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It is shown that any analysis of the quantum error limit of Doppler measurements of momentum 
must take into account the wave-packet frequency modulation due to acceleration of the body and 
due to reaction of the radiation. The error limit of momentum measurements by means of this 
method is Ap = ( f i m / ~ ) " ~  as in the case of momentum measurements based on observations of the 
coordinate of the body (m is the mass of the body and T is the duration of measurement). 

PACS numbers: 06.30.Ft, 06.30.G~ 

This problem was first discussed by von Neumannl in 
his search for a body-momentum measurement method that 
would differ in principle from the method used for determin- 
ing momentum through coordinate measurments performed 
at different moments of time. Since coordinate measure- 
ments are associated with random disturbances of the mo- 
mentum, the coordinate at subsequent moments of time is 
determined not only by the initial velocity of the body, but 
also by random variations in its velocity during the measure- 
ment process. With a designated observation period r,, we 
may associate an optimal value of the coordinate measure- 
ment error at which the momentum measurement error is a 
minimum. In the case of a free-falling mass, the minimal 
error of such a momentum measurement2 is 

A measurement of momentum based on the Doppler 
effect does not explicitly involve a measurement of the coor- 
dinate of the body. Therefore, it might be expected that this 
method ~xould not be subject to the limit (1). Von Neumann 
found' that the error in a momentum measurement which 
uses only a single photon is determined in this case by the 
relation 

where c is the speed of light, w, the mean photon frequency, 
and T the duration of the wave packet. The unknown distur- 
bance in the momentum is thus determined solely by the 
indeterminacy of the photon frequency Aw = 1/r and is 
equal to Ap, = fi/cr. Hence it follows that the measurement 
error can be reduced by increasing the frequency w, until 
mc/wor(fi/c~, i.e., iio,/mc2. Since it is possible that fi/ 
r<mc2, i.e., f i /cr<(f im/~) ' /~,  the Doppler measurement 
method could have an error Ap, ((fim/r). However, a more 
careful analysis shows that Eq. (2) is not applicable at 

quantum mechanics; further, conditions are known under 
which this relation may hold.3 But in our case these condi- 
tions do not hold. 

In order to produce a clearer picture of the pheno- 
menon that von Neumann did not take into account, we 
present his proof of (2).' The error in measurements of the 
momentum of a body is Ap, =; mcAw/wo, while the momen- 
tum indeterminacy is equal to the indeterminacy in the pho- 
ton momentum fidw/c. If 2iwo<mc2, we have 6Aw/ 
c<mcAo/wo. If a wave train has duration T, the frequency 
indeterminacy will be 1/r. The frequency over a time T can 
also be measured to within l/r. Replacing Aw by l / r  in the 
expression Ap, = mcAw/wo yields the relation (2). This line 
of reasoning is not entirely accurate, however, since: (1) the 
indeterminacy in the frequency of the wave train, i.e., its 
spectral width, depends not only on the duration, but also on 
the shape of the train. (2) The shape of a reflected wave train 
is not the same as the shape of the incident train, as the body 
will accelerate during the wave-train-reflection time as a re- 
sult of recoil the reflected wave train acquires a frequency 
modulation. (3) The error in the computed mean frequency 
of the wave train depends not only on the resolution of the 
spectal device, but also on the spectral width of the train. If 
an initial wave train has a spectral width 1 / ~ ,  relation (2) will 
be valid only if the spectrum broadening upon reflection is 
less than 1 / ~ .  

Let us find the spectrum broadening at which the initial 
wave packet has the form of a train a sin(oot - kx)  of dura- 
tion 7. This train has a spectrum width 2/r at the level e-  '. If 
we suppose that the initial velocity of the body is much less 
than the speed of light and if iioo<mc2, it can be approxi- 
mately assumed that the body is acted upon by a constant 
recoil during the photon-reflection time and moves with an 
acceleration 2 ~ d m c . r .  Then the reflected train will have a 
pulse-modulated frequency 

Ap, SAP. 
The possibility of reducing the error in momentum 

measurements based on the Doppler effect below the level 
(fim/r)lt2 is open to question, for in this case the error AE in where v is the initial velocity of the body, O<t<r. Results ofa 
the measurement of the energy of the body may be less than previous computation4 can be used to compute the spectrum 
f i /~.  For this purpose, immediately after making a measure- of such a frequency-modulated impulse. It may be shown 
ment lasting r, 57,  we need only compensate (with error that, at the e-I level, the spectral half-width of such a train is 
p H )  by means of a second photon for the momentum trans- 
ferred to the body by the first photon. In principle, the ine- 
quality AE<lir, does not contradict the foundations of am= [ (2hoo2/mc2) '+ ( 1 1 ~ )  '1 '&. (3) 
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The first term in (3)  will exceed the second term once 
mc/w0r < ( f i m / ~ ) ' / ~ ,  i.e., once Ap, < ( f i m / ~ ) ' / ~ .  Since von 
Neumann did not take account of spectral broadening upon 
reflection in his computations, the latter comparison shows 
that (2) is valid only ifAp, > (fim/r)'I2. 

Let us find the true limit of error of the momentum 
measurements. If only a single quantum is used, the spec- 
trum analyzer will yield a frequency reading that may corre- 
spond to a definite probability of an arbitrary frequency in 
the spectrum of the reflected wave packet. The reading accu- 
racy is determined by the resolution of the analyzer, which is 
related to the indeterminacy of the photon delay time r, in 
the analyzer as (Aw), - l / r a .  To compute the initial velocity 
of the body u,  it is necessary to determine the frequency w ,  
corresponding to the maximal spectral density of the wave 
packet. If we have a single random reading accurate to l / r a ,  
the frequency w ,  can be determined only with error 

(Ami)'= ( l l ~ , ) ~ + a ( 6 o / 2 ) ~ ,  (4) 

where a is a numerical coefficient that depends on the confi- 
dence level of the result. (A coefficient a > 1 means confi- 
dence level greater than 0.8). The error in the measurement 
of the body momentum is then 

The quantity Sw/2wo = ( f i w , / m ~ ~ ) ~  + ( 1 / 2 0 , ~ ) ~  has a mini- 
mum W m c 2 r  when (w,):,, = mc2/fir. Consequently, the er- 
ror in the measurement of the momentum of a body by the 
Doppler method is bounded by the inequality 

If the incident wave were to contain not one but N pho- 
tons, the acceleration of the body would be N times greater. 
But in place of a single reading there would be N frequency 
readings, and the momentum measurement error would 
then be 

The second term in (7) has a minimum Nmc2r ,  as in the case 
of a single photon, though now when (w,):,, = mc2/Nfir, 
i.e., at a radiation power 

The maximal measurement error is independent of the num- 
ber of photons in the pulse, though it may be attained at a 
lower frequency oo the greater N. 

Let us make a number of estimates. At m = kg, 
wo = 1016 sec-', and r = 1 sec we have an optimal power 
Pop, -- W .  Even ifr-  l o p 2  sec, Pop, will have a reasona- 
ble value from the experimental standpoint. Consequently, 
effects associated with the acceleration of the body in 
Doppler momentum measurements may appear even at con- 
temporary experimental techniques. 

The spectrum broadening described above could be eli- 
minated were it possible to compensate for the recoil pro- 
duced by reflecting the photon, for example, by a similar 
photon impinging on the body from the opposite direction. 
But it makes sense to speak of simultaneity only to within the 
coherence time 7 .  Even in the case of biphoton  field^,^ the 
probability of simultaneous photoelectric readings is close to 
unity only if the resolution time is less than T .  But if the 
radiated field is in a coherent state with the mean number N 
of photons the compensation will be affected also by the in- 
determinacy of the number of photons per pulse. 

It can be stated that (6)  determines the theoretical sensi- 
tivity limit of the Doppler method of measuring the momen- 
tum of a free-falling body. This result is of particular impor- 
tance in searching for supersensitive measurement methods 
in experiments designed to detect gravitational radiation. 
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