

We consider Eq. (25) at f ( r )  = 0. This homogeneous 
equation is called the Mathieu equation. We seek its solution 
in the form - 

z ( t )  = exp ( i s z )  C,einT, 
A 

n=-oo 

with C, -0 as In 1-CC. Substitution of (28) in (25) yields the 
known recurrence relation for the Mathieu equation: 

We seek a purely periodic solution of the Mathieu equa- 
tion. According to (28), such solutions exist at s = 0. It is 
possible to find a discrete set of such solutions, correspond- 
ing to the eigenvalues A,. It can be seen from the expression 
(26) for R that by varying the parameters of the problem (the 
intermode frequency R or the intensities of the modes G i 
and G :) it is possible to make the values ofA equal to any of 
the eigenvalues A,, in which case parameteric resonance sets 
in. The frequencies R at which resonances occur are deter- 
mined by the condition 

a,= [ ( G , , ? + G ~ ~ )  /hq] '12. (30) 
The eigenvalues A, for the Mathieu equation were de- 

termined by Braun12 under the conditions a a l ,  i.e., at 
D *-g2G,G1. This condition is close to the inequality (19). The 
frequencies obtained by substituting in (30) the eigenvalues 
A, from Ref. 12 are 

where (G ) is defined by (17) and E is an elliptic integral. 
The spectrum of the frequencies (3 1) coincides with the 

spectrum (15). This is not accidental. After all, s f i n  is the 
difference between the quasi-energy levels. The frequencies 
(31) were obtained under the condition s = 0, i.e., under the 
condition that the quasi-levels cross. The same condition 
was also used to determine the frequencies (15). 

Another possibility of determining A, (meaning also 
a, ) follows from the condition that the homogeneous sys- 
tem of algebraic equations have a solution if the determinant 
of the system (29) is set equal to zero as s = 0. 
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The determination of an eigenvalue of an infinite deter- 
minant is in the general case quite a complicated matter, but 
for large k) 1 the diagonal aproximation A, = k is found to 
be sufficient. According to (30), we obtain in this case 

a,= ( G ~ ~ + G , ~ ) ~ ~ ~ / ~ .  (32) 

The same estimate of the resonant frequencies was given also 
in Ref. 6. Expressions (3 1) and (32) depend on k in the same 
manner and are symmetric about Go and GI, i.e., the R, are 
not changed by the interchange Go++G,. It suffices therefore 
to compare (3 1) with (32) for R, /Go = kR, /Go as functions 
ofp = G,/Go in the interval 0 <p( 1. Such a comparison in 
Fig. 3 shows that the discrepancy does not exceed 10%. 

In analogy with the procedure used here for a bihar- 
monic field, a theory can be constructed for an arbitrary field 
whose amplitude is aperiodic function, and a relation similar 
to (30) can be found between the values of the modulation 
frequency R and the eigenvalues 2, of the corresponding 
equation. Just as in (31), the spectrum of the frequencies 0, , 
which determine the positions of the parametric resonance, 
coincides with the spectrum (1 5). 

4. PARAMETRIC RESONANCES AND ABSORPTION 
(AMPLIFICATION) OF LIGHT 

In the preceding section we obtained the eigenvalues A, 
of the Mathieu equation; corresponding to them are the 
strictly periodic albeit nonharmonic eigenfunctions z, (28) 
at s = 0. We ask now which of the amplitudes C f '  in the 
series (28) will be the large ones for the oscillation z, . The 
answer to this question can be obtained by turning again to 
Ref. 12, in which a modified WKB method was developed 
and, by way of example, the eigenvalues and eigenfunctions 
of the Mathieu equation were obtained at s = 0. It follows 
from Ref. 12 that the numbers of the harmonics C with 
large amplitudes lie between the following limits (turning 
points): 

[A,,-a(Q,)] '"< In ( G  [h,+a(R,)] 'I:. (33) 
All the remaining harmonics are small. Substituting 
A, = k *, a (26) and 0, (30) in (33), we obtain in first-order 
approximation 

I ; /  I - p l / ( l +pZ ) ' "<  l n l < k ( l + p ) l ( l + p 2 ) " ' .  (34) 

We note that for arbitrary p and k the amplitude of the ze- 
roth harmonic C for R = R, is small. 

Turning now to the solution of the inhomogeneous 
equation (25) we note that the force f (7) (27) is proportional to 
the amplitude G (7) and is consequently a periodic function 
containing all the harmonics that are present in (28). The 
solution (25) will therefore increase as R - Rk , i.e., oscilla- 
tions of the system will build up at the resonant frequency. 

Returning to the initial system of equations (21) for the 
density-matrix elements, we see that it contains only a time- 
constant "pump force," and resonance between the oscilla- 
tions of the density matrix elements and the "pump force" 
take place, as already noted in Sec. 2, at zero frequency. 

Soluton of the system (2 1) involves integration of Eq (23) 
for the variable y and determination of u in accord with Eq. 
(22). Thus, in the Fourier expansion of u 

the amplitude d, of the harmonics whose numbers n satisfy 
(34) are maximal at R - R, , and all the other amplitudes are 
minimal at R = 0 , .  As shown in Ref. 6, the coefRicients d, 
of the Fourier series determine the coefficient of absorption 
(gain) K, at the frequency wo + nR. Consequently, K ,  are 
extremal at R = a , ,  with K ,  maximal for the values of n 
that satisfy (34) and minimal for all other n. This conclusion 
is fully confirmed by calculation, in Ref. 6, of the absorption 
coefficient K, at the frequency oo + 0 ,  and by the experi- 
mental determination of K, in Ref. 3 (see Fig. 1). It can be 
seen in Fig. 1 that the minima of KO coincide with the maxi- 
ma of K,, a confirmation of the deduced smallness of the 
zeroth harmonic cik' at 0 = Rk . 

The first inequality of (34) can be used to determine the 
number k, of the maxima that appear in the absorption 
spectrum k, (R ) at a given ratiop of the field amplitudes: 

where 

~ ( p )  =2 ( l f  p ) ~  (217 ( l + p ) ) /  (1+p2)'", 

p varies in the range 0 < p  < oo, and C ( p ) z  1 in the entire 
range ofp (see Fig. 4). 

It follows from the inequality (36) that the number of 
maxima is the same for the absorption coefficients K , at the 
frequencies w, + nO and K - , at the frequencies w, - no, 
and increases with increasing In\. The number of k, of 
maxima increases in any absorption coefficient K,, as p-1. 
The last fact can explain the anomalous growth of K,(R,p) 
whenp changes from 0.9 to 1.1 near R = 0 (Ref. 3). The point 
is that R, -0 with increasing k, and the frequency interval 
0, - R, _ , between the neighboring maxima decreases. At 
large k the neighboring maxima are not resolved. The num- 
ber n* of the resolved maxima is determined by Eq. (27) of 
Ref. 6. At p close to unity the number of maxima k, > n* 
and the merging extrema form a common maximum of the 
absorption coefficient at R = 0. From the equality k, = n* 
we obtain the limits of the intervalp, < p  <p2 of the anoma- 
lous growth of K,(O,p) with increasingp: 

FIG 4 Dependence of the R a b ~  frequency 0, /G,, o n p  The values of R, 
for curve 1 were calculated from Eq (3  I ) ,  and for curve 2 from the ap- 
prox~mate formula (32) The pornts were obta~ned by averaging (na, ) /G, ,  
over elght reqonances, from n = 2 to n - 9 The posltlons of the mdxlma 
were obta~ned w ~ t h  a computer for d~fferent values of Go from the exact 
formulas of Ref 6. The scatter IS determrned by the maxlmum and mrnl- 
mum values of nf2, /Go at a glven value o f p  
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The dependence ofK,(O,p) onp at Go/y = 10 is shown in Fig. 
3. 

On the other hand, it follows from (34) that no maxima 
with numbers k ,  ( k  will appear in the absorption coeffi- 
cient K i n ,  at the frequency wo + no, where 

2 - 1 1 2  
Inl < k ( l  +p) ( l  + P  . 

Thus, at k = 2 and p = 0.5 or p = 1.5 there will be no 
second maximum in the absorption coefficient K * , at the 
frequency wo + 3f2, but the subsequent maxima appear 
starting with k = 3. This also agrees with calculations by the 
continued-fraction m e t h ~ d . ~  

We indicate in conclusion that the connection between 
the resonant fequencies R, = RR / k  of an atomic system in a 
field and the positions of the extrema of the absorption coef- 
ficients of individual harmonics can be generalized to in- 
clude synchronized radiation with an arbitrary number of 
modes. Thus, for a field whose amplitude is modulated in the 
manner indicated in Eq. (2) at the frequencies 0, /k, where 
RR = dEo/h, extrema of absorption (gain) of individual 
modes will appear. A simple analtytic equation for 
f2, = (G (t )) was obtained also for the particular case of 
three-mode radiation in Eq. (20). 

The author is grateful for V. I. Perel' for valuable advice 
and fruitful discussions and G.  I. Toptygina for numerically 
calculating the plots in Figs. 1, 3, and 4. 

"A n~aximum at the Rabi frequency f2, (single-photon resonance) exists 
also at low amplitude of the scanned field and was experimentally inves- 
tigated earlier.' 
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