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We consider the possibility of noninertial change of the magnetization of a crystal by a light pulse 
as a result of adiabatic Stark inversion of the Zeeman sublevel on the leading front of the pulse. A 
light-pulse model that admits of an exact solution of the Schrodinger equation is constructed and 
yields an expression for the crystal-magnetization time dependence that is determined by charac- 
teristic switch-on time of the field. Crystals with triplet and quartet ground states of the paramag- 
netic impurities are considered by way of example. The role of inhomogeneous broadening is 
analyzed. 

PACS numbers: 75.20. - g, 7 1.70.Ej, 75.60.Ej 

1. INTRODUCTION 

Propagation of electromagnetic radiation through a 
matter magnetizes the latter. For optical frequencies this 
phenomenon was first considered by Pershanl and called the 
inverse Faraday effect (IFE). It was shown1 from general 
thermodynamic considerations that for a nonmagnetic sub- 
stance the magnetization is proportional to the degree of 
circular polarization of the radiation. 

In Ref. 2 was developed a nonstationary microscopic 
theory of the IFE for paramagnetic crystal, with account 
taken also of the reaction of the medium on the electromag- 
netic wave-the nonlinear change of the Stokes parameters 
of the radiation by the propagation in the medium. In parti- 
cular, it was shown that in the presence of a constant mag- 
netic field B the change of the crystal magnetization is con- 
nected not only with the degree of circular polarization of 
the radiation but also with the total intensity I: in a magne- 
toactive medium the magnetization changes in proportion to 
BI. In the nonstationary regime, in addition, a noninertial 
change of the magnetization is possible on account of stimu- 
lated Raman scattering (SRS) of the light pulse by the Zee- 
man sublevels of the paramagnetic ion, which are split by the 
field B and have nonequilibrium populations at sufficiently 
low temperatures. The stationary Pershan mechanism, on 
the other hand corresponds from the microscopic viewpoint 
to a relatively slow change, connected with the relaxation 
processes, of the population of the Zeeman sublevels, the 
distances between which are altered by the electromagnetic 
radiation on account of the quadratic Stark effect. 

For the IEF to set in as a result of Raman scattering of 
light it is necessary that the width of the radiation spectrum 
be large enough, not less than the Zeeman splitting in the 
field B. Obviously, the Raman scattering is stimulated only 

Stark effect, and under certain conditions quasicrossing of 
the levels is possible at a certain instant t,. Obviously, if the 
time t, - t l  is short compared with the relaxation times, but 
long enough to exclude nonadiabatic transitions between 
levels in the quasicrossing region, population inversion takes 
place at t > t, and leads to a change of the crystal magnetiza- 
tion. 

In a number of recent papers, the effect of adiabatic 
inversionwas considered under conditions of one-photon4 
and three-photon5 resonances. At two-photon resonance, 
however, a particular case of which is the IFE mechanism 
considered here, the problem no longer contains a small pa- 
rameter (see Ref. 6) and the theory turns out to be more 
complicated. To consider adiabatic inversion in two-photon 
resonance it is necessary to solve the problem exactly. Such a 
solution was obtained in Ref. 6 for several model depen- 
dences of the field intensity on the time. The results of Ref. 6 
are used here to consider the proposed mechanism of nonin- 
ertial reversal of crystal magnetization by light. 

Section 2 contains a derivation of the general equations, 
while Secs. 3 and 4 deal with their application to triplet and 
quartet states. The role of inhomogeneous broadening of the 
states of the impurity ions is the subject of Sec. 5, which 
contains also numerical estimates of the effect. A brief expo- 
sition of the present results was given in Ref. 7. 

2. GENERAL EQUATIONS 

Let a plane quasimonochromatic optical wave of fre- 
quency w propagate in a cubic axis along one of the axes. A 
constant magnetic field B is applied in the same direction. It 
is assumed that the rise time of the optical pulse, defined as 

in this case. 
We consider in this paper one other possibility of nonin- 

ertial alteration of the crystal magnetization, for which no 
broad-spectrum radiation is needed. We have in mind adia- 
batic Stark inversion of the Zeeman sublevels on the leading 
front of the light pulse. The physical picture is illustrated by 
Fig. 1. Assume no radiation prior to the instant tl  and that tr t z  t 
the splitting of the pair of Zeeman sublevel is equal to 8. At 
t > t, the distance between levels changes because of the FIG. 1. 

903 Sov. Phys. JETP 57 (4), April 1983 0038-5646/83/040903-07$04.00 O 1983 American Institute of Physics 903 



the time interval it takes to reach a stationary or maximum 
value after it is turned on, is much shorter than all the relaxa- 
tion times in the impurity-ion system. We assume also that 
only the ground state of the ions is populated. 

Under these assumptions, the behavior of the triplet 
and quartet states of the ions in the field can be described by 
an effective two-level system. The triplet state is character- 
ized by an effective spin S = 1, and in the assumed geometry 
the field mixes the sublevels m = 1 and m = - 1. The suble- 
vel m = 0 is not magnetoactive, and will therefore not be 
considered. 

The quartet states have an effective spin S = 3/2 and 
the field mixes the sublevels of two separate pairs: m = - 3/ 
2, 1/2 and m = - 1/2, 3/2. The explicit form of the effec- 
tive Hamiltonian of the interaction of the radiation with the 
paramagnetic ions is given for the general case in Refs. 2 and 
3. The actual Hamiltonian that determines the Stark shifts of 
the triplet sublevels is considered in Sec. 3 of the present 
paper. 

Writing the density matrix of the two-level system in 
the form 

1 1-w u+iv 
~ = - ~ - ( n - i u  l+w ) 

we can obtain the kinetic equations for the quantities u, v, 
and w (Ref. 2): 

Here I is the radiation intensity and 6, are the Stokes param- 
eters. The radiation is assumed to be completely polarized, 
so that 6,' + 4; + 532 = 1. The quantity S determines the 
Zeeman splitting of the sublevels in the absence of radiation: 

where p, and p, are the magnetic moments of the sublevels. 
The parameters a, P, x ,  andA are determined by the matrix 
elements of the Hamiltonian of the interaction of the ion 
with the radiation2: 

d is the electric-dipole-moment operator, and the summa- 
tion is over all the excited states I i l  ) of the ion with energies 
w,, reckoned from the ground-state energy. The quantum 
numbers m and n denote the eigenvalues of the effective spin 

of the ground state: m = - n = 1 for the triplet; m = 3/2, 
n = - 1/2 or m = 1/2. n = - 3/2 for the quartet. In accor- 
dance with the selection rules (see Ref. 2), a = 0 for the tri- 
plet states. For the quartet states the parameter a for the 
pairs ( - 3/2, 1/2) and ( - 1/2, 3/2) has opposite signs. 

For Kramers doublets, the magnetic sublevels are not 
intermixed by the radiation at the magnetic field orientation 
and at the radiation propagation direction considered here. 
In Eqs. (2) we have in this case x = il = 0 (see Ref. 2), and the 
population difference is not altered by the optical radiation. 
For this reason the impurity ions whose ground state is a 
Kramers doublet are not considered in the present paper. 

The initial conditions for Eqs. (2), under the condition 
that the ion-sublevel splitting in external fields is much 
smaller than the crystal temperature in energy units 0, are of 
the form 

u ( - m )  =v ( - - )  =0, w ( -m)  =6/QS, ( 5 )  

where Q = 3 for triplets and Q = 4 for quartets. 
The crystal magnetization can be expressed in this case 

in terms of the difference w of the sublevel populations: 

where N is the density of the paramagentic ions in the case 
when the ground state of the ions is the quartet 
w = wl12 + w3/,, where w,,, and w3/, are the populations of 
the sublevels with projections m = 1/2 and 3/2. 

We assume below that the density of the paramagnetic 
ions or the thickness of the crystal is small enough to neglect 
the change of the radiation polarization in the course of 
propagation. An estimate of the conditions needed for this 
purpose is given in Ref. 2. 

The initial conditions (5) for the density matrix are es- 
tablished within a long time, owing to the action of relaxa- 
tion processes. The initial state is therefore mixed. We shall 
show nevertheless that to calculate the final state of the ions, 
which obviously is also mixed, we can use the Schrodinger 
equation if, in accord with the assumptions made, the time of 
turning on the field is considerably shorter than the relaxa- 
tion time. 

Indeed, neglecting relaxation, the solution of the equa- 
tion for the density matrix p,(t ) in the interaction represen- 
tation, 

is expressed in terms of the S operator: 

PV ( t )  =S ( t ) ~ "  (-m) S+ ( t ) ,  

Comparing Eqs. (I), (2), and (7) we easily obtain an ex- 
plicit expression for the Hamiltonian H: 
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If we write now the S matrix in the form 

the equations for the four coefficients a, obtained from (8) 
break up into two independent pairs, each of which has the 
same form of the Schrodinger equation for a two-level sys- 
tem: 

ici1,=-1/2 (a+pf r)I~I ,+ ' /z  (hE3+ixEl) Ie-'6taZ,, 

ici2,='/2 (hE3-ixEl) Ie'btai,+'lz (a+pEz) lazj. (10) 

Equations (10) must be solved with the initial conditions 

aij(-ca) =.6.. 11. 

We now specify concretely the form ofthe envelope I (t ). 
We choose it, following Ref. 6, by implicitly specifying a 
function I ( t  ) that permits an analytic solution of Eqs. (10): 

The function I (t ) is an increasing one, with a characteristic 
turning-on time T and with an asymptotic value of the ampli- 
tude I, (see Fig. 2 of Ref. 6). I (t )-+IO as t-tco. In this case the 
S matrix is expressed in terms of confluent hypergeometric 
functions: 

a,, (1) =eiEgr@ [i$ (1 + $), iq; iRx 1, 

a', (t) = -- 
l+iq 2 

The function x(t ) is defined by the expression 

The large t (i.e., at t ) ~ )  we have x(t  ) z t .  Using this fact, as 
well as the asymptotic form of the confluent hypergeometric 
functions and expressions (8) and (12), we can obtain the 
asymptotic value of the magnetization of the crystal at large 
t. This expression is a sum of two terms-constant and oscil- 
lating in time at a frequency approximately equal to the Rabi 

frequency. The amplitude of the oscillating term, which we 
shall not write out here, decreases rapidly with increasing 
characteristic switching parameter 17 = ST. Bearing in mind, 
furthermore, that the Rabi oscillations average out rapidly 
as a result of various relaxation processes and of the spatial 
inhomogeneity of the field, we obtain the magnetic-sublevel 
population difference w, defined by a time-constant term in 
the form 

w=w(-w) (A/Q) (ch nq-e-"qA'Q )/sh n~1. (14) 

Assuming hereafter that the interaction is turned on slow- 
ly," i.e., S > O  and 7) 1, we obtain from (14) for the magneti- 
zation the expression 

where M is the initial magnetization of the crystal. As seen 
from (15), the crystal magnetization is determined by the 
product ofM and two factors, A /D and ( . - I .  The first is the 
magnetization in a monochromatic field I,  following adiaba- 
tic turning-on of the interaction. The second factor yields in 
the limit, as will be shown below, the Landau-Zener formula 
for the probability of excitation in level crossing. 

We consider now the behavior of the magnetization at 
different parameters of the problem, using concrete exam- 
ples. 

3. TRIPLET GROUND STATE 

If the ground state of the impurity ions is a triplet, as is 
the case, e.g., for the paramagnetic crystals MgO: Fe2+, the 
crystal magnetization is determined by the difference 
between the populations of the magnetic sublevels m = 1 
and m = - 1. In this case, according to the selection rules 
(see Ref. 2), we have a = 0 and A = S + Pg210. 

The effective Hamiltonian of the interaction of the radi- 
ation and of the constant magnetic field with the ions is 

Here S +  = S, + S, and S, are spin operators, T,, is a pa- 
rameter-that determines the shift of the level as a whole. The 
remaining parameters are defined in (3)  and (4). The magnet- 
ic-sublevel energies determined by this Hamiltonian are 

It follows from (16) that linearly polarized radiation (c2 = 0) 
only pushes apart the magnetic sublevels m = + 1 and in- 
version of their populations is impossible. For the asympto- 
tic crystal magnetization produced after completion of the 
external-field transient we obtain from (1 5) at 6, = 0 the usu- 
al result corresponding to adiabatic slow turning-on of the 
field: 

- ~ , = M ~ ~ '  6 [6'+ (x'Ei2f h'E,') 1," I- . (1 7) 

It follows from (17) that when the radiation intensity is in- 
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creased the crystal magnetization vanishes. This is due to 
equalization of the populations of the sublevels m = + 1 as 
a result of Raman scattering of the radiation by the impurity 
ions. The magnetization is subsequently restored because of 
relaxation processes. 

If the radiation frequency w is c'lose to the frequency of 
the dipole transition of the electron in the impurity ion, the 
parametersp, x, andR satisfy in the approximation with one 
intermediate level the simple relations x2 = p = R 2, if the 
intermediatelevelis not the doubletl" /3, and x2 = f l  = R 2/ 

4 in the opposite case. 
In the first case, the crystal magnetization (17) does not 

depend on the orientation of the radiation polarization 
plane. In the second case, if the radiation intensity I, remains 
unchanged, the crystal magnetization is a minimum if the 
polarization plane is parallel to one of the symmetry axes of 
the cubic crystal g, = 0, c3 = 1). 

We consider now a case when elliptically polarized ra- 
diation passes through the crystal. The behavior of the levels 
is determined, according to (16), by the relation between the 
degrees of linear and circular polarizations, and at appropri- 
ate values of the problem parameters the levels can come 
together and intersect. From expression (16) for the sublevel 
magnetizations we can estimate the radiation intensity at 
which the sublevel come closest together. For a magnetic 
field B - 100 G we have I, - lo8 W/cm3. 

The behavior of the magnetization is determined by the 
relations between the problem parameters y, Io, A ,  O, and q. 
The expression for the magnetization is 

at q >  1, q(1 + A /O )% 1. The second inequality means either 
the absence of level crossing or that yZo is not small com- 
pared with lA I. For example, under conditions of resonance 
with a dipole transition in the impurity ion this condition is 
satisfied if the degree of linear polarization of the radiation is 
not too small. If, however q >  1, v( 1 + A /O ) 5 1, as can be the 
case when the sublevels cross and, in addition, at small 1 yZJ 
A 1, we have 

Equation ( 19) corresponds to the Landau-Zener approxima- 
tion as applied to our problem. Under conditions of reso- 
nance with a dipole transition in the impurity ion, this equa- 
tion takes the form 

M,=MZ0{2 exp [-nq (1-g22) $2ZoZ/ (6+$g2Z0) '1 -1). (20) 

The magnetization is determined here by the degree of circu- 
lar polarization of the radiation. 

It can be seen that Eqs. (18) and (19) admit of the possi- 
bility of change of the sign of the magnetization up to total 
inversion: M, = - M : .  Figure 2 shows the behavior of the 
magnetization as a function of the field intensity I, in dimen- 
sionless units, for different values of the degree of circular 
polarization c2. In accordance with the statements made 
above for linear polarization (c2 = 0) we have M,+O with 
increasing I, (curve 1). At c2 < 0 a possibility arises of cross- 

FIG. 2. Magnetization of a crystal in a ground triplet state vs the radiation 
intensity: 1 5 ,  = 0; 2+, = 0.9; 3-6, = - 0.999. For all the curves 
q = 5 .  

ing of the magnetic sublevels at I, = I c ,  where I, corre- 
sponds to the Stark shift, which is equal to 6: 

At lo >Ic  the magnetization can reverse sign. The parameter 
~ q ( 1  + A /O ) for curve 2 is equal to 4, which corresponds to 
Eq. (18) that describes adiabatic inversion of the levels. If the 
parameter c2 approaches - 1, the behavior of Mz(Io) 
changes (see curve 3). At such values of 6, we have 
?rq(l+ A /O ) 5 1 and the magnetization is described by the 
Landau-Zener formula (19). It can be seen from Fig. 2 that 
the magnetization-inversion region is the section I, 
<Io  < I  ', . At I, < I, and I > I ', there is no inversion. This 
M, (I,) dependence is understandable. At I, <Ic  there is still 
no crossing, and at I, >I1 ,  a nonadiabatic jump through 
resonance takes place-the level-crossing time is too short 
for a transition to take place. The value of Itc is easy to 
estimate. For relation (20) it is equal to 

The dependence of the magnetization on the degree of 
circular polarization at various field intensities is shown in 
Fig. 3. It can be seen that for each I, the magnetization is 
reversed in a definite region of values of c2, i.e., at cy' 
< lz < 6 $'I. The value 6 $" corresponds to a polarization at 
whichI, is equal to I, (and then A = 0), while c2 < 6 :" corre- 

FIG. 3. Crystal magnetization in a ground triplet state vs the degree of 
circular polarization of the radiation at a fixed intensity: I-PV = 5, BI,,/ 
6 = 1 ;  2 4 7  = 5, BI,,/6 = 6; 3-PT = 20, BZd6 = 6. The dashed line 
marks the value of 6:'"' for curve 2. 
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sponds to a nonadiabatic jump through the resonance. There 
is thus a circular polarization f  corresponding to the max- 
imum inversion. Estimates for the first case considered 
above (the intermediate level, r3) yield 

In the more general case of arbitrary relations between the 
parameters 0 ,  x, and A the main features of the behavior of 
the magnetization remain the same, but the dependence on 
the radiation polarization becomes more complicated. 

4. QUARTET GROUND STATE 

Crystals in which the ground state of the impurity ions 
is are quartet are, e.g., Cs2ZrC1,: Pa4+, MgO: Er3+, CaF,: 
Pr2+. In this case the crystal magnetization is determined by 
the sum of magnetizations of two pairs of magnetic sublev- 
e l ~ ,  (3/2, - 1/2) and (l/2, - 3/2), which are mixed by the 
optical radiation. In this case 

Here 

are the resultant detuning from resonance and the Rabi fre- 
quency for the sublevel pairs (3/2, - 1/2) and (l/2, - 3/2) 
respectively. The character of the dependence of each term 
on the radiation parameters was investigated in the preced- 
ing section. A feature of this case is that the level crossing in 
these pairs sets in, generally speaking, not simultaneously, 
and the parameter av(1 + A /a ), which determines the be- 
havior of the value of each term, can have different values 
corresponding to different regimes of inversion (or absence 
of inversion) for each sublevel pair. 

Let us consider in greater detail the concrete situation 
of an intermediate resonant doublet. The matrix elementso, 
x, and A satisfy here the relations2 x2  = A = 4 0 2. If both 
parameters + a + Pf,>O, there is no crossing and the mag- 
netization tends to zero or to a certain equilibrium value as 
IO+m.  For noticeable magnetization inversion it is neces- 
sary that the crossing take place in both doublets (3/2, - 1/ 
2) and (1/2, - 3/2), i.e., at f a + Bf, > 0. Therefore in 
plane-polarized light (f, = 0)  inversion takes place in only 
one doublet and the magnetization reversal effect is notice- 
ably lowered by the second pair of sublevels. The situation is 
similar if a > of2. The Mz(Io) dependence for this case is 
shown in Fig. 4a. It can be seen that inversion takes place for 
the level pair (1/2, - 3/2), and the total magnetization does 
not reverse sign. 

In addition to presence of crossing in both doublets, 
magnetization reversal calls for the crossing of the inversion 
region to take place on the I, axis and that the condition 

'l- 

FIG. 4 .  Dependence of  the magnetization on the radiation intensity for 
crystals with impurity ions whose ground state is a quartet (solid line). The 
dashed lines mark the dependences of double the values of  the magnetic 
moment o f  the component doublets: a-6, = - 0.9, a /@ = 1 ,  TT = 20; 
b-g,= -0.999,a/@=0.15,~~=20;~-l,= -0 .99,a /@=0.1 ,  
PV = 20. 

~ v ( l  + A /a ) 5 1 be satisfied at least for one of the doublets. 
This means that the inequality a( 06, must be satisfied for 
one of the doublets. It can be seen from Fig. 4(b) that despite 
the presence of doublets in both doublets, the total magneti- 
zation does not reverse sign. The curve on Fig. 4(c) corre- 
sponds to satisfaction of the two aforementioned conditions. 
We have here adiabatic inversion for both problem in ap- 
proximately the same region of values of I,, and consequent- 
ly the total magnetization reverses sign. 

We can analyze similarly the dependence of the total 
magnetization on the degree of circular polarization; a typi- 
cal plot of M,(f,) is similar to that shown in Fig. 3. Notice- 
able magnetization inversion takes place only if the inversion 
regions on the axis are approximately the same for both 
doublets. In analogy with the case of triplet levels, there is a 
degree of circular polarization f im' at which the magnetiza- 
tion is a maximum. 

5. INHOMOGENEOUS BROADENING 

The foregoing analysis corresponds to ideal crystals in 
which all the impurity ions are under identical conditions. 
However, by virtue of the inhomogeneity of the impurity-ion 
distribution in the crystal and of the crystal-lattice distor- 
tions, the local fields are different for different ions. In first- 
order approximation this phenomenon is usually described 
by introducing inhomogeneous broadening. We assume 
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FIG. 5. Magnetization of an ideal crystal with triplet ground level of the 
ions vs the splitting 6: akadiabatic regime, = - 0.9, aq* = 5,2- 
l2 = - 0.9, q, = 20; bblandau-Zener regime of inversion 1-ffq, 
= 20, l2 = - 0.99; 2 7 ,  = 20, l2 = - 0.999. 

hereafter that the inhomogeneous broadening is due to in- 
homogeneity of the magnetic field B in the crystal, and since 
the constant magnetic field enters via the detuning 6, in- 
homogeneity of B corresponds to a distribution of 6 in ac- 
cord with a certain law near a mean value So. For the sake of 
argument we put So > 0. Usually the inhomogeneous broad- 
ening is approximated by a Gaussian distribution. We thus 
obtain for the magnetization of the crystal 

g(6-60)'=n-'h~2 exp [- (6-60)2T,2], (22) 

where T; ' is the magnitude of the inhomogeneous broaden- 
ing. 

We note that if T; is comparable in magnitude with 
the sublevel splitting So in the magnetic field, it is incorrect 
to use Eq. (21), since it takes into account only the local field, 
but not its spatial orientation, which becomes an important 
factor in the case of a large inhomogeneous width. We shall 
assume hereafter that SOT2> 1. It can be seen from (21) that 
the resultant magnetization of the crystal is determined by 
the integral of the overlap of the areas under the distribution 
line and the dispersion curve that gives the dependence of a 
magnetic ideal crystal on the sublevel splitting, M,(6 ). We 
consider this dependence in greater detail, confining our- 

selves to the triplet case. 
The dependence of M, on 6, just as on I,, is determined 

by the relations between the parameters of the problems. 
Since we are interested in the case of level crossing, we as- 
sume that p, < 0. Of importance for the dependence of M, on 
6 is the parameter 7, = S,r (where S, is the resultant Stark 
shift of the sublevels), which plays the role of the adiabaticity 
parameter. At 7, > 1 it is possible to separate in the depen- 
dence of M, on 6, two characteristic regimes, adiabatic at 
gs (1 + A /O ) > 1 with a magnetization maximum at 6 -0, 
and a Landau-Zener regime if p,(l + A /I2 ) 5 1, with a max- 
imum of the magnetization at 6 = - p26,. The dispersion 
curves corresponding to these regimes are shown in Fig. 5. 
Understandably, if 7, is at the boundary of the inversion 
region, the inhomogeneous broadening can substantially de- 
crease or cover up completely the magnetization inversion. 

To calculate (M, it is necessary to substitute in (21) the 
formula (14) for M,(S ). The resultant integral can be calcu- 
lated only numerically. We shall consider the role of the 
inhomogeneous broadening in the limiting case of the adia- 
batic inversion regime, when q, ) 1 and 6, =: - 1, so that 

The magnetization can thus be represented by a step func- 
tion. The integral (21) can here be calculated exactly: 

Here @ (x) is the probability integral.* 
Figure 6 shows the dependence of the magnetization 

(M,)/M?' on 6,JSs. It can be seen that if 6, T, 5 1, i.e., the 
Stark shift is within the limits of the inhomogeneous width, 
the effect of magnetization inversion becomes strongly 
smeared out, since there is no inversion on the wings of the 
inhomogeneous line. If, however, 6, T, > 1, the inhomogen- 
eous broadening smooths out the step. The width of the 
smearing region is - T; '. The maximum magnetization re- 
versal of the crystal is in the region So zS,/2 and amounts to 

Since @ (2) z 1, we can state that total reversal of the crystal 
magnetization can be obtained already at 6, T2=:4 and when 
the conditions for the inversion of the sublevel populations is 
satisfied. An estimate of the radiation intensity needed to 
reverse the magnetization yields I, - 10' W/cm2 at a charac- 
teristic inhomogeneous broadening T ;  ' 5 0.1 cm- '. 

"In magnetic fields B- lo4 G this condition is satisfied at .r> lo-" sec. 

FIG. 6. Crystal magnetization with allowance for inhomogeneous broad- 
ening: 1 4 ,  T, = 1; 2 4 ,  T, = 2; 3 4 ,  T, = 10. 
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