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A "transit" regimeof electron motion in a semiconductor at low temperature, when the dominant 
scattering mechanism is spontaneous emission of optical phonons of frequency w, by electrons, is 
possible. In this case the electrons execute in momentum space, under the influence of the electric 
and magnetic fields, a cyclic motion from the point p = 0 to the boundary of the passive region 
(E = h,) along a so-called principal trajectory. We develop in this paper a mathematical method 
of taking into account the influence of the alternating electric field on the indicated transit mo- 
tion. In the approximation where the scattering of the electrons in the passive region is weak 
(E < h,) and the penetration into the active region ( E  > f iw) is small we obtain a trajectory equation 
which is investigated in detail for the case of crossed electric and magnetic fields. It is shown that 
electron bunching is possible even in the region of weak alternating electric fields. 

PACS numbers: 72.20.J~ 

1. INTRODUCTION 

Recent experiments on AgBr at helium temperatures1 
have made popular a kinetic model with pronounced dy- 
namics of electron motion in momentum space; this model 
was expounded in detail in Refs. 3 and 4. Its gist is that at low 
temperatures ( k T d h , )  where w, is the frequency of the op- 
tical phonon) and under the conditions 

7+<;<T- (1.1) 

(rt is the characteristic time of emission of an optical 
phonon by an electron in the active region E > h,, r- is the 
characteristic time of electron scattering in the passive re- 
gion E < &,, r is the time of flight of the electron from p = 0 
to the boundary of the passive region) all the electrons are 
concentrated at the so-called invariant trajectories. These 
are either the principal trajectory along which the electrons 
execute cycles of acceleration from the point p = 0 to the 
passive-region boundary, or trajectories that lie entirely in 
the passive region (in crossed fields E,lH the aggregate of 
the latter is called the "spindle" region). All the kinetic prop- 
erties of a semiconductors are in fact determined by the dy- 
namics of the electron motion on these invariant trajectories, 
as well as by their distribution. Connected with the spindle 
region is the idea of obtaining the inverse distribution func- 
tion and realizing microwave generat i~n.~ It was recently 
confirmed in experiment.' Connected with the principal tra- 
jectory is the idea of transit resonance investigated in the 
linear approximation, in the presence of a constant electric 
field, in Refs. 6-8. It was found that, in the region of the 
transit frequency r j  = 2 ? ~ / ?  or its harmonic w, = &I (I = 1, 
2, ...), a weak alternating electric field jointly with weak 
mechanisms (electron scattering and small penetration of 
the electrons into the active region) simulates the distribu- 
tion of the electrons on the principal trajectory. This gives 
rise to transit resonance and makes possible the appearance 
of negative differential conductivity (NDC) on one of the 
wings of the resonance curve. This linear theory of transit 
resonance is based in fact on expression in terms of the small 

parameter E /E, (where E, is the constant electric field and E 
is the amplitude of the alternating electric field) and is there- 
fore valid in the region EdE,. 

It was shown in Ref. 9 that turning on a constant mag- 
netic field HIE, alters the transit resonance substantially. 
The magnetic field bends the principal trajectory, and now 
the alternating electric field changes the trajectory length 
periodically. As a result a strong mechanism begins to act on 
the modulation of the electron distribution function, namely 
scattering of the electron by optical phonons. The resonance 
is increased by 6 -' times (5 = max[;i/r-, ( T + / ? ) ~ ' ~ ] )  and 
consequently the nonlinear phenomena should come into 
play already in the region of weak alternating fields 

gEo<EKEo. (1.2) 

This circumstance allows us to construct an analytic nonlin- 
ear theory of transit resonance. It is shown in the present 
paper that when the conditions (1.1) are satisfied total 
bunching of the electrons takes place on the principal trajec- 
tory, with increasing E, i.e., the electron distribution func- 
tion is transformed on the principal trajectory into narrow 
peaks that travel in synchronism with the alternating elec- 
tric field. This leads to saturation of the transit resonance 
and to strong generation of the higher harmonics of the cur- 
rent. We note that a search for nonlinear high-frequency 
phenomena in the transit regime is under way at present also 
by numerical-modeling methods (see, e.g., Ref. 10). 

2. ELEMENTARY MODEL 

We consider in this section a simple model that explains 
the bunching in an alternating electric field. We assume that 
there is no scattering in the passive region and that the elec- 
tron reaching the boundary of the passive region emits in- 
stantaneously an optical phonon and jumps over to the point 
p = 0. We consider only electrons that move along the prin- 
cipal trajectory. Let ?(t ) be the time of flight, along the prin- 
cipal trajectory, of an electron that reaches the boundary of 
the passive region at the instant t. We can then naturally 
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write the equation 

which connects the successive instants of emission of optical 
phonons by the electron. 

Although the arguments that follow are suitable for any 
case when the length of the principal trajectory varies sinu- 
soidally with time, we consider for the sake of argument the 
specific case of crossed static and electric fields, E,lH. As- 
sume that we have an alternating electric field E( t )  
= E x cosot. The field E lies in a plane perpendicular to H 

and makes an angle x with E,. Solving the trajectory equa- 
tions in an approximation linear in the alternating electric 
field, we can easily show that in the vicinity of the principal 
resonance, when 

the following relations hold: 

G(t )  =.)+A&), 
~ ; ( t )  =C cos ( a t - $ ) .  

Here 

is the time of flight of the electron over the principal trajec- 
tory in the absence of an alternating electric field 
( pc = mcE&, p, = (2mh,)"'), and 

In this case we have a sinusoidal change A?(t ) of the time of 
flight, whose phase relative to the phase of the alternating 
field depends substantially on the polarization of this field. 

Substituting now (2.4) in (2. l), introducing the dimen- 
sionless time q, = o t  - $, and putting a = o C  we obtain the 
equation 

cp,,+i=cp,,+2n+Q+a cos cp,,,. (2.8) 

This is the one-dimensional transformation for the quantity 
q,,, , which is the phase of the alternating electric field at the 
instant of emission of a phonon by an electron. Naturally, 
the electrons will be bunched when this transformation has a 
limit point. Let us investigate this transformation graphical- 
ly. It is shown in Fig. 1 for two fundamentally different 
cases: If2 I <a and If2 I >a. Thedashed trajectory shows the 
process of multiple application of the indicated transforma- 
tion. We see that in the case If2 I <a I there exists a limit point 

and thus any initial electron distribution in the phases on the 
principal trajectory will contract into a narrow peak at 
p = p*. For the case In I >a there is no limit point, and we 
have, as seen from Fig. lb, motion with mixing. Averaging 
over many electrons we obtain in this case a certain modula- 
tion of the electron density on the trajectory, inasmuch, as 

FIG. 1. Graphic representation of the transformation (2.8): a-la 1 <a, 
b-IR I >a. 

seen from the figure, the phase jumps are not uniformly dis- 
tributed. 

It is natural to expect both the scattering of the elec- 
trons in the passive region and their penetration into the 
active region to spoil the bunching. The electron distribution 
function on the principal trajectory is established as the re- 
sult of a competition of these mechanisms with the bunching 
mechanism described above. But to determine this distribu- 
tion function we need a kinetic analysis, which will be devel- 
oped in the sections that follow. 

3. EQUATION FOR THE PRINCIPAL TRAJECTORY 

For the analysis of electron bunching on the principal 
trajectory, the kinetic equation can be considerably simpli- 
fied and reduced to some simpler equation for the J (t ) of the 
electrons that leave the passive region at a given instant. In 
addition, the spindle region can be neglected. Since the elec- 
trons rotate in this region at the cyclotron frequency, which 
differs from the transit frequency, and therefore make no 
contribution to the transit resonance. The redistribution, 
due to the pulsation of the spindle region in the alternating 
field, of the electrons on the principal trajectory is negligible, 
for in final analysis it is determined by the scattering in the 
passive region. 

Once J ( t  ) is obtained, all the kinetic properties of the 
semiconductor can be studied in the approximation of an 
infinitely narrow principal trajectory, using J ( t  )as thesource 
of the electrons for the principal trajectory. To study the 
nonlinear phenomena in the interval of (1.2) of the alternat- 
ing fields it suffices to obtain the indicated equation in the 
approximation linear in the small parameters E /Eo, ?IT-, 
and T+/?, the contribution of each of which to the sought 
equation can be obtained independently. We take into ac- 
count first the contribution from the change, due to the alter- 
nating electric field, of the length of the principal trajectory. 
If J (t ) is the number of electrons that leave the principal tra- 
jectory at a given instant of time, and ?(t ) is the time that it 
took these electrons to travel along this trajectory, the inte- 
gral 

is proportional to the total number of electrons on the princi- 
pal trajectory and is therefore a constant. Differentiating 
(3.1) with respect to t and using the notation of (2.3), we 
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obtain the equation 

dz ( t )  J(t) =J(t-z(t)) -l(t-T (t))----- 
dt 

To obtain the sought equation for J (t ) it is necessary to add to 
(4.2) the contributions from the electron scattering in the 
passive region and from the electron penetration into the 
active region. 

The contribution from the scattering in the passive re- 
gion is easily obtained in the limit of an infinitely narrow 
principal trajectory, as was done in Ref. 9. This leads to the 
appearance of a certain integral term that takes into account 
the departure and arrival of the electrons from and to the 
principal trajectory, since each electron that leaves the prin- 
cipal trajectory as a result of scattering returns to it with a 
time of the order of .i. However, since we confine ourselves to 
the resonant region, where the role of the indicated scatter- 
ing reduces only to a broadening of the resonance curves, we 
approximate the aforementioned term in the simplest man- 
ner by adding to (3.2) a relaxation term of the form 
- fl (J - I), where fl = ?/T- and the following normaliza- 

tion condition is assumed: 
,. 
T 

5d-c ~ ( t - r ) = i .  (3.3) 
0 

Allowance for the penetration of the electrons into the 
active region is a more complicated matter, since the swell- 
ing of the principal trajectory calls for setting up a certain 
integral equation for the transverse profile of the principal 
trajectory. The procedure for this is given in the Appendix, 
where the trajectory equation is obtained also in final form: 

d i  (t) 
J ( L ) = ( J [ I  - 

The coefficients a and b are proportional to the small param- 
eter (7+/.i)'13. The last two terms have a simple physical 
meaning. The term containing the first derivative is analo- 
gous to the second term of (4.2) and takes into account the 
increase of the transit time as a result of penetration of the 
electrons into the active region. The small dephasing that 
results from the fluctuation of the penetration depth is taken 
into account by the diffusion term, which contains the sec- 
ond derivative. 

It will be shown below that in the vicinity of the "tran- 
sit" resonance the characteristic behavior of the function J (t ) 
is determined not by the small parameters 0 ,  E /E,, r+/.i, 
and ?/T- themselves, but by their ratios. Therefore an 
expression for the distribution function in terms of J ( t  ), and 
also expressions for the different kinetic coefficients, can be 
obtained in the zeroth approximation in all the indicated 
parameters, i.e., in the approximation with only one infinite- 
ly narrow principal trajectory defined in the static electric 
and static magnetic field. In this approximation, the electron 
distribution function normalized to unity takes the form of a 
wave traveling on the principal trajectory, i.e., 

where 
PI 0 = arctg - , EoIIx, HIIz. 

P S + P C  

Using (3.5) it is eady to express any kinetic characteristic of 
the electron system in terms of the function J ( t  ). For exam- 
ple, the expression for the current in the case of steady-state 
periodic motion takes the form 

The function J (Qi /a,) itself is the instantaneous distribution 
of the electrons on the principal trajectory. 

4. DISTRIBUTION OF ELECTRONS 

Equation (3.4) can be solved in the general case only 
numerically. A qualitative picture of the behavior of J (t ) can, 
however, be easily obtained by considering limiting cases. 

We consider first the case of instantaneous emission of 
an optical phonon by an electron, i.e., we put a = b = 0 in 
(3.4). Then, using the substitution p = wt - rjl and introduc- 

( pn: * ), we can represent ~ q .  ing the notation Jn = J - 
(3.4) in the form of the following two-dimensional transfor- 
mation: 

l,+,=l,(l+u sin cp,+,-P) + I ,  
cpn+,=cp,+2n+Q+a cos rp,+,. 

The second of these equations coincides, naturally, with Eq. 
(2.8) used in the analysis of the elementary model. Since we 
restrict the phase to the interval from 0 to 277, the term 277 in 
the right-hand side of (4.2) will be disregarded. It is conven- 
ient to investigate the solution of the foregoing system 
graphically, by drawiqg the phase portrait in the (J, p) plane. 
Since each discrete transformation causes only a small 
change of the variables (it is proportional to the small param- 
etersa,fl, and 0 ), we can replace the discrete transformation 
by a continuous one, replacing the system (4.1)-(4.2) by the 
system of differential equations 

dJ 
- dn = (a  sin cp-p) J+p,  - dq dn. - -Q+a cos cp,  

whose phase portrait is constructed by standard methods. 
Such phase portraits are shown in Fig. 2. Figure 2a shows the 
case 10 I > a ,  when the system has no singular points, and 
any initial distribution (shown in the figure by the dashed 
line) moves during a time n along the trajectories and hugs 
the periodic trajectory shown by the thick line in the figure. 
Thus, a periodically modulated distribution function is es- 
tablished in the course of time in the case IR I >a. 

Two qualitatively different phase portraits are possible 
in the case (0 ( < a ,  depending on the ratio a/(0 + f i  2)''2. 
Figure 2b shows the case a < (R + f i  ' ) ' I 2 ,  when there are 
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FIG. 2. Phase portraits of the system of equations a-10 I >a, b-- ( 0  + /3'j1/' > a > 10 1, c--a > ( 0  ' + 8 ')'12, 

two singular points in the region J >  0, one a node and the 
other a saddle. It can be seen from the figure that in this case 
any initial distribution (dashed curve) contracts to one of the 
separatrices (thick curve) of the saddle point. Comparing 
this phase portrait with Fig. 2a we see that a tendency to 
bunching sets in with increasing a. Figure 2c shows the 
phase portrait for the case a > (0 + f l  2)"2, when both sin- 
gular points become saddles, one of which drops into the 
region J <  0. It  can be deduced from the figure that any ini- 
tial distribution contracts to the separatrix of the saddle lo- 
cated in the region J>O. This separatrix is not bounded. 
Consequently, at *a > (D + f l  the scattering in the pas- 
sive region cannot smear out the singularity in the distribu- 
tion function of the bunched electrons. The singularity is 
always smeared as a result of the finite penetration of the 
electrons into the active region. This can be verified by con- 
sidering the other limiting case, namely, neglecting the elec- 
tron scattering in the passive region. Putting fl = 0, we find 
from Eq. (3.4) that the function J(t ), which is periodic and has 
the period of the field, must satisfy the differential equation 

d l  
-C cos (a t -$)  J-  

dt w (4.4) 

This equation is solved in quadratures. But we shall not write 
down these relatively straightforward but cumbersome 
equations, but present some characteristic curves in Fig. 3. It 
is seen from this figure that at D = 0 there is a relatively 
narrow but closed peak at q, = 1r/2. When the detuning is 
taken into account, the peak broadens and shifts to 71- or to 0, 
depending on the sign of D. 

To conclude the analysis, let us estimate the dimensions 
of the peak for the case of exact resonance D = 0. Confining 
ourselves to a small region to = w-'($ + 71-12) in the vicinity 
of the peak and expanding cos(ot - $) in a Taylor series, we 

FIG. 3. Plots of the function JIp/o) for dominant ~enetration of the elec- 
trons into the active region: a = 3(?+/?jZI3; 1-0-= 0, 2 d  = 2(7+/ 
.i)'/3; 3 - 4 2  = 4(7+/?)'/3. 

obtain from (3.4), in the case when electron penetration into 
the active region dominates ( B  = 0) 

J ( t )  - exp - - ( t - to )  1; I 
and when scattering in the passive region dominates 
(a = b = c )  

J ( t )  - 1 t-to (4.6) 

For the characteristic width of the peak we have 
aZb 'I2 + E 'It 

( )  - [ ( f )  +] , when $=o; 
A ( a t )  = (4.7) 

when a=b=O. 

Consequently, with increasing amplitude of the alternating 
electric field the electrons become bunched, and the scatter 
of the electron phase decreases in inverse proportion to the 
square root of the indicated amplitude. 

5. DISCUSSION OF RESULTS 

It was shown in the preceding sections that in the region 
of weak alternating electric fields total bunching of the elec- 
trons can be achieved. The electron distribution function is 
transformed in this case into a sequence of narrow bunches 
that travel along the principal trajectory in momentum 
space. 

The manifestation of the investigated nonlinear phe- 
nomena in resonant absorption of an electromagnetic wave 
is quite trivial. An increase in the amplitude of the alternat- 
ing electric field limits the resonance (since the amplitude of 
the alternating current cannot exceed nepo/2) and broadens 
it. The NDC present in the linear region moves away from 
the resonance with increasing E and goes out of the region of 
the considered approximation. It follows from (3.7) and (3.8) 
that with increasing E the current tends to assume a certain 
limiting sawtooth shape. From the position to = ($ + 7r/2)/ 
w of the peak at resonance, as well as from the fact that 
( $ 1  (71-/2 according to (2.71, it follows that the phase differ- 
ence between the alternating electric field and the first har- 
monic of the current cannot exceed 71-/2, i.e., no NDC can 
exist at the transit resonance (R = 0). The clearest manifes- 
tation of the sawtooth shape of the current could apparently 
be intense generation of higher harmonics of the current. 

We note in conclusion that at the present time, in our 
opinion, the most suitable subject in which to seek this 
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bunching of electrons is AgBr. At helium temperatures, ac- 
cording to Ref. 1, the time of electron scattering in the pas- 
sive region is of the order of r- - 5 X lo-'' sec, m = 0.3m,, 
and h0- 17 meV. At Eo = 150 V/cm and H = 550 Oe the 
first transit resonance should be observed at the frequency 
Y -  30 GHz. The time of flight already becomes shorter than 
the time of scattering in the passive region. According to 
Ref. 1 the value of r-/r+ should amount to two orders of 
magnitude. 

APPENDIX 

We derive here the trajectory equation under the as- 
sumption that the electric and magnetic fields employed are 
static, and that there is no scattering of the electrons in the 
passive region. 

Let the electron scattering in the active region be char- 
acterized by the probability of emission of an optical phonon 

and in view of the small penetration of the electrons into the 
active region we can assume r+ to be constant; g ( ~ )  is the 
state density of the electron. 

The initial kinetic equation is of the form 

af+ af+ - + F - +G (p) f+=O. 
at a p  

The plus sign indicates here that the distribution function 
pertains to the active region (E(  p) >+%ao) of momentum 
space, F is the force due to the electric and magnetic fields, 
and 

The kinetic equation can be simplifed using variables con- 
nected with the electron trajectories in momentum space. 
Let 

p=p(q,, qr,+t) ('4.5) 

be the solutions of the equations of motion p = F. The two 
integration constants q, characterize the electron trajectory 
(we assume that q, = 0 corresponds to the principal trajec- 
tory), and the third constant ql, is chosen as an additive time 
constant. 

We use now expression (A.5) as a transformation to new 
variables q, and qll . In terms of these variables, Eq. (A.3) can 
be easily solved and the solution can be represented in the 
form 

f' (P (911 qil+ t ) ,  t )  

t+q,,-iiqL) 

=@ (qr.qd exp {- dr G (P ( q ~ ,  r + i (ql)))]. 

('4.6) 
where we have used the time ?(q,) of flight of the electron 
over the q, -th trajectory, defined in accord with the equation 

Substituting next (A.6) in the right-hand side of (A.3), inte- 
grating it, and matching the obtained distribution function 
to expression (A.6) on the boundary of the active region, we 
obtain an integral equation for the function @(q,, qll ). This 
function defines the electron distribution function on the 
boundary of the active medium. Indeed, it can be seen from 
(A.6) that 

@ (s l ,  QI,) =f+(p(q,, & l ) ) ,  

-q,I+-&L) ) =i+ (P, -qll+&il) ) I e(*,=h.w". (A.8) 
Consequently, the integral equation for @(q, , ql, ) is an inte- 
gral equation for the function f ( p, t )I,, ,, = ,", that deter- 
mines the transverse profile of the principal trajectory. It can 
be represented in the form 

Here D (q,) is the Jacobian of the transformation from the 
variables p to the variables q, and qll. We have left out the 
limits of integration in (A.9), since they are determined in 
fact by an exponential that decreases rapidly with increasing 
t ' (it is assumed that t ' > 0) and by the6 function contained in 
the definition of W( p, p'). 

The integral equation (A.9) is an exact consequence of 
the initial kinetic equation (A.2)-(A.3). It can be greatly sim- 
plified because of the presence of the small parameter ri/? 
that enters, according to (A.4), in the integral expression in 
the exponential. Indeed, owing to this parameter the expo- 
nential decreases rapidly with increasing t ', i.e., the main 
contribution to the integral is made by the region of small t '. 
But then it follows from the presence of the S function in 
W ( p, p') that the kernel of the equation differs significantly 
from zero only in the region of small p(q, , ql, ). As a result the 
function f ( p(qL, i(q, )), t ) has a sharply pronounced maxi- 
mum in the vicinity of q, = 0, and it is therefore convenient 
to solve (A.9) in the moment approximation. The larger the 
moment q, ofthe function f ( p, t ), the higher the power of the 
small parameter r+/? in it. Consequently, cutting off the 
system of moment equations at a definite moment, we can 
obtain a solution with arbitrary accuracy relative to the indi- 
cated parameter. However, since the initial equation (A.9) is 
homogeneous, this procedure does not yield a solution, but 
leads to a certain equation for the zeroth moment: 

(A. 10) 

which is the total flux of the electrons through the boundary 
of the active region at the given instant of time t. 
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We obtain such an equation in the lowest nonvanishing F)"~). TO this end we integrate both sides of (A.9) with re- 
approximation in ?+/? (in the case of a parabolic bottom of spect to D (q, )d 'q,, make in the right-hand side the change 
the electron band, the leading term of the expansion is (T+/ of variables in accordance with the formula 

I' 

u = J ~ T G  ( p  (q l l ,  r+;(qL1) ) (A. 11) 
0 

and transform from the variables q, and qll to the variables p (in accord with (A.5 at t = 0). We obtain then the equation 
OD 

I (t) = J d z q l r ~  (qL1)  J d3p J due-' 
1 

6 {e ( P ( ~ L ' ,  ( q ~ ' )  ) ) -h@o -8 ( P )  } ! ( P  (%', ), t-; (cl,)+qli-tt).  (A. 12) 
0 4ng (e  ( P )  ) 

To obtain the approximation indicated above it suffices to 
retain in (A. 11) the zeroth order of the expansion in q;; this 
leads to 

q=a 

(A. 13) 

The integration with respect to d 2q; in the right-hand side of 
(A.2) includes then only the function f and leads to the quan- 
tity J ( T 1 )  whose argument (if we confine ourselves to expan- 
sion up to terms quaratic in p inclusive) can be represented in 
the form 

~ , = ~ - ~ + A ~ + ~ B ~ - ~ u ' ' ~ .  (A. 14) 

Expanding now the integrand J (t ')in the vicinity oft - B in a 
Taylor series, we obtain the sought increment to the com- 
plete equation (3.4) for J ( t  ), where 

(A. 15) 

(A. 16) 

with r (5/3) ~ 0 . 9 0 3 .  
In the case pf crossed electric and magnetic fields of 

interest to us 

(A. 17) 

(A. 18) 

(A. 19) 

is a characteristic time of the order of the time of flight B 
along the principal trajectory. 
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