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Transitions are investigated between highly excited states of an atom, accompanied by a change of 
principal quantum number and caused by a collision between a neutral particle and an atomic 
residue (core). Such transitions of a Rydberg electron are due to the action exerted on it by inertial 
forces when the core moves with acceleration, and are also caused by interaction with the dipole 
moment due to the redistribution of the density of the inner electrons in the course of the particle 
collision. The state of the inner electrons does not change in the transitions. The mechanism 
considered is most effective when the potential of the interaction between the neutral particle and 
the atomic core of the highly excited atom has a deep well and a large value of the lower vibration- 
al quantum. This situation is realized, for example, in relaxation of Rydberg states of hydrogen 
H(n) in collisions with helium atoms He(ls2). It is shown that the cross sections and rates of the 
n+n' transitions are determined in this case by the mechanism investigated in the paper, and not 
by scattering of a weakly bound electron by the neutral particle, as is the case for nl-tnl ' transi- 
tions with change of only the orbital momentum. 

PACS numbers: 34.50.Hc, 34.20.Be, 3 1.50. + w 

1. INTRODUCTION 

Processes with participation of highly excited states of 
atoms play a decisive role in the relaxation of a dense low- 
temperature plasma and are of considerable interest in the 
physics of gas discharge, gas and flame lasers, astrophysics, 
and others (see, e.g., Refs. 1 and 2). 

It is known that in a dense weakly ionized plasma the 
processes of excitation and de-excitation of Rydberg states 
of atoms take place in collisions not with electrons, but 
mainly with neutral particles. In such collisions, these pro- 
cesses can be the result of different mechanisms. Thus, in 
Ref. 3 (and later also in Ref. 4), in an investigation of ternary 
recombination of electrons and ions in a monatomic gas, the 
active interaction of a weakly bound electron with a neutral 
particle was considered in the model of classic elastic scatter- 
ing of a slow electron by an atom. The rates of mixing of the 
Rydberg states of the atoms n+n' were calculated within the 
framework of this model in Refs. 4 and 5, under the assump- 
tion that the nl sublevels are uniformly populated within the 
given level n. 

Besides the transitions of a highly excited atom A(n), 
when a neutral particle B collides with a Rydberg electron 
e-, transitions are also possible which are due to collision of 
this particle with the atomic residue (core) A+. These mech- 
anisms of the transitions in the system (A+, B, e - )  can be 
considered independently, because of the large radius of the 
orbit, r, -n2 of the atom A(n). When the particle B passes 
near the core A+, the transitions of the external electron of 
such a system can be due to interaction with the inner elec- 
trons of the quasimolecular ionic core RA+ and lead to their 
excitation (ionization) or de-excitation. This mechanism is 
particularly effective in the case of a homonuclear system 
(H+, A, e-)."8 

We consider here another mechanism of transitions 

between highly excited levels: 

which is realized when a neutral particle B passes near the 
core A+, and is not accompanied by a change in the state of 
the inner electrons of the quasimolecular heteronuclear ion 
BAt. The reaction (1) corresponds to direct exchange of the 
energy of a weakly bound electron with the kinetic energy E 
of the relative motion of the heavy particles A + and B, i.e., it 
takes place within the limits of one electron term of the qua- 
simolecular ion BA+ . 

In such a mechansim, the transitions (1) can be due to 
two causes. The principal effect is the result of the inertia 
force acting on the outer electron of the atom A(n) as a result 
of acceleration of the Coulomb center A+ upon collision 
with the neutral B. The second effect is connected with the 
interaction of this electron with the dipole moment of the 
quasimolecular ion BA+, due to displacement of its inner 
electrons relative to the nuclei A +  and B in the course of 
their collision. However, as will be shown below (Sec. 2), 
both effects can be considered simultaneously within the 
framework of the dipole interaction that takes into account 
also the contribution of the positive Coulomb center A+.  
The corresponding preliminary analysis of the reaction (1) 
for the velocity region v, = ( 2 ~  / , ~ ) " ~ < ~ n / n ~ .  (,LL is the re- 
duced mass of the heavy particles) was carried out in Ref. 9. 

The noninertial mechanism proposed in Ref. 10 was 
investigated earlier1'-l3 for the mixing of Rydberg states 
with respect to the orbital momentum 1. In these studies it 
was established that collision of a neutral particle B with an 
ion core A+ does not make a substantial contribution to the 
transitions nl--tnl '. Such transitions are due to the mecha- 
nism of direct scattering of the outer electron by the neutral 
B, which is in fact the mechanism investigated in the over- 
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whelming majority of the recent theoretical and experimen- 
tal studies of l-mixing (see Refs. 14-23 and the review'). 

The analysis presented here leads to the following basic 
conclusion: for transitions with change n-tn' of the princi- 
pal quantum number there can occur a situation which is the 
inverse of I-mixing, i.e., the predominant contribution of the 
collisions of the neutrals with the core. This fact was estab- 
lished for the system H(n) + He(ls2) as a result of the com- 
parison with  calculation^^^^ based on the competing mecha- 
nism of elastic scattering of a Rydberg electron by a neutral 
par t i~ le .~  The latter mechanism leads only to establishment 
of an equilibrium distribution over the I-sublevels, which is 
in fact proposed from now on. 

All the results were obtained by perturbation theory, 
thereby limiting the analysis by the condition ~ , ( (An/n)~  - 

(for thermal velocities of relative motion of heavy particles 
this yields n 5 3040). We have investigated the most inter- 
esting case, when the potential of the interaction of the atom 
B with the atomic core A+ of a highly excited atom A(n) has 
a sufficiently deep well Eo. Three regions of principal quan- 
tum numbers are singled out, and in these regions the behav- 
ior of the cross sections and of the rate constants of the inves- 
tigated n+nf transitions are qualitatively different: the 
adiabatic region, the "shakeup" region, and an intermediate 
region (see Figs. 2 and 3). It is shown that owing to the sub- 
stantial decrease of the collision time of the heavy particles 
A+ and B in the potential with the well, compared with the 
case of the repulsion (i.e., T, -w; ', where we is the lower 
vibrational quantum of the ion BA+), the adiabatic decrease 
of the cross sections a,,, sets in at sufficiently low values ofn, 
for which w,,. )me or n 5 5 for the system H(n) + He(ls2). In 
the intermediate frequency region uE (a,,. = An/n3gwe (5 
5 n 5 10-15) the n-tn' transitions which occur when a neu- 
tral particle B passes near the atomic core A+ becomes non- 
adiabatic. The cross sections and the rate constants of these 
transitions do not decrease drastically (as in the case of the 
mechanism of Refs. 3-5, due to scattering of the Rydberg 
electron e- by a neutral B, see Figs. 2 and 3), and it is this 
which determines the effectiveness of the mechanism inves- 
tigated here. This effect is explained by the contribution of 
the internuclear distances at which the relative velocity of 
the heavy particles A+ and B increases substantially as a 
result of their acceleration in the potential well. To describe 
the behavior of the cross sections in the indicated frequency 
region, we construct in this paper a quasiclassical model 
based on the method of Fourier components. 

It will be shown that the low-frequency region 
a,,. = An/n3gv,(n, 10-15) can be described by the simple 
"shakeup" model (see, e.g., Ref. 24, p. 180) of a Rydberg 
electron. It will be made clear that the transitions with such 
frequencies are due to the region of large internuclear dis- 
tances R ,  ( p,,, 5 R ,  (n2 @,,,-is the capture impact pa- 
rameter) on the right-hand branch of the term, where there is 
no acceleration of the particles A+ and B in the potential 
well. We note that the previously obtained1' semiclassical 
formula for the cross sections of noninertial" transitions 
n-n' pertains only to the region of low frequencies. We em- 
phasize also that the conclusion drawn in Ref. 10, that the 

semiclassical analysis is inapplicable (and the transitions de- 
scribed by this formula are inessential) is incorrect, inas- 
much as it is valid in the region of applicability of the sha- 
keup model already at velocities vE)p- '. 

For comparison, we analyze also the noninertial mech- 
anism of transitions with change of only the orbital momen- 
tum: 

A (nl) +B-+A(nlr)  f B. (2) 

For this case the behavior of the cross sections as functions of 
n is much simpler, since the entire region v, 4 l/n2 consid- 
ered by us by perturbation theory is the shakeup region. The 
results obtained in this case for nl-nl ' transitions are in full 
agreement with the conclusions of the authors of Refs. 1 1-1 3 
that the noninertial mechanism is ineffective for I-mixing. 

2. FORMULATION OF PROBLEM. EQUATIONS FOR THE 
CROSS SECTIONS 

We consider a system consisting of a neutral atom B, an , 
atomic ion A+,  and an electron e-. The Rydberg-electron 
transitions (1) investigated here take place in the region of 
internuclear distances RE,+, the size of which is much 
smaller than the radius r, -n2 of its orbit. Therefore, the 
system (A+,B,eP) has a small parameter RBA* /n2( 1 that 
makes it possible to calculate the cross sections of the reac- 
tion ( I )  by stationary perturbation theory in the continuous 
spectrum. Recognizing that the state of the electron shell of 
the quasimolecular ion BA+, considered in the Born-Op- 
penheimer approximation, is not changed in transitions of 
an outer electron, we represent the total Hamiltonian of this 
system (AC,B,e-) in the form 

H (r, R) =As.,+ (R) +Re ( r )+p  (r, R) 
(3) 

A 1 
Hn.,* (R) = - + - 

2 y  2yR2  2 r 

(we use here the atomic system of units, e = f i  = me = 1). 
Expression (3) is written in the mass center of the particles 
A+ and B, where HE,+ (R) is the Hamiltonian of the isolated 
ion BA+ in the electronic ground state, R is the radius vector 
joining the nuclei B and A+, p is their reduced mass, j, and 
h 

Mare the radial-momentum and a~gular-momentum opera- 
tors, U (R ) is the electronic term, He(r) is the Hamiltonian of 
an outer electron in a Coulomb field, and r is its radius vec- 
tor. The operator V (r,R) is the interaction energy of two sub- 
systems e- and BA+, and is determined principally by the 
long-range electron-dipole interaction: 

Here D(R ) = D1(R ) + Dnl(R ) is the dipole moment of the 
ion BA+ relative to the mass center of the particles A+ and 
B. The linear part D1(R ) = RA+ corresponds to the contri- 
bution made to D(R ) by the positive Coulomb center 
A+(RA+ =pR/MA+ is the radius vector and MA+ is the 
mass of the nucleus A+). With the aid of the Ehrenfest 
theorem we have r = r/?,pR = V ,  U, and the interac- 
tion (4) can be rewritten in the form V = R, +r. It is just such 
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an interaction which occurs as a result of the inertial force 
acting on the outer electron in the noninertial coordinate 
system connected with the Coulomb center A+ (Ref. 10). 
The nonlinear part of the dipole moment Dn'(R ), however, is 
the result (just as in the case of neutral molecules) of displace- 
ment (polarization at R> 1 a.u.) of the inner electrons relative 
to the nuclei A+ and B in the qua$molecular ion BA+. 

We shall regard the operator V (r,R) (4) as a perturbation 
in the Hamiltonian (3). We shall be interested in the transi- 
tion n-nl(l) cross sections averaged over the initial (I and m) 
and summed over the final (1 ' and m') orbital and magnetic 
quantum numbers of the Rydberg electron. If the atom B 
and the ion A+ have in the initial state li) an energy E = q2/ 
2p and a wave vector q = (q,9,,pq), while in the final state 
I f )  their wave vector lies in the interval (ql,q' + dq'), by nor- 
malizing the initial wave function @/q)'I2 % +(R) of the mo- 
tion of the nuclei to unity flux of the incident particles, and 
the final wave function Yq - (R) to a S function of 
q - q' we have for the electron differential excitation (de- 
excitation) cross section 

The wave functions Yq +(R) and Yq -(R) of the continuous 
spectrum of the heavy particles A+ and B constitute a super- 
position of a plane and diverging or converging spherical 
waves as R-m (see, e.g., Ref. 24). The functions jnlm) and 
In'l 'm') are the Coulomb functions of a Rydberg electron 
with initial energy E, = - 1/2n2 and final energy 
E,. = - 1/2nI2. 

Intergrating the result (5) over all the values of the wave 
numbers dq' and all the possible directions do,, of the parti- 
cles A+ and B in the final state, and averaging over the direc- 
tions do, in the initial state, we obtain for the total cross 
section an ,  (q), after a number of transformations: 

excitation (de-excitation) of a Rydberg atom A(n) by colli- 
sion with a neutral particle. Ultimately we obtain 

a,,,,, (0 

8n2 g(n, n') 1 ( J   ti) ( J . J - ~ )  
- [ (J+l)  ID&, lz+llDm. 1'1. (6) 

31T nkf3  q2 

In the derivation of this equation we used also the Ehrenfest 
theorem for the matrix elements of a transition in a Coulomb 
field n ' l v m r  2 n r l r m r  

( r / r 3 ) , l m  = m n n , r n l m  (o,,,~=E,--E,,*=E'-E) 

and the known Kramers relation for the sum of the oscillator 
strengthsover the possible degenerate states Im and I 'm' (see, 
e.g., Ref. 26, p. 423 of Russian translation): 

The quantity g(n,nl) in (6) and (7a) is that Gaunt factor, which 
yields the difference between the exact quantum-mechanical 
result (7a) and the Kramers results (g(n,nl) = 1); D gi." de- 
notes the radial matrix element of the dipole moment of the 
BA+ over the nuclear wave functions of the continuous 
spectrum: 

It must be emphasized that expression (6) obtained by using a 
coordinate system with origin at the mass center of the col- 
liding particles A+ and B is valid in the quantum-number 
region An/n3>u,, for which the effects of the recentering of 
the wave functions of the Rydberg electron are insignificant. 
On the other hand when the transitions (1) are considered in 
the region An/n3~v,, the question of recentering does not 

a n n f  ( q )  arise at all, since the problem is solved (see Sec. 4) in a coordi- 

where 

is the radial part of the wave function of the relative motion 
of the nuclei A+ and B (normalization of a 6 function of the 
wave number q = (2pE ) ' I 2 ,  and I JJ, ) = YJJz (8,@ ) is its an- 
gular part (J and J, are the quantum numbers of the orbital 
momentum of the nuclei and of its projection). Summing 
further over the projections of the angular momenta J, and 
J :  (the selection rule J' = J +  1) and changing from the 
wave fucntion x,,(R ) to the function x,(R ) normalized to 
S(E - E '), we obtain for the total cross section on,. (E) for 

nate frame connected with the Coulomb center A+.  

3. HEAVY-PARTICLE TRANSITION-MATRIX ELEMENTS 

The investigated transitions (1) proceed most effectively 
when the potential of the interaction of the atom B with the 
ion A+ has a sufficiently deep well E,. For the low-tempera- 
ture plasma case of interest to us, the energies E and E ' of the 
colliding particles A+ and B will be assumed small com- 
pared with E,. This allows us to calculate the matrix ele- 
ments of the dipole moment (7a) in a quasiclassical approxi- 
mation by the Fourier-component method. In this paper we 
investigate free-free transitions ofthe particles A+ and B. Of 
considerable interest, however, are also free-bound and 
bound-free  transition^,^' with participation of a molecular 
ion BA+, on high vibrational-rotational energy levels 
((E, I (E,). We consider all these cases by a single proce- 
dure: 
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j ' D [ R  ( t )  ]rim' dt Di ,  = - 
4 

=--I- m dD(R)  sin[wt ( R )  ]dR, 
2m a 

dR 

Here A, and AI are the normalization constants of the initial 
(i) and final I f)  states of the quasimolecular or molecular 
ion BA+, with A ,  = ( 2 / ~ ) ' ' ~  and A ,  = 2 /T , '  for the con- 
tinuous and discrete spectra (T ,  is the period of the vibra- 
tional-rotational motion), t (R )is the time of motion from the 
left turning point a to the point R in the electron term U (R )of 
the ion BA+. When calculating the matrix elements (8a) we 
shall make use of the procedure used in Ref. 27 to consider 
radiative transitions of an atom and an ion in a single elec- 
tron term. 

In the case of arbitrary collisions of heavy particles A+ 
and B or in the absence of rotational excitation of a bound 
ion BA+ the matrix elements D $= O' between states close to 
the dissociation boundary (E, (Eu ((E,), can be represented 
in the form 

n 1 
D,:'=" ( o )  = - AiAtd (o) - exp (-a%,), 

2 o (94  

The type of the transition is taken into account in (9a) with 
the aid of the normalization constants A,  and A,-. The quanti- 
ty T, is the time of collision of the particles A+ and B. For a 
Morse potential, in the approximation in which the dipole 
moment varies slowly in the vicinity of the bottom of the well 
R = R,, 

D ( R )  =D,+ (dDldR) (R-Re) . (lob) 

Formula (9a) can be obtained in a wide range of frequencies 
T; '<w(E0 (r6 is defined below) by directly calculating the 
Fourier components (8a) in the limit E, I E, I (E,, using the 
exact expression for the integral of motion2': 

(114 
t (K) = 

1--Ipl*[l+u(R) 1'" 
Ipl'"[-lpl-u(R) I"' 

Here u(R ) = U (R )/E,, 0 = E /E,, uo = ( 2 ~ d ~ ) ' l ' ;  the plus 
sign pertains to motion along the repulsion branch 
a<R <Re, and the minus sign corresponds to the attraction 
region R > R, . The function d (0) and the collision time r, are 
determined in the zeroth approximation in the parameter 
IE I/Eo( 1 by the following expressions3': 

The collision time T, is determined by the characteristic di- 
mension AR, = U1(a)/U "(a)  of the variation of the term in 
the left-hand turning point a = R, [where U(R,) = 01 and by 
the rate uo of the acceleration of the heavy particles in the 
potential well. The reciprocal quantity T, ' coincides with 
the value we of the lower vibrational quantum of the BA+ 
ion and specifies thus the limit of the adiabatic 0)~; ' and 
nonadiabatic w 5 T; ' regions of the transitions. 

In the adiabatic region 0 ) ~ ;  ' the result (9a) for the 
matrix elements Di/ of the transition in a potential with a 
well at energies E, IE, I (E,, can be obtained by integrating 
the Fourier components (8a) in the complex t (or R ) plane by 
a method proposed by Landau (see, e.g., Ref. 3 1, Russian pp. 
149-1 55 and 187-19 1). To this end, we represent the integral 
of motion t (R ) in the form 

where T, is the collision time defined in (9b). Inasmuch as at 
high frequencies wr, , 1 the main contribution to the inte- 
gral (8a) is made by complex values of R, for which 
U(R )) IE 1, for a Morse potential, t (R ) takes the following 
form (with exp a) 1): 

Re 
t ( R )  =iz,-i - exp (-a) 

avo 

Determining R (t ) from this and substituting the result in (8a) 
we obtain with allowance for relation (lob) for the slow vari- 
ation of D (R ) in the region a 5 R 5 R, 

Calculation of this integral by the stationary-phase method 
(the oscillating exponential expiwt is transformed into a 
damped exp( - wz) along the line z = Im t of the contour 
enclosing the point ir,) leads to Eq. (9a) in which the quanti- 
ties d (w)  and r, are defined by expressions (12a) and (12b). 

A similar analysis for the Lennard-Jones potential 

also leads to Eq. (9a), in which the function d (o) is of the form 
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with y,+l as k-CO, and ra = 3ARa/u0~/R, /kv,. 
At frequencies o 2 r; ' the transition takes place on the 

repulsion branch of the term in the vicinity of the bottom of 
the well (internuclear distances RSR, make no contribution 
to the integral (8a) because of the rapid oscillations of the 
integrand). In the region w(r; ', however, the transitions 
are due to the right-hand branch of the attraction of the 
term, where the use of the Morse potential and of the approx- 
imation (lob) with slow variation of the dipole moment are 
not valid. Expression (12a) thus becomes generally speaking 
inapplicable. However, an analytic calculation can be car- 
ried out by recognizing that the main contribution to D# is 
made by the vicinity of a certain point R, of the order of the 
characteristic dimension of the term near this point. The 
internuclear distance R, corresponds to the time of motion 
of the particles A+ and B, equal to up ' ,  i.e., it is determined 
from the condition4' 

The region of large distances RSR, makes no contribution 
to the transition, for in this case wt (R,)) 1 and the integrand 
of (8a) oscillates rapidly. The region of small distances is also 
inessential for transitions with frequencies w(~,- ', since the 
decrease of the velocity and the increase of the characteristic 
dimension AR, cause the time of passage of the right branch 
of the term near the point R, >Re to be much longer than the 
time of motion along the repulsion branch and near the bot- 
tom of the well. 

We consider now the frequency region rf 'go(r; ', 
where 

is the time [r6 = t (6 ), see (8b)l of motion of the particles A+ 
and B to the point R = b, determined from the condition 
Iu(6 ) I  = E,(AR, = ~ ' ( 6  )/U "(6 ) is the characteristic di- 
mension of the term at this point). In the case of a discrete 
spectrum (E =E, < 0) the point 6 coincides with the right- 
hand turning point 6 = b, of the potential U (r). In accor- 
dance with the discussion above, the transitions with fre- 
quencies in the region 76 '(~(7; ' are caused by the region 
of internuclear distances beyond the inflection point on the 
right-hand attraction branch R, (a&, where it suffices to 
use simple approximations of the term and of the dipole mo- 
ment [D(R)  = D 1 ( R ) +  Dn'(R)]:  

When calculating the integral of motion (8b) for the power- 
law approximations employed here we recognize that at the 
indicateddistances I U (R ) I  greatly exceeds the energies of the 
considered states of the discrete IE" I and continues ( E )  spec- 
tra of the BA+ ion. Therefore the relative velocity of the 
heavy particles can be set equal to u(R ) = (2JU(R )(/p)1'2 
and calculation oft  (R ) in (8b) leads to 

t (R) =XCR("+~)/~, R ( t )  = (t/zC) 2 / ( v + 2 ) ;  

Xc' [2/ (v+2)  I (p/2C,)'h. 

Substituting this expression in (8a) for the matrix element 
D,, we obtain 

rot- 

otg 

+ Al (OxC)'-hKv+W 1 yNl-VI(v+z) ,in dy . 
@f* 

I 
By virtue of the inequality 7, )ra in the considered frequen- 
cy region 76 'gw(7; ' in the considered frequency region 
76 '(~(7; I ,  the upper limit wt6) 1 can be set equal to in- 
finity, and the lower of, (1 to zero (t, =t (R, ) is the time of 
motion of the particles from the left turning point a = R, to 
the inflection point R,), after which the integrals in this 
formula can be easily calculated. As a result we obtain for 
the matrix element of the transition, formula (9a) in which 
d (a) is given by 

where AR, = R,/(v + I), and the coefficients f, and <,, 
are respectively 

The first term in (12a) or (14a) describes in accordance with 
(4) the contribution made to d (w) by a positive Coulomb cen- 
ter, i.e., dD1/dR = p  =p/M,* (with f,-1 as v-CO), the 
second gives the contribution of the nonlinear component of 
the dipole moment of the BA+ ion. The constant <,, is de- 
termined by the ratio2 /v of the characteristic dimensions of 
the changes of U(R ) and D "'(R ) on the right-hand branch 
(with cv,n +1 as 2 / v -4 ) .  

It follows from (12a) and (14a) that the quantity d (w) is 
determined by the increment of the dipole moment over the 
characteristic dimension AR, = U1(R,)/U "(R,) of the 
term in the vicinity of the point R,, which makes the main 
contribution to the transition. These expressions go over 
continuously into one another (at w 5 r; '), if the corre- 
sponding approximations (10) and (13) of ther term and of 
the dipole moment are matched in the distance range 
R, 5 R, on the right-hand attraction branch. Thus, Eq. (9a) 
describes in unified fashion the entire considered range of 
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FIG. 1. Forms of the term U(R ), of the dipole moment D (R ), and of the 
functiond '(o) for the ion HeH+(X 'P +). The function d '(o) was calculat- 
ed using the following approximations for U(R ), D (R ):O. 1 eV$w$0.6 eV 
( 1  a.u.(R, (2.5 a.u.) is the Morse potential with parametersdD/ 
dR = (dD/dR ) = 0.84a.u. [see Eq. (12a)); 0.01 eV(o<O.l eV (2.5 
a.u.<R, (5.5 a.u.), U(R ) and dD "'/dR are power functions with param- 
e t e r s a = 2 . 3 , E o = 1 . 8 5 e V , R , =  1.4a.u.C,=0.835a.u.,v=3.8andAA 
=2.8a .u . ,1  =2 .8  whiledDf/dR = p / M , .  =0.8a.u.  (4, =0.7; c , ,  
= 1.7 [see Eqs. (14a,b)] 

transition frequencies r; '<o(Eo. For the case of interest to 
us, that of transitions in the quasimolecular ion HeHf,  the 
function d (w) is calculated in the frequency region 0.01 
e V ~ w ~ 0 . 6  eV with the aid of (12a) and (14a) on the basis of 
data3' on the term and on the dipole moment of the electron 
ground state (see Fig. 1). 

The quasiclassical Fourier-component method em- 
ployed here is valid under the following conditions: 

where v(R,) is the relative velocity of the heavy particles A+ 
and B at the point R,. The second of these conditions is 
equivalent to the inequality R, z 6 ,  which in fact limits the 
foregoing analysis to a region of not too low frequencies 
w)r; I .  At low frequencies w 5; 7; ' Eq. (9a) is not valid, 
since the main contribution to the transition ismade by the 
remote section of the term R, 2 6, where I U (R, I S E. For 
these frequencies, the transitions (1) of a Rydberg electron 
willbe considered in the shakeup model in Sec. 4. 

4. TRANSITIONS BETWEEN RYDBERG STATES 
OF AN ATOM 

In the frequency region ri; '(o(Eo, the transitions ( I )  
of a highly excited electron will be considered on the basis of 
the quasiclassical formulas of Sec. 3. For the investigated 
n-n' transitions the only important collisions of the heavy 
atoms A+ and B are those in which they are captured into 
the region of short distances with subsequent reflection from 
the repulsion branch of the potential. At energies E<E,, the 
capture of the particles A+ and B takes place at larger dis- 
tances R - b , ) ~ ,  on the right-hand branch of the term (12), 
so that the corresponding cross sections 

exceed significantly the gaskinetic cross sections. At 
p >pcap ( E )  the values of the matrix elements of the transition 
are drastically decreased. This is due to the substantial in- 
crease of the particle collision time r(p>pCap -p/v, 
)r, @<pcap ) - w e  ', inasmuch as their reflection takes place 
a tp  >p,, no longer from the repulsion branch of the term, 
but from the centrifugal barrier. Accordingly the matrix ele- 
ments D,f@ >pea,) - exp( - wp/v,) undergo an adiabatic 
decrease for all the considered frequencies 
w > 76 ' > vE/pcap. 

Atp<pCap the matrix elements D,.,-( p) can be regarded in 
the zeroth approximation as independent ofp in the frequen- 
cy range r6 '(w<E,, i.e., D,,-@<pap) = D9(p = 0). Indeed, 
for each value of w we can separate a range of variation of the 
orbital angular momentum O < J  = qp<Jm, (a), in which the 
characteristics of the effective potential 

u(') ( R )  = U (R)  + (If '1,) '12 yR" 

coincide with the corresponding characteristics of the term 
U(R ) in the transition region (i.e., at R -R,). The value of 
Jmax(u) is determined from the condition IU(R,jI 
= J iax (w)/2pR i, meaning 

with Jma, (a) = pv(R,)R,) 1 in the region of the quasiclassi- 
cal approach. Comparison of J,,,,, and Jcap = qp,, [see (15)] 
shows that Jcap (E )(Jma, (w) in the case E(Eo and o > 76 ' of 
interest to us. 

These arguments concerning the behavior of D8(J) per- 
mit summation over J in the quantum-mechanical expres- 
sion (6) (or integration over the impact parametersp = J /q)  
with the aid of the following formula: 

where (16a) and (16b) pertain respectively to the cases E > E ' 
and E < E '. Then,using (7b) and (9a), we arrive at the follow- 
ing expressions for the total cross sections for excitation 
nf-+n and de-excitation n-tn' (n > n') of the Rydberg states 
of the atom 
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We see therefore that the use of perturbation theory in the 
region of applicability of (1 7) (see the conditions in the paren- 
theses)'' is certainly justified, since the corresponding transi- 
tion probabilities are small: a,,. (a,,, . Averaging expres- 
sions (17) over the Maxwellian distribution of the heavy 
particles we obtain for the rate constants for de-excitation 
[ k , , . ( t ) ]  and excitation [ k , . , ( T ) ]  of an atom A(n) by the 
neutrals B, respectively (u, = ( 2 ~ / p ) ' "  is the thermal ve- 
locity of the particles A+ and B), 

n2 
it.,. ( T I  = - erp ( - y) knnl (TI. 

nTz 

We consider now the opposite limiting case of low fre- 
quencies w,,. (r; ', when the transitions take place at larger - 
internuclear distances R, 2 6 ,  -p,,, between the colliding 
particles A+ and B. In this region it suffices to take into 
account only the non-inertial mechanism of the transition 
n-+n', neglecting the small (at RsR, )  polarization incre- 
ments to the linear parts of the dipole moment 
D ' = pR /M,* .  The probabilities w,,, of such transitions in 
collisions of the particle B with the core A+ of the atom A(n) 
can be calculated by virtue of the conditions on,. (r; ' and 
n2>pC,, in the shakeup model (Ref. 24, Russ. p. 1 SO) of the 
Rydberg electron 

where v = (vk - vEP/MZ is the change of the velocity of 
the atomic core A+ in collision with B, and v, and vk are the 
relative velocities of the nuclei before and after the impact. 
The second equation in (19) holds only for 
puE/M,* ((An/n)', when it suffices to retain the first term of 
the expansion of the exponential exp( - iver), which is equi- 
valent to the condition for the applicability of perturbation 
theory. Calculating next the sum in (19) (Ref. 26, p. 423 of 
Russ. transl.), integrating the probabilities w,,, @) over the 
impact parameters, we obtain ultimately for the total cross 
section a,,. (E) of the n+nl transition. 

4 p v ~  1 
on",, ( E )  = --, - - anl/s( .wA+ ) nhf30:7, o t , ( ~ ) ;  

CT 

o,, ( B )  = S 11 - cos B ( p ) ] .  2 n p  d p .  (20) 
0 

Here a,, is the transport cross section for the scattering of 
particles A+ and B, and coincides practically with the cap- 

ture cross section (15). From this we obtain for the corre- 
sponding rate constant in the case of Maxwellian distribu- 
tion of heavy particles 

where Eqs. (20) and (2 1) pertain equally well to the case of de- 
excitation and excitation of a Rydberg electron. 

Let us explain the physical meaning of the obtained for- 
mulas using as an example the transitions (1) between neigh- 
boring Rydberg levels, n+n - 1, of the atom A(n). For 
greater clarity we take into account only the fundamental 
noninertial effect [the first term in (4)] and neglect complete- 
ly the dipole interaction connected with the redistribution of 
the electron density in the quasimolecular ion BA+. 

For the system H(n) + He(ls2) the contribution of the 
second effect to the total cross section (17) turns out to be 
maximal at sufficiently low levels n - 5 (where w - r; ' and 
R, -Ro-R,) and amounts to approximately 30% of the 
cross section for the noninertial transition. With increasing 
n, the role of the noninertial mechanism becomes even 
greater because of the decrease of D "'(R ) at R,)R,. This 
enables us to write Eqs. (17) and (20) in the following unified 
form for the entire considered region u, 4 l/n2 

It follows therefore that the cross sections a, - , are propor- 
tional to the quantity n4u2(R,), and in the shakeup region 
(when the main contribution to the transition is made by 
large distances R 2 i E ,  where u(R, -u,) they decrease with 
decreasing n like n4. In the opposite limiting case w)r; ' the 
transitions take place in the region of internuclear distances 
a(R, <8,, in which the relative velocity v(R,) of the parti- 
cles A+ and B increases considerably with increasing w, 
owing to their acceleration in the potential well of the inter- 
action, and reaches value vo)uE at w -7; '. This increase in 
the velocity v(R,) causes the cross sections to change little 
with decreasing principal quantum number in the frequency 
region 7;- '(w(r; ' (see Fig. 2). The decrease of the cross 
section sets in only at n(r; ' I3 ,  i.e., in the adiabatic region of 
frequencies w)r; I, with a,,, - , -exp( - h r , ) .  It is easy to 
see also that the cross section of the transitions n-+n' 
between the Rydberg states with An = In - nll# 1 decrease 
rapidly [see Eqs. (17) and (20)] with increasing An. 

To compare the results on the cross sections of the tran- 
sitions with change of the principal (1) and orbital (2) quan- 
tum numbers of the Rydberg electron, we present a formula 
for the total I-mixing cross section. In the case when the 
nl-tnl ' transitions in the A(n1) atom are due to collisions of 
the neutral particle B with the core A+,  the total I-mixing 
cross section a,,(E) will be determined with the aid of the 
shakeup model, just as in the derivation of Eq.(20). Using the 
expression for the sum8,,,. / (nlm 1 r In1 'm') l 2  (Ref. 26, pp. 
399 and 413 of Russ. transl.), we have 
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FIG. 2. Cross sections for de-excitation of Rydberg states of hydrogen in 
collisions with helium atoms H(n)  + He(ls2)+H(n - 1) + He(ls2) at  var- 
ious energies of the heavy particles. Curves 1,2, and 3--cross sections for 
the transitions a,,, - , ( E )  at E = 0.026,O.l. and 0.3 eV, respectively; 
curves 4 and S-cross sections u,,(E) for orbital-momentum mixing at 
I = 0 for E = 0.026 and 0.3 eV; curves 6 and 7 correspond to the experi- 
mental data of Ref. 22 and to the calculation of Ref. 15 for the quenching 
of the nl levels of Na(n,l = 2) by helium atoms. 

~ 2 n p d p  - y, ~ l ~ n l r n l r l n l f r n r ~ 1 2  
21.4- l 

I ' f  1 rn,nt' 

The result (22) coincides with a fomula obtained earlierI3 as a 
particular case of the general solution of the problem of 1- 
mixing on account of the noninertial mechanism, and is val- 
id for all values of n in the range pLLi (t~(l/lu,/M,+)-'/~ 
(i.e.,for4 5 n 5 30in thecaseofthesystemH(n1) + He(ls2) at 
thermal collision velocities). 

5. DISCUSSION OF RESULTS 

We discuss the results of concrete calculations of the 
cross sections and rate constants of the transitions (1) and (2), 
performed in the energy (temperature) range 0.02 S E S 0.4 
eV for the case of collision of highly excited hydrogen H(n) 
[or H(n1 )] with helium atoms He(ls2). 

1. From the calculation (see Fig. 2) of the cross sections 
for the de-excitation n-n + 1 [Eqs. (17), (20)] and quench- 
ing of the nl levels (22) we draw the following conclusion: in 
the quantum number region n S u, (i.e., at n < 10-15) the 
noninertial transitions with change of the principal quantum 
number n+n' are much more effective than those with 
change of only the orbital momentum (nlhnl ' ) .  In the sha- 
keup region v, < n < u, 'I2 (i.e., at 10 - 15 < n < 30-40), 
however, these transitions are approximately equally prob- 
able. In all the considered regions n < v, (i.e., n < 30-40) 
the quenching of the nl levels or the establishment of equilib- 
rium over the I sublevels is due to a mechanism that is more 
effective for 1-mixing, namely direct collision of the Rydberg 
electron with the neutral particle. The corresponding cross 

FIG. 3. Rates of de-excitation of Rydberg states H(n - ) 
+ He(ls2)-H(n - 1) + He(ls2) at different temperatures. Curves 1, 2, 

and 3-rate constants k , ,  - , (T) at T = 250,1000, and 4000 K, the dash- 
dot curves show the corresponding rates k ',I, - , (T) in elastic scattering of 
a weakly bound electron by helium atoms according to the data of Ref. 4; 
dashed curve-rate constant k $, - , ( T  = 300 K) calculated in Ref. 5. 

sections (see, e.g., the experimental data of Ref. 22 shown in 
Fig. 2, as well as the calculations of Refs. 14-21) exceed by 
more than two orders of magnitude the cross sections for 
both the transition n+nl and nl+nl ', owing to the noniner- 
tial mechanism. 

2. Of basic interest is the comparison, shown in Fig. 3, of 
the rates of de-excitation of the n-levels k,,, - , ( T ) ,  calculat- 
ed from Eqs. (18) and (21), with the corresponding rates 
k z ,  - , (T) due to the elastic mechanism, calculated in Refs. 
4 and 5. This comparison points to predominance of the 
mechanism investigated here for the transitions n-n' in the 
region n S 10-15, and also at n 2 20-25. The effectiveness of 
the noninertial mechanism at n 2 20-25 is attributed to the 
fact that its limiting cross sections (at n-v, I/*) turn out to 
be of the order of the transport cross section for the scatter- 
ing of the H +  ion by the atom He(ls2) (e'.*' = 60 A2 at 
E = 300 K). At the same time, for the elastic mechanism3-' 
the cross sections of the n-n' transitions are expressed in 
terms of the transport cross section for the sfattering of a 
slow electron by a helium atom = 5 A'), which is 
more than 10 times smaller. At n 5 10-15 the n+nl transi- 
tions produced in the hydrogen atom H(n) by collision of the 
atom He with the proton H +  are highly effective both be- 
cause < + * H e  is large and because the relative velocity of the 

FIG. 4. Total rate K, = LA, k,., , .. N,,, of collision quenching of highly 
excited hydrogen levels by helium atoms He(ls2) at T = 300 K and at 
densities N,, = 10'R, loL7, 10" ~ m - ~  (curves 1, 2, and 3, respectively). 
Dashed curve-total rate A. = 8,,An,, _ A n  of radiative decay of the level 
n. 
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heavy particles increases substantially when they move in 
the region R ( p,,, . 

3. It can be seen from Fig. 4 that collision quenching 
(total rate K, = 2,, k,,, * ,, NHe) of the levels of hydrogen 
H(n) with n 2 6 greatly exceeds their radiative decay 
(A, = Z,,A,, - ,, ) even and helium densities NHe Z 10'' 
~ r n - ~ .  This makes possible measurement of the cross sec- 
tions and rates of the transitions (1) with decreasing principal 
quantum number of a Rydberg electron in a weakly ionized 
plasma of H, and He. These measurements can be per- 
formed, e.g., on the basis of the dependence of the radiation 
intensity of the highly excited levels of the hydrogen atoms 
H(n) produced in such a plasma on the pressure of the buffer 
gas (helium). Experiments of this type on n-+n' transitions 
are undoubtedly of interest for the study of the relaxation of 
a dense low-temperature plasma. 

The authors thank M. I. Chibisov and 0. B. Firsov for a 
discussion of the results , as well as B. P. Kaulakis for copies 
of Refs. 13 and 2 1 prior to their publication. 

"The noninertial mechanism of transitions between Rydberg states of an 
atom was discussed also in Refs. 25. As shown in Refs. 10-13, however, 
the analysis there is in error. The author of Refs. 25 arrives at the incor- 
rect conclusion that the maximum cross sections of the noninertial tran- 
sitions n-+n' and nl-nl' are determined not by the transport cross sec- 
tion ut,(E) but by the elastic cross section uel for scattering ofthe neutral 
particle B by the atomic core A+. At thermal collision energies, how- 
ever, a,, (E )But, (E  ), so that the result of Eq. (25) greatly overestimates 
the cross sections for noninertial transitions. 

''The particles A+ and B go through such transitions in reactions analo- 
gous to (1) in their mechanism, but with formation or decay of molecular 
ions (e.g., associative ionization), with excitation of virbational level by 
electron impact, etc. 

3'Equation (9a) with the function d (o) = const [see Eq. (12a)l is the quasi- 
classical limit (at E,IEu I (Eo and o,r6 ') of theexact quantum-mechani- 
cal  expression^^^^^ for the matrix elements of the transition Dfl in the 
Morse potential [see Eq. (10a)l in the linear-dipole-moment approxima- 
tion. 

4'We note that in a Morse potential the time t (R ) [see Eq. (1 I)] of motion to 
the bottom of the well is equal to the collision time, i.e., R, = Re and 
t (R,) = r, at o = o,; for the frequency o = o,/G we obtain t (R,) 
= r , / O a n d ~ ,  =R,,where U(R,)= -3Ed4and  

R, = R,(1 + ln2/a) is the inflection point of the potential Eq. (10a). 
With further decrease of the frequency o < o,/O the point R, shifts 
beyond the inflection point, R, > R, . 

5'We note that the condition for the validity of Eqs. (17) can be written in a 
more lucid form: vE<An/n3,uo, if it is recognized that the characteristic 
dimensionARi, = b,/(v + 1) of the term on the right branch at the point 
b, = (C,/E)"'is ofthe order of one atomic unit (at thermal velocities of 
the collision of the particles A +  and B). 
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