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A ferromagnetic metal is considered on the basis of the Hubbard model with strong correlation 
and with almost half-filled band. Equations of motion are obtained for the interacting vacancion 
(quantum) and spin (classical) subsystems. The action of the spin subsystem on the vacancy 
motion recalls the action of an electromagnetic field and is described by a scalar and vector 
potential; the vacancies influence the spin subsystem via the density and velocity. The equations 
of motion for the spin density are obtained from the least-action principle. 

PACS numbers: 75.10.L~ 

1. It is known, that one of the possible causes of the onset 
of magnetic order is the electron correlations in narrow 
bands, described in the simplest case by the Hubbard model 
(see, e.g., the review of Khomskiil). Thus, in the limit of 
strong correlation and divisible (alternating) lattices the 
model yields ferromagnetism for an almost half-filled band 
(the number of electrons is somewhat larger or smaller than 
the number of lattice sites for s-type centers). These are pre- 
cisely the systems dealt with here. 

The starting point is the equivalent Hamiltonian ob- 
tained in a preceding paper2 [see Eq. (16) there; equations of 
that reference will hereafter be designated, e.g., (I.16)]. The 
equivalent Hamiltonian is of the form 

h 

where a and S are respectively the operators of the vacancy 
(meaning the shortage of an electron) and the pseudospin. 
This Hamiltonian is equivalent to the Hubbard Hamiltonian 
with infinite repulsion by the center under the condition that 
the eigenvalue of the operator 

is equal to zero. 
In the equivalent Hamiltonian the different degrees of 

freedom (spin and coordinate) of the electron are separated: 
the electron is replaced by vacancies (zero-spin Fermi parti- 
cle) and pseudospins that coincide with the spin at the site 
occupied by the electron. It  is clear already from the form of 
the equivalent Hamiltonian that an interaction takes place 
between the coordinate and the spin. This interaction, of 
course, has nothing in common with the usual spin-orbit 
interaction. A simplest manifestation of this interaction (the 
influence of the vacancy flux on the spin wave) was discussed 
in Ref. 2; we can go farther and deduce from the results of 
Ref. 2 an expression for the energy of a system of vacancies 
and rnagnons: 

The energy is measured here in units of 2t and we have left 
out an inessential constant term that depends only on the 
total number of vacancies; a quadratic approximation is 
used for the energies of the vacancy and the magnon; f, and 
f, are the respective distribution functions of the vacancies 
and the magnons; the interactions of the magnons with one 
another is not taken into account. 

Expression (3) gives some idea of the mutual influence 
of the magnons and the vacancies; however, for example, the 
action of a spin wave of finite amplitude (magnon conden- 
sate) on the vacancy subsystem cannot be ascertained with 
the aid of (3) if only because this expression does not take the 
magnon interaction into account. 

Thus, whereas the influence of the vacancies on the spin 
wave (via the vacancy flux2) is understandable in general out- 
line, the reaction of the spin wave on the vacancy motion 
remains unexplained. The answer to this question is the main 
taskof the present paper. In addition, we refine the equations 
of motion of the spin subsystems, which are known only for a 
homogeneous vacancy flux [see (1.42)-(I.44)]. 

2. We shall be interested exclusively in sufficiently slow 
spatial changes of the magnetic moment, without restric- 
tions on its deviation from the equilibrium (ordered) value; 
zero temperature is implied, so that the magnetization is a 
maximum at each point (all the electron spins in a small 
volume have the same direction), but its direction varies 
from point to point. With respect to spin this is a typically 
classical (not quantum) picture, so that the magnon concept 
offers little and is not used here. 

The first step is the use of a trial function. We consider 
for the system a wave function of the form 

where @, depends only on the vacancy occupation numbers. 
The function @ satisfies the additional condition N2 = 0. At 
a site free of vacancies the spin direction is specified by the 
wave function (r;), with u ,  and v, varying, in accord with the 
foregoing, slowly from site to site. The following normaliza- 
tion condition is implied: 
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A function of the type (4) cannot be exact, but it turns out 
that with the aid of the obtained approximate expressions it 
is easy to obtain correct ones. 

Averaging of the Hamiltonian (2) over the state (4) 
yields 

The problem is now simpler-there are no spin operators in 
the effective Hamiltonian Zc . 

Before simplifying (7) further by using the slowness of 
the functions u and v we consider, in order to understand the 
end purpose, the simple case of a plane spin wave: 

where u is real. Transforming to the momentum representa- 
tion using the usual formulas (I.22), we obtain in place of (7) 
for the case (8) the expression 

where ~ ( p )  is the energy of the vacancy in the absence of the 
spin wave. The energy of the system described by the Hamil- 
tonian (9) can be written in the approximation quadratic in 
the momenta in the form 

where, just as in (3), expression (1.24) is used for ~ ( p ) ,  the 
energy is measured in units of 2t, and an inessential constant 
has been left out. 

The main difference between (10) and (3) is the absence 
of the factor (1 - yo)/(l + yo) in the last term. This is due to 
the approximate character of the trial function. The correct- 
ed expression for the energy should be 

and agrees with (3) at small spin-wave amplitude (u2 -+ 1). 
A few words on how to corroborate (1 1). The trial func- 

tion (4) yields an incorrect value of the energy (10) because 
the function (4) fixes the spin of each site; in fact this is not so: 
when a vacancy jumps from site n to site n', the spin at the 
site n turns out to be that of site n' prior to the jump, and no 
other. If all the same we single out some direction in site n by 
specifying a spin function (::), it is necessary to take into 
account in the n -+ n' vacancy jump the possibility of spin 
flip, inasmuch as the spin at site n turns out to have a wave 
function 

Inasmuch as the spin directions in neighboring sites differ 
little, I C21 4 1 and the spin flip can be accounted for by per- 
turbation theory. The result is Eq. (1 1). 

The contribution of the second term in (1 I), which de- 
pends only on the total number vacancies but not on their 
momentum distribution, can be interpreted as the energy of 
the spin wave. If we express the spin-wave energy in the 
usual form (1.43) and choose the constant such that the cor- 
rect small-oscillation frequency (1.40) is obtained, we get 
from (1.43) for the plane wave (8) the same result. 

Renormalization of the energy of the vacancies in the 
spin-wave field reduces to a shift in momentum space: 

In our case this is a negligible change; the situation is differ- 
ent in the case (discussed later) of a time-dependent spin- 
wave amplitude. 

We note that formula (11) is trustworthy, obviously, 
only in the limit of sufficiently large wavelength: 

where n, is the vacancy density. 
We proceed now to the general case of an arbitrary slow 

change of u, and v,. We expand in (7) the differences 
u,. - u, and 0,. - v, up to second order in R,. - R,, we 
change over to the momentum representation a, -+ a,, and 
assume the vacancy momentum small, as before. Leaving 
out the simple calculations, we present the final result in the 
form: 

%*-+xi, (13) 

Here, again, all the energies are in units of 2t, and an inessen- . 
tial constant is left out of Z e ;  summation over the vacancies 
is implied in (1 3), and the operator-energy part that depends 
on the coordinates of one vacancy is given by (14). The quan- 
tity $stands f%r the spinor $ = (:), and the matrix element of 
any operator B over the states $ and $' is understood in the 
standard manner: 

[the summation is over the spinor indices; for convenience 
the matrix element designation is different here from that of 
in (6)]. The condition (5) now takes the form 

It is easy to verify that U>O. 
Just as (lo), Eq. (14) is approximate; it can be refined in 

analogy with (1 I), so that in place of (14) we have 
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The meaning of this operator is clear from the manner 
in which it was derived: when summed over all vacancies and 
averaged over the wave function of .the vacancy system, it 
yields the energy of the entire system. 

3. We proceed now to derive the equation of motion for 
the vacancies. At first glance it may appear that the equation 
of motion of the vacancy in a given spinor field $ is simply 
the Schrodinger equation with the Hamiltonian (18). In fact 
this is not quite so. The operator (18) has a bearing on the 
energy of the entire system (and is conserved), whereas we 
are interested in the Hamiltonian of the vacancies at a speci- 
fied motion of the spins (the energy of the vacancies is not 
conserved in the general case). The doubt seems nevertheless 
somewhat strange; after all, the Hamiltonian of the system is 
the sum of the operators (18), and it would be natural to 
assume (18) to play the role of the Hamiltonian of one va- 
cancy. There is, however, another reason why (18) will not 
do for this role, and causes us to grope for a correct expres- 
sion. Assume for a minute that (1 8) is the Hamiltonian of a 
vacancy. It follows from the form of this operator that the 
action of the spinor field on the particle recalls the action of 
an electromagnetic field. Understandably, the effective 
"electric" and "magnetic" fields can be connected only with 
the spin direction at each site, and this direction is not 
changed by the gauge transformation 

where e, is an arbitrary real function of the coordinates and 
the time. For example, at q5 = elp(:) there should be no fields 
at all. If the effective fields acting on the particle are not to be 
altered by this transformation, we have no choice but under- 
stand the Hamiltonian of the vacancy in the given spinor 
field to be the following operator: 

where in contrast to (18) the scalar potential contains an ad- 
ditional term that ensures gauge invariance [we note that 
is invariant to the transformation (19)l. This is in fact the 
sought Hamiltonian of the vacancy in the given spinor field. 

Since this conclusion may see to be not fully corroborat- 
ed, we shall show how the same result can be obtained by 
another method (all the more since in this way a possibility 
arises of obtaining the equations of motion also for the spin 
subsystem). We shall attempt to write down the Lagrangian 
of the system, regarding the vacancies as classical particles. 
The Lagrangian L must certainly contain a part 

(the sum is over the particles) that corresponds to (1 8) in the 
classical variant. In addition there must be a part that de- 
pends substantially on $ in the sense that it does not vanish 

together with the number of vacancies. To find it, we consid- 
er the behavicr of the spins in an external magnetic field H; 
their energy is 

where 

p is the density of the number of vacancies, and it taken into 
account that the magnetic moment is proportional to the 
quantity (1 -p)S. The corresponding Lagrangian can be 
written in the form 

By varying the action with respect to $* we obtain for $ an 
equation of motion that is used subsequently to calculate 
a S/at; this yields the known precession equation [it must be 
assumed here that p is independent of time, since the va- 
cancy motion cannot be taken into account within the frame- 
work (23)l; in addition, from (23) follows also an expression 
for the energy 8,. All this confirms the correctness of the 
expression assumed for the Lagrangian (23). 

Thus, the Lagrangian of interest to us, of the entire sys- 
tem in the absence of external field, is 

1 I - y o  
2 l+y,, 

p [  (Vl!'', Vlf)  - 

where v is the average velocity of the vacancies; we used the 
slowness (12) of the spatial changes of $. It is easy to verify 
that (24) leads to a classical equivalent of (1 8); if we are inter- 
ested in the equation of motion of a vacancy in a given field, it 
suffices to separate from (24) the part that depends on the 
vacancy coordinates; such a Lagrangian leads precisely to 
the Hamiltonian (20) in the classical variant, thereby con- 
firming the conclusion drawn above concerning the meaning 
of (20). 

4. We proceed now to derive the equations of motion of 
the spin subsystem. We use here the least-action principle, 
which led in the simplest case (23) to a correct result. It will 
be seen that the equations obtained are valid also in certain 
other cases. 

Thus, taking (24) as the Lagrangian and varying the 
corresponding action with respect to $* we obtain the equa- 
tion 
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where 

We are interested only in those solutions of (25) which satisfy 
the condition (17). Such solutions indeed exist. To verify this 
it suffices to consider the equation obtained in the usual 
manner for the probability density ($*, $): 

Recalling the definition (15) of A, we transform J into 

J=pA [I- ($*, 9) l  -pV (9*, 9) - 
From the condition (17) on (27) we obtain 

i.e., simply the continuity equation for a vacancy liquid. This 
necessary condition turns out to be also sufficient. We verify 
by the same token that an aggregate of the solutions of inter- 
est to us is contained among the total set of solutions of (25). 

We show now how to obtain an equation for a physical 
quantity, the average spin S (22). Differentiating (22) with 
respect to time and using (25) we obtain for the component 
Sk. 

We note that this equation reflects the conservation of the 
total spin of the system, i.e., of the integral of the quantity 
(1 -PIS. 

Using the completeness of the orthonormalized func- 
tions 

h 

we transform the matrix element S, : 

after which we get 

h 

We now replace S, by the operator identity 

and write out fully the matrix element of the product of oper- 
ators in the usual manner (we again use the completeness of 
$3 4 1 9  

obtaining 

I,=-pSkv-pe,,l,Sl[ ($', S,g) (g', V9) + c.c.1 . 

Finally, adding in the square bracket the zero-value expres- 
sion 

Sln[($*y V$)+(V$*y $ ) I ,  
we verify that 

Equation (28) with allowance for (29) is in fact the 
sought equation of motion of the spin system. It can be re- 
written in the form 

(retention ofp( 1 in the first term seems an exaggeration of 
the accuracy). 

Atp = n, = const and V == 0 we obtain simply the Lan- 
dau-Lifshitz equation with only the exchange interaction 
(1.43) taken into account. In an arbitrary case the equation is 
generalized in trivial fashion to include an exchange interac- 
tion that depends on the coordinates and the time ( p # const) 
and, in addition there appears a supplementary term, deter- 
mined by the vacancy flux (V # O), the meaning of which was 
discussed in Ref. 2. 

We note that perhaps the most interesting is not so 
much the final result (28)-(30) as the method of obtaining it 
from the least-action principle and the intermediate result, 
namely Eq. (25) for the spinor $. It is also of interest that the 
motion of the spin liquid [see the first term in (29)] is ob- 
tained in natural fashion as a consequence of correct 
allowance for the interaction between the vacancies and the 
spins. Incidentally, the fact that the interaction depends on 
the velocity justifies the appearance of a vector-potential in 
the theory. 

5. Thus, we have solved the problem and obtained the 
equations for two interacting subsystems (vacancy ion and 
spin). The cause of the interaction is obvious-the jump of 
the vacancy is accompanied by a jump of the spin; when the 
vacancy moves along a closed contour the spin configuration 
is changed, i.e., the energy is changed, thus indicating that 
an interaction takes place and that the interaction cannot be 
determined by the vacancy coordinate alone (hence the need 
for a vector potential). These arguments pertain in general to 
those ferromagnetic metals in which the spontaneous mag- 
netic moment is produced by mobile particles; one can there- 
fore expect the results obtained here within the framework of 
a simple model to remain basically in force also under more 
realistic conditions. 

Let us emphasize the basic aspects of the paper. A Ha- 
miltonian was used to obtain the approximate expression 
(14). The transformation to the exact expressions (la), (20) 
and (24) was practically unique with the aid of general con- 
siderations and by comparison with known results. The gen- 
eral requirements on the theory are invariance to indepen- 
dent rotations in the spin and coordinate spaces and gauge 
invariance; in addition to normalization condition (17) must 
be satisfied and only the lower-order derivatives are to be 
taken into account [the long-wave limit (12)l. These require- 
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ments make it possible to construct out of the spinor $ a 
single vector A (15) in coordinate space and a single invar- 
iant, in all respects, (16). There are also the scalars 

* I ,  A" div A, 

which are not gauge-invariant separately. Were any of them 
to appear in (18) [on going from (14) to (18)], it would appear 
also in the vacancy Hamiltonian (30), and this is inadmissi- 
ble. 

Concluding remarks. The spin subsystem acts on the 
vacancies via a scalar potential and a vector potential, which 
cannot be expressed in terms of the vector S and its deriva- 
tives; this is why we spoke throughout of interactions of va- 
cancies with a spinor field and not with a field of constant- 
length vectors [so that Eq. (25) for the spinor 11, is in no way 
superfluous]. The effective magnetic and electric fields are 
expressed in terms of S in the following manner: 

d A as, 4-70 
E,=-- - V U=-4ekl,SI,--- V S ,  - - 

d t dt l + y o  
vo, 

I as, as, a=---. 
2 axrn axrn 

We see therefore that the effective magnetic field can be 
quite strong-at the limit knuP4- 1 of the applicability of the 
theory the magnetic field is of the order of the Fermi energy 

(all the quantities here are dimensionless). 
As for t4e effective electric field, we note only one con- 

sequence of the theory-the appearance of a drawing elec- 
tric field when the spin wave is pumped and relaxed. Indeed, 
for the plane wave (8) the vector potential is 

A= (I-u2)  k ,  

and the corresponding electric field is 

E,=kdu2/dt. 

The introduction of true electromagnetic fields into the 
theory entails no difficulty. We point out in this connection 
only the appearance, in the nonuniform magnetic field, of an 
additional force acting on the vacancy: 

due to allowance for the energy 8, [see its definition ahead 
of Eq. (22)] and having a lucid physical meaning; an impor- 
tant role in the calculation of this force is played by the con- 
tributions of A and of the additional term in U, see (20). 
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