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We investigate the effect of interaction between electrons in disordered conductors of arbitrary 
dimensionality on the temperature and field dependences of the magnetic susceptibility and of the 
specific heat. We show that in the presence of repulsion between the electrons the temperature 
and field dependences of the magnetic susceptibility of the conduction electrons imitate the 
Curie-Weiss law. The specific heat contains, besides the term linear in temperature, contributions 
that are not analytic in the temperature and depend on the effective dimensionality of the sample. 
We study the effect of spin scattering of the conduction electrons on the thermodynamics of 
disordered conduction. The entire analysis is valid in the temperature Tr/fi < 1 and in classically 
weak magnetic fields w,r < 1, where r is the momerltum relaxation time and w, is the cyclotron 
frequency. 

PACS numbers: 75.30.Cr, 65.40.Em, 75.40.D~ 

1. INTRODUCTION 

It was shown in Refs. 1 and 2 that interaction between 
electrons in a disordered metallic system leads to anomalies 
in the state density, and this leads in turn to anomalous tem- 
perature dependences of thermodynamic quantities such as 
the specific heat and the magnetic susceptibility. This per- 
tains to systems of any dimensionality, three-dimensional' 
as well as two-dimen~ional.~,~ In Ref. 3 account was taken of 
the effect of interelectron interaction on the magnetic sus- 
ceptibility of the conduction electrons in the two-dimension- 
al case, and it was shown that the magnetic susceptibility has 
a logarithmic temperature dependence. In the localized 
state, the Hubbard repulsion increases the magnetic suscep- 
tibility with decreasing temperature. This phenomenon 
manifests itself also in the delocalizcd state. In Ref. 4 were 
investigated both the temperature and the field dependences 
of the paramagnetic susceptibility in the two- and three-di- 
mensional cases and it was shown that the susceptibility in- 
creases with decreasing temperature. 

The present paper is devoted to the study of the influ- 
ence of the interaction between the electrons in disordered 
conductors of arbitrary dimensionality on the temperature 
and field dependences of the magnetic susceptibility and on 
the specific heat. It is assumed throughout that p,l>fi, 
wherep, is the Fermi momentum and Iis the mean free path 
for scattering by impurities or defects. The entire analysis is 
valid at temperatures Tr(fi and in classically weak magnetic 
fields w , ~ ( l ,  where these corrections describe the field and 
temperature dependences of the observed quantities 
(w, = eH/m*c is the cyclotron frequency, m* is the effec- 
tive mass, and 7 is the momentum relaxation time. 

In Sec. 2 we derive the corrections to the thermodynam- 
ic potential for the interaction of the electrons in disordered 
conductors in a magnetic field. Account of the interaction is 
taken in both the diffusion and the Cooper channels. The 
main contribution to the orbital susceptibility comes from 
the electron interaction with the opposite spins in the Coo- 
per channels. 

The influence of superconducting fluctuations on the 
temperature dependence of the orbital magnetic susceptibil- 
ity was investigated in Refs. 5 and 6 both near and far from 
the superconducting-transition point, in pure as well as in 
dirty metals. It was observed6 that substantial corrections 
are needed not only in substances with superconducting 
transition, but also in nonsuperconducting materials. 

The orbital magnetic susceptibility can be represented 
in the form 

1 - ano 
6~ = - Po2 5 AY ( T ,  E) - d ~ ,  

3 a& 

where a, = 2eD /c is the effective magneton for a particle 
with charge 2e and mass fi/2D, while Av(T,&) is the correc- 
tion to the state density, necessitated by the interaction in the 
Cooper channel7; D is the electron diffusion coefficient. The 
effective magneton 8, is much larger than P * = &/2m*c 
relative to the parameterp,I /fi) 1, and therefore, despite the 
smallness of the correction to the state density, S x turns out 
to be large enough: 

where a is the film thickness, x0 = - (+)P *'vo is the dia- 
magnetic susceptibility of the electrons, d is the effective di- 
mensionality of the sample,' vo is the single-spin state den- 
sity, ( x )  is the Riemann zeta function, 

w, is the Debye frequency of the phonons, In y = c = 0.577, 
and 2,  is the effective electron-electron interaction con- 
stant' determined both by the virtual-phonon exchange, 
A,, , and by the Coulomb repulsion, A ,,,, (Ref. 7) 
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( E ~  is the Fermi energy). For free electrons, when the recip- 
rocal Debye radius x is small compared with the Fermi mo- 
mentum ( x q F )  we have 

It can be seen from (2) that the total orbital magnetic 
susceptibility of the electrons decreases with increasing tem- 
perature in the case of electron repulsion (A, > 0), thus imi- 
tating the Curie-Weiss paramagneti~m.~ We note that at 
d = 2 we have 6 x (T)>x,  if 1-a, and at A, > 0 the orbital 
susceptibility is paramagnetic. 

In a magnetic field 1 / ~ > f 2 ,  )T/f i  we have 

where 

4DeH 2$oH 
Qx=-=- 

R C  t i '  

In the derivation of (5) it was assumed that 

/iQM>gpBH=tiCOs 

(g is the Land6 factor of the conduction electron and 
p, = W 2 m 4  is the Bohr magneton). 

We note that according to (5) and in a magnetic field the 
correction to the orbital susceptibility imitates at A, > 0 the 
free-spin susceptibility. 

The relatively large orbital susceptibility is due to the 
fact that the probability that particles located at given point 
will interact depends strongly on the magnetic field. This 
sensitivity compensates to a considerable degree the allot- 
ted-phase-space smallness due to the small fraction of the 
trajectories on which the particles acquire the equal phase 
differences and which lead to an effective increase of the 
contribution of the interaction energy to the thermodynamic 
potential. 

A distinguishing feature of the orbital susceptibility is 
its strong anisotropy: for a field parallel to the film plane the 
magnetic susceptibility is much smaller than for a perpendi- 
cular field: 

where vF is the Fermi velocity. 
We note that when a becomes of the order of 

L ,  = (D /T)'12 expressions ( 5 )  and (6) in two-dimensional 
space become of the same order and agree in order of magni- 
tude with the magnetic susceptibility in the three-dimen- 
sional case [expression (2)]. 

The orbital magnetic susceptibility of thin wires de- 
pends on the orientation of the magnetic field relative to the 
wire axis and on the shape of the cross section: 

where a = 1 / 8 ~  for a round wire at H parallel to the wire 

axis, a = a/12B for a rectangular wire with H Ilb, a and b are 
the transvP* .: dimensions of the wire. 

When b becomes of the order of L .  expression (7) coin- 
cides in order of magnitude with (6) ,  and at a -L, the tem- 
perature dependence of a x ,  drops out and Eq. (7) agrees 
with (5) apart from the logarithm. 

Besides the orbital susceptibility, there are quantum 
corrections to the spin s~sceptibility.~ In a weak magnetic 
field we have at dilferent dimensionalities 

FJX:d) =FJXSd)' +8Xtd)D 

( [ ln ( T , T / ~ )  1 - A"=l) ID Tr) d-2. 
In ( T , / T )  t i '  

Here S x ' 2 )  and 6 x ( I '  are the susceptibilites per unit area and 
per unit length of the film, respectively. Contributions to (8) 
are made both by the interaction of the electrons in the Coo- 
per channel, S x (with small total momentum) and by the 
interaction in the diffuse channel x f ' C '  (with small differ- 
ence between the momenta of the interacting electron and 
hole). In the latter case a substantial role is played by elec- 
tron-hole interaction with a summary spin j equal to 1 ;  
A ('= ') is an effective dimensionless constant [A ('= I'  < 0 for 
electron repulsion], which can be expressed in the general 
case in terms of the Fermi-liquid amplitude of the interac- 
tion. Expression (8) goes over into the expressions given in 
Ref. 4 for the susceptibility at a small interaction constant in 
the Cooper channel, when A"= I' = - W ,  = - F. 

Unlike the orbital, the spin susceptibility for low-di- 
mensionality samples is isotropic in weak magnetic fields. 

In the case of electron repulsion the spin suceptibility 
also increases with decreasing temperature and decreases in 
the case of attraction. 

In addition, the spin susceptibility of interacting con- 
duction electrons depends significantly on the magnetic field 
in the region of relatively weak fields: 

1) The diffusion contribution to the susceptibility be- 
gins to depend on the magnetic field when h, = gpBH 2 T. 
In this case 6 ~ : ~ ) ~  becomes independent of temperature, and 
the dependence on the magnetic field takes at h, >T the 
form 

(d)D - 1 
6 ~ .  - (gpB)Zh(J=') 8n'D h i  ro,, d=2; (9) 

6X.(d)D = (gpB)zh(~==f)w: /g1Tnyy2, d= 3. 

2) The Cooper contribution to the susceptibility in the 
three-dimensional case, and in the two-dimensional if the 
magnetic field is perpendicular to the plane of the film, de- 
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pends strongly on H if m, 2 T. It is impossible to separate 
exactly the spin and and orbital susceptibilities in this field 
region. If, as is usually the case, fl,/w, -DmJgfi, 1, the 
orbital part of the susceptibility (5) is much larger than the 
contribution made to the susceptibility by the interaction in 
the Cooper channel and due to the spin. In this case the total 
correction to the magnetic susceptibility is equal to the sum 
of the contributions (5) and (8) or (9), depending on the ratio 
of fiw, and T. 

3) In the one-dimensional case and at d = 2 if the mag- 
netic field is parallel to the plane of the film, the dependence 
of on H is determined by the relation between w, and 
T; (at d = 1 we have T; ' = 4aDe2SH '/c2fi2, where S is the 
wire cross-section area, and in the two dimensional case 
T; = De2H 2a2/3~2fi2, Ref. 8). If T& 'so, T, the Cooper 
contribution to the magnetic susceptibility is determined by 
the approximations (6)  and (7). In the region w,>T,r; the 
most substantial is the Cooper contribution to the spin sus- 
ceptibility 

Besides the usual (linear in temperature) electron con- 
tribution to the specific heat, there exist also corrections due 
to the diffusion as well as the Cooper channels: 

The correction connected with the interaction in the diffu- 
sion channel is of the form 

(10) As for the diffusion contribution to the specific heat, it 
becomes strongly dependent on the magnetic field if 
fiw, 2 T. The magnetic-field-dependent part of the diffusion 

n T 
6ciC' ( H )  = - 1 

d=l, o.t,<l. 
3 f i  ( D / t H )  '" In ( T , ~ , l k )  ' 

Here S&" is the specific heat per unit film area at d = 2, and 
the specific heat per unit length of the wire at d = 1. 

The first term in the square brackets in (1 1) describes 
the contribution from the interaction of the electron and the 
hole with zero total spin. We call attention to the fact that 
this contribution is universal-independent of all interac- 
tion constants. This is due to the Coulomb character of the 
electron interaction at large distances. 

The correction due to the interaction in the Cooper 
channel takes at d = 3 the form 

hc:" = - 
1 4 )  T 0324 (T ) , 

In(T , /T)  3212 n I- ( i i ~  ) - l ( 1 )  ilD 

(12) 
and in the two-dimensional case 

For a wire 

When a magnetic field such that m, > Tis applied, the 
Cooper part of the correction to the specific heat becomes a 
linear function of the temperature, but depends also substan- 
tially on the magnetic field: 

(I-1/1?) ( i / 2 )  T62H'!' 
6ciC' (H)= - d=3; 

612  1n(Tc/hQH)D" 

(C) T 
(15) 

6cV ( H )  = -In 6Dh [ :",Fez;) 1, d=2. H I I ~  

(n is the normal to the plane of the film). If H l n  at d = 2 and 
in the one-dimensional case the dependence of the specific 
heat on the magnetic field is determined by the ratio of w, 
and r, I :  

( c )  In [ 2nT, min (T,, o.-') ] 
6 c v  (H) = -1n 

6Dh 
] , d=2, H l o ;  

In (T ,z / f i )  

correction to thespecific heat is due tointeraction of elec- 
trons from different spin subbands. At fiw, #T i t  takes the 
form 

T 6c.) ( H )  =h(j=f) - In zo,, d=2; 
24fiD 

(17) 

( D )  aCv = - LT , d=i. 
12,'2 (Do,)'" 

Measurement of the thermodynamic quantities for 
samples with low effective dimensionality is extremely diffi- 
cult. There exist, however, artificial systems (see, e.g., Ref. 9) 
comprising a large number of practically independent metal- 
lic filaments, with diameter on the order of several times ten 
angstrom. 

All the foregoing corrections to the thermodynamic 
quantitites change in the presence of spin scattering of the 
electrons: 

1) The diffusion correction to the susceptibility does not 
depend on Tand H at fi/t, , T, *,, where t, is the total time 
of the electron spin relaxation: 

rs is the time of relaxation on the magnetic impurities, and 
T,, is the time ofspin relaxation due to the spin-orbit interac- 
tion of the electron with an ordinary impurity. The magnet- 
ic-field-dependent part of the diffusion correction to the spe- 
cific heat also vanishes in this region. All that remains is the 
part c(F) connected with the interaction of electrons with 
zero total m ~ m e n t u m . ' ~  

2) All the corrections to the thermodynamic quantities 
on account of the electron interaction in the Cooper channel 
remain unchanged in the presence of a finite T,, . They are, 

891 Sov. Phys. JETP 57 (4), April 1983 Al'tshuler etal. 891 



however, independent of T and H in the presence of para- 
magnetic impurities if Wt, ) T,WH,NrH ,%, .' 

All the foregoing results can be obtained from the gen- 
eral expressions, derived in the remaining part of the article, 
for the thermodynamic potential. 

2. THERMODYNAMIC POTENTIAL OF DISORDERED 
CONDUCTORS 

Non trivial corrections to the thermodynamic potential 
in disordered conductors are necessitated only by the inter- 
action between the electrons. These corrections can be of 
two types. 

1. Due to the interaction in the diffusion channel, i.e., 
due to interaction in a channel with small momentum trans- 
fer q and low energy om. This effect is due to the enhance- 
ment of the interaction between particles because of the dif- 
fuse character of their motion. 

The equation for the diffusion is shown in Fig. 1. Be- 
sides the difference momentum q and the energy rn, the dif- 
fusion depends on four spin variables: the two-particle 
Green's function DaSvs (gom ) averaged over the random po- 
tential of the electron (with initial and final spin projections 
a and @ )  and of the hole (with initial and final spin projec- 
tions 6 and y). It will be convenient to expand this Green's 
function over states with specified combined spin j of the 
electron and hole and its projection M in the form: 

where Cg$)2 are Clebsch-Gordan coefficients. We took it 
into account that both the combined spin and its projection 
are conserved in the averaged two-particle propagator. 
Moreover, j and M are conserved in the two-particle Green's 
function even if no account is taken of the interaction 
between the electrons. This means in turn that the total cor- 
rection to the thermodynamic potential can be represented 
as a sum of contributions that describe the interaction 
between particles with total combined spin and its projec- 
tion. 

The equation represented by Fig. 1 can be written in the 
presence of a magnetic field in the form 

(I omI - D V t - ~ M o ,  sign om) D(isM) ( r ,  r', om, E,) 

S (r-r')  
=- e ( -E ,  (E,+ om) ) . 

2nv072 . . 
Here w, = gp,H is the Zeeman splitting and 

FIG. 2 

The diffusion corrections to the thermodynamic poten- 
tial are represented in first order in the interaction by dia- 
grams a and b of Fig. 2. These diagrams describe the diffu- 
sion contributions to the exchange energy and to the 
direct-interaction energy, respectively. Owing to the long- 
range character of the Coulomb interaction, first-order per- 
turbation theory is insufficient. We consider first the diffu- 
sion contribution to the exchange energy. To this end it is 
necessary to take into account besides diagram a also the 
sum of the diagrams c. As a result the contribution of the 
diagrams a and c to the thermodynamic potential can be 
written in the form 

-- '"" -- r J (dq)1n(l+va0) ( q ) n ( q ,  om)) .  121) 
V d  2 

Iraml<l 

Here (dq) = d dq/(2~)d, V3 is the volume of the sample, V2 is 
the area of the sample, 17 (q,om ) is a polarization operator 
that takes at wmr  < 1,Dq2r < 1 the formlp2 

n ( q ,  a,) =2v0Dq2/( I om 1 + D q 2 ) .  (22) 

Next, V, (O)(q) is the unscreened Coulomb potential: 

vJO' ( q )  =he2/q2, via' ( q )  =2ne2/l ql . (23) 

Changing in (21) from summation over the imaginary 
frequencies to integration over the real ones and discarding 
the inessential constant that is independent of temperature 
as well as of the magnetic field, we obtain 

6 ~ . ' , ~ '  1 - o 
- = --I d o N  ( w )  ( d g )  arctg - 

Vd n 
0 Dq2 

2 - D q2 
= - J d o w ~ ( w )  5 ( d ~ )  ( D  q2)'  +o.. (24) 

E,, + 0, I n d o  

Here N(w) = I/(exp(w/T) - 1). 
We note that expression (24) does not contain the elec- 

& 
,I 
d 

tron charge. Moreover, (24) describes fully the diffusion con- 
Y Y tribution to the energy, due to the interaction having zero 

FIG. 1 total spin 6 0  LC) = 6 0  [:1, ,,, . 
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We consider now the diffusion contribution to the ener- 
gy of an interaction have j = 1. In the lowest order of pertur- 
bation theory it is determined by diagram b of Fig. 2. To take 
the Coulomb screening into account it is necessary to add to 
this diagram the sum of the series d. The combinatorial coef- 
ficient corresponding to each of these diagrams is equal to 
unity, so that it is sufficient to consider1) the contribution of 
diagram b, taking the wavy line to mean the screened Cou- 
lomb interaction. The same result is obtained by using the 
expression that connects the thermodynamic potential with 
the two-particle Green's function. " Therefore 

where 

F=- ( d p )  ( d p ' )  Vd ( p - p ' )  1 G ( p r ,  0) 1.1 G (p, 0) 1 ' 
2TC%0~2 

is the characteristic constant of the interaction in the diffu- 
sion channel. In the purely two-dimensional case2 

In the remaining cases 

Expression (25) describes the contribution of the interaction 
with j = 1 to the thermodynamic potential only at small I;: 
In the general case it suffices to replace F by - /I ' j =  'I, an 
effective constant that can be expressed in terms of the Fer- 
mi-liquid amplitude of the interaction. 

Changing again from summation over the imaginary 
frequencies to integration with respect to the real ones and 
discarding the inessential constant, we obtain 

The sum of expressions (24) and (26) yields to total thermo- 
dynamic-potential correction connected with the interac- 
tion in the diffusion channel 

(In the three-dimensional case the integral with respect to 
(dq) in (27) diverges at the upper limit. The upper limit must 
be taken to be I - ', inasmuch as at ql > 1 the diffusion approx- 
imation does not hold. We shall not take into account the 
resultant contribution to Sf2 (Dl, which is quadratic in T and 
does not depend on H, since it leads only to an insignficiant 
change of the constant in the usual linear specific-heat law.) 

We note that the entire dependence of the diffusion cor- 
rection to the thermodynamic potential from the magnetic 

field enters only via the Zeeman splitting w, . Therefore the 
diffusion correction contributes to the spin susceptibility but 
not to the orbital susceptibility of the electron gas. 

We consider now the effect of the electron spin scatter- 
ing on the thermodynamic potential. The spin-dependent 
part of the electron scattering by the impurity consists of two 
parts: 

where p and p' are the momenta of the electrons before and 
after the scattering and S is the impurity spin. The spin- 
relaxation times are 

l/zs=2nz~,N, I u, 12S ( S f  I ) ,  

where N, is the concentration of the paramagnetic impuri- 
ties and Ni is the total impurity concentration. 

Direct summation of the ladder diagrams lead to the 
following expression for the diffusion pole: 
~ ( j .  M )  q )  = [ ~ ~ V ~ T ~ ( I  0, I +Dq2+j/t8-iMoa sign om)]-', 

(30) 
where t ; ' = +(rs- + r; I ) .  

The quantity D ( j =  = DaSm describes the fluctuations 
of the electron density and, as can be seen from (30), does not 
depend on the spin relaxation. On the other hand, the quan- 
tities D "= lSM) describe the fluctuations of the off diagonal 
elements of the density matrix, and therefore are damped in 
the presence of spin relaxation.1° As a result, the spin scat- 
tering of the electrons does not affect that part of the thermo- 
dynamic potential which is connected with the interaction at 
j = 0. At the same time, at Wt, > T,&, the contribution 
made to SO ' D )  by the interaction with j = 1 becomes inessen- 
tial. 

The complete expression for the diffusion correction to 
the thermodynamic potential is of the form 

(=') 
6Q(1=1,3,) (T, t,, Mo,) 

vd +C v d  
1 

I ,  .%I 
V d  

. a C = O . i l  

(31) 
where 

Expression (32) can be written in the form 

In the case of strong spin scattering of the electrons, 
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fi/t ,)  T , h ,  only 6 0  [YL o) leads to nontrivial corrections to 
the thermodynamic quantities, while 6 0  171 ,, can be disre- 
garded. 

In the absence of spin scattering, if fi/ts (h, 4 T, then 

If, however, h, > T )Nts, we have 

2) We consider now the interaction in the Cooper chan- 
nel. In first-order perturbation theory, the corrections to the 
thermodynamic potential are represented by diagrams a and 
b of Fig. 3. We note right away that the Cooper contributions 
to the exchange energy (diagram a) and to the direct-interac- 
tion energy (diagram b) cancel each other for particles with 
identical spins. Allowance for higher orders in the Cooper 
channel make it necessary to take diagrams c and d into 
account. As a result we have 6 

where q and w, are respectively the combined momentum 
and the combined energy of the interacting aprticles, q, is 
the component of q in the H direction, the constant Ac is 

FIG. 3 

given by Eq. (3), and 

T no= In- -$ (5) 
OD 

In the one-dimensional case and in the two-dimensional if 
Hln 

where $( x) is the logarithmic derivative of the gamma func- 
tion. 

Thus, the spin-orbit scattering does not influence the 
interaction between the electrons in the Cooper channel, 
while the scattering by the paramagnetic centers, as will be 
shown below, suppresses the corrections to the thermody- 
namic potential that are necessitated by this interaction (for 
the same reasons for which it suppresses the superconductiv- 
ity). 

From (36) and (37) we obtain 

AS2, Ro, f i  
d=3; ' 1  Rw, tr I I (38) 

( 0 , - ( -  d=l. 
nT nT T, T,, 

Here 

and the function f, is defined by the relation 

TABLE I. Values of the coefficients a,(y) .  
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This integral converges at the lower limit if y > 2. The values than the remaining ones (we denote this quantity by x ,  ) it is 
of these functions at y = - 5 and 4 will be understood in the convenient to write the expression for f ,  in the form 
sense of analytic continuation in the parameter y, which cor- 2-7 

responds to discarding the inessential constant contribution f7 (XI,  x2r ~ 3 )  =xi [at (y) +f:" (xixzx,) I. (41) 

that is linear in T, and at d = 3 also the contribution qua- Expressions for f  t1 and for the coefficients a, are given in the 
dratic in the temperature, to the thermodynamic potential. Appendix. 

If one of the quantitites x, = 1, x , ,  x,, x, is much larger In the two-dimensional case 

m 

8&Lc' T 2  cos (ho,t/n T )   fie^^ -- 
at 

v, -- jT l n ( T c t / n T ) (  s h 2 f  ail T 
- 
n 

Here Hi, and H, are the projections of the magnetic field respectively on the plane of the film and on the normal to it. 
Those contributions to Sf2 LC' which are of no interest were subtracted from (42) explicitly. Expression (42) at 

T *(fi/i/7 can be rewritten in the form 

Here T * is defined by (39). The values i = 0, 1,2,3 are deter- The coefficients a, (y) can also be calculated. Their nu- 
mined by which of the quantities in the right side of (39) merical values are listed in the table. 
coincides with T *. The coefficients ai are equal to 

Using (35) and (38)-(43) we can ~~Correspondingtoadiagramofordernisafactor l/n,butinthiscaseitis 
simple differentiation all the corrections to the thermody- necessary to fix one of the interaction lines.'' Since this can be done in an 

namic quantities written out above nth order diagram (Fig. 2d) in n different ways, a factor equal ton appears 
and cancels in fact the usual combinatorial factor. 

APPENDIX 

The functions f( ']  can be expanded in powers of 
x/xi(  j#i) and are of the form 

ZY xcos -, x2~1 ,x3 ,x , ,  
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