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The effect of coherent restructuring of the energy spectrum of conduction electrons on the 
phonon spectrum of transition metals is analyzed. Using a representation of the dynamic matrix 
in terms of the generalized susceptibility, a convenient procedure of calculating the dispersion 
curves with allowance for the band structure is proposed. The scale of the band corrections to the 
polarizability is established on the basis of a simple band model of the electron energy spectrum; 
the order of magnitude of these corrections does not exceed the (3/2) power of the energy gap. The 
band structure influences most strongly the acoustic region of the phonon spectrum. It is found 
that the sound velocity can become considerably renormalized if the Fermi level lands in certain 
phase-space regions within the band gap. The results are confirmed by concrete calculations of 
the group velocities of phonons in aluminum and cadmium, and agree well with the available 
experimental data. 

PACS numbers: 7 1.25.Pi, 7 1.38. + i, 63.20.Dj 

1. INTRODUCTION 

The recent progress in the study of the properties of 
transition metals is closely related to the multiparticle per- 
turbation theory in terms of the electron-ion interaction. 
This approach is particularly effective in an analysis of the 
phonon spectra of metals with simultaneous determination 
of their static properties under identical approximations 
(see, e.g., Ref. 1). It was found that the electrons play a sub- 
stantial role in the formation of the phonon spectrum, and 
determine both the spectrum as a whole and the appearance 
of singularities peculiar only to metals. These singularities 
are connected with the abrupt edge of the electron distribu- 
tion in momentum space, which leads to a certain Kohn 
anomaly in the phonon spectrum when account is taken of 
the paired indirect interaction of the ions via the conduction 
 electron^,^ and to multiparticle singularities when the non- 
pair indirect interaction is taken into account. 

Until recently, coherent restructuring of the electron 
energy spectrum near the faces of the Brillouin zone (BZ) 
were not taken explicitly into account in the multiparticle 
theory of metals. In most cases, the influence of the BZ on 
the metal properties integrated over the electron states, at - 
VG (1, = VG/&, (VG is the Fourier component of the 
electron-ion potential and is calculated at point G of the reci- 
procal lattice, while E, is the Fermi energy) is negligible 
compared with the smoothed allowance for the change of the 
spectrum and density, a change typical of the multiparticle 
perturbation theory. 

There exist, however, definite situations wherein the 
fine structure of the phonon spectrum may turn out to be 
quite sensitive to the restructuring of the electron spectrum 
near the faces of the BZ. This pertains primarily to multipar- 
ticle singularities and to the ensuing Kohn anomalies of non- 
diametral type. Both types of singularity are localized in the 
same region of phonon wave-vector values (see below). This 

raises the question of their relative contribution to the fine 
structure of the phonon spectrum. As will be shown present- 
ly, the contribution of the nondiametral Kohn anomaly is 
always small compared with the contribution of the non-pair 
interacti~n. '*~*'~ It is just this circumstance which predeter- 
mined the possibility of observing it directly in a l ~ m i n u m . ~  

Of particular importance is the electron-spectrum res- 
tructuring near the BZ edges, which leads to vanishing of 
parts of the Fermi surface over definite faces (in the ex- 
tended-band scheme). In this case there appears in the 
phonon spectrum an anomaly corresponding to the wave 
vector q which is a multiple of the reciprocal-lattice vector 
G; this is equivalent to the onset of a unique Kohn anomaly 
in the sound. Although this anomaly does not lead to a diver- 
gence, in view of the finite energy gap in the electron spec- 
trum, it turns out to be strong enough to change the speed of 
sound by an amount of the order of its value. This anomaly 
was recently observed in an experimental investigation of the 
group velocity of phonons in cadmium,' where the situation 
noted above is realized precisely for one of the face types. 

In the analysis of the phonon-spectrum fine structure 
due to restructuring, near the BZ faces, of both the energy 
spectrum and the electron wave functions, it is necessary to 
go outside the framework of perturbation theory. One can 
use here the known representation of the dynamic matrix in 
terms of the generalized susceptibility of the electron subsys- 
tem (see, e.g., Ref. 6), using for the explicit determination of 
the latter an iteration procedure with allowance for the small 
parameter FG. As a result we obtain a relatively simple re- 
presentation that goes over directly, if the coherent restruc- 
turing of the electron spectrum is neglected, into the known 
perturbation-theory expression. The dynamic matrix ob- 
tained thereby permits not only to determine the properties 
of the singularities in the phonon spectrum, but actually ana- 
lyze the scale of the infiuence of the band structure on the 
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spectrum in the entire region in which the wave vectors are 
defined. 

2. DYNAMIC MATRIX 

It is known (see, e.g., Ref. 1) that for nontransition met- 
als one can represent the dynamic matrix, assuming validity 
of the adiabatic approximation, as a sum of contributions of 
the direct and indirect ion-ion interactions: 

Da"q) =D,*" ((I) +DeaR (q) (2.1) 

(a and p are Cartesian indices). We shall not indicate the 
sublattice indices, assuming for simplicity a monatomic lat- 
tice. Taking the translational symmetry into account, it is 
convenient to represent each contribution in the form 

DUB (q) =Dap ((I) - DaB (0). (2. la) 

The most important is the electron contribution to the 
dynamic matrix; it is expressed in the general case in terms of 
the generalized susceptibility x (the response function) of the 
electron gas (see, e.g., Ref. 6) 

Here Mis the mass of the atom and N is the number of atoms 
in the crystal. The matrix of the response function that con- 
nects the induced electron density with the external poten- 
tial is given by7 

(Ol exp (-ik,r) In) (nl exp (ik2r) 10) 
x (kt, kz) = z Eo-E, , (2.3) 

n f 0  

where En and In) are the exact energy and exact wave func- 
tion of the n-th state of the multielectron system. It will be 
more convenient to work with the irreducible part (polariza- 
bility2) of a generalized susceptibility defined by the Dyson 
equation 

x(kl ,  k2)=%(kl ,  k2) +x X(kl, k1)vk*x(k.,  k ~ ) .  (2.4) 
k' 

where v, = 4.ne2/k 2L? (L? is the volume of the crystal). The 
simplest approximation for the polarizability is that of Har- 
tree 

where lp) is a one-electron state with energy E,, and n, are 
the occupation numbers. If the electron-electron interaction 
is taken into account in the local-field approximation, as in 
the calculation of multipoles in perturbation theory (see Ref. 
l ) ,  we have directly 

i ( k ,  k)=2'(k) iu (k, k ) ,  (2.6) 

(kl,  h) ZT ( k l ) i u  (kl ,  k,) T ( h ) ,  klf kz; (2.7) 

T ( k )  = [l+uk/ ( k ) i , ( k ,  k ) ]  -'. (2.8) 

Here f (k) is a function that takes effectively into account the 
exchange and correlation interelectron interaction in the lo- 
cal approximation. Substituting (2.6) and (2.7) in (2.4), we 
transform the Dyson equation for x into 

40 (k, k )  i - 1 z io (k, k') T (kT) vkq (k', k)  . x (k, k )  = - -- 
~ ( k )  ~ ( k ) ~ , * ~  

(2.9) 

x v k r x  (k', k,) 

The function E. is defined in the usual manner: - 
~ ( k )  =I-vk(1-f (k)  )xu&, k ) .  (2.1 1) 

When the parameter & tends to zero, only the first 
term of the right-hand side of (2.9) remains, dnd - 

x a  (k, k )  =-Qno (k) ,  (2.12) 

where q ( k )  is the known Lindhard function. The next term 
of the expansion o fx  (k,k) is quadratic in the parameter FG. 

Expansion of the off-diagonal elements of the general- 
ized susceptibility begins with the term that is linear in 
and is connected with the first term in (2.10). In this limit (see 
Sec. 3) we obtain 

VG jio (k, k+G) =652 - 11i3' (k, -k-G, G), 
c (G) 

where A f! is a three-pole-a simple ring diagram with three 
external-field ends (see Ref. 1). Forx (kl,k,) the next terms of 
the series are also quadratic in PC. 

The presence of a small parameter pG typical of non- 
transition metals makes it possible to make effective use of 
an iteration procedure for the solution of Eqs. (2.9) and 
(2.10). If the resultant series is substituted in (2.2) and if E, 

and /p)  are replaced in 2 (2.5) by expressions derived within 
the framework of the one-electron perturbation theory, we 
obtain, taking (2.8) and (2.1 1) into account, the previously 
abtained representation for the dynamic matrix in the form 
of a series in the indirect multi-ion interaction (see, e.g., Ref. 
1). 

For most nontransition metals it suffices to retain the 
first terms of (2.9) and (2. lo), whose contributions to the dy- 
namic matrix (2.2) are equivalent to B and B f! in multi- 
particle perturbation theory.' In comparison with the latter, 
however, it becomes possible to take into account the correct 
structure of the spectrum and of the wave functions of the 
electrons, and to analyze the influence of the coherent res- 
tructuring of the electron spectrum near the faces of the BZ 
on the singularities of the phonon spectrum, as well as in 
general on the formation of the fine structure of the disper- 
sion curves. It is clear from (2.2), (2.9), (2. lo), and (2.8) that 
this influence is directly connected with the properties of the 
polarizability 2, (2.5). We shall pay principal attention here- 
after to the analysis of this function. 

3. POLARlZABlLlTY OF A METAL IN THE BAND MODEL 

In a regular crystal, the one-electron wave function can 
be represented in the form 
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The band index is not indicated here, as in the model of 
expanded bands. In (3.1) we have separated the normaliza- 
tion factor 

Substituting (3.1) in (2.5) we obtain directly an explict 
expression for the polarizability 

C np-np+k+GI go (k, kf G) =2 [ ~ c p ~ z ~ c p + k + ~ , ~ z  
E p - E p + k + ~ t  

P,Gt 

Before we proceed to analyze the polarizability, we note 
that the calculation o f i ,  in the representation (3.3) can be 
carried out in principle if one knows the one-electron ener- 
gies E, and the coefficients a,(G) of the expansion of the 
wave function (3. I), which are obtained from the solution of 
a system of linear equations of high order. It is easy to show, 
however, that the momentum space region connected with 
the immediate vicinity of the intersection of several BZ faces, 
where waves with different G interfere (see (3.1)) and accord- 
ingly two and more coefficients a,(G) are simultaneously of 
the order of unity, is proportional to v2, at the edges of the 
BZ and to the cube of this parameter at the vertices of the 
BZ. In the principal region in which p is defined we have - 
a, (G) a VG. In the general case, therefore, the contribution 
to (3.3) from the interference regions will be smaller at most 
by a factor 6 ' than from the coherent restructuring of the 
electronic states in the vicinity of each face of the BZ. 

It follows therefore that a reasonable model for the 
analysis of band effects in the dynamic problem at "V, (1 is 
one in which the one-electron energy and the wave function 
in the vicinity of each BZ face corresponding to the vector G 
are determined only by the value of V,. The electron disper- 
sion law can then be represented in the form 

(0)- ( 0 )  A c p ( G )  ='I2 sign(x) [ (x2+41VGlZ)'h-I~I], X = E ~  E ~ - ~ .  

(3.5) 
Here and below we use atomic units: the energy in hartress, 
and the momentum in units of (l/a,) where a, is the Bohr 
radius. In (3.5) and elsewhere VG is taken to mean the 
screened potential VG/Z(G), which determines in fact the 
band structure. The coefficients of the expansion (3.1) are 
correspondingly approximated by the first term of their iter- 
ation series 

( 0 )  ap (G) N V G /  ( E ~ - E ~ - G ) .  (3.6) 
The next term of the series is known to contain, at any value 
of p, the additional small factor pG. 

The approximation corresponding to (3.4) and (3.6) in- 
troduces into the polarizability % an error of the order of v:. 
Since the representation of the generalized susceptibility by 
means of the first terms of (2.9) and (2.10) is of the same 
accuracy, one can certainly determine the dynamic matrix 
by using expressions (3.4) and (3.6) and obtain an accuracy at 
least equivalent to full allowance for the contributions 3 y' 
and 3:) to the usual scheme. Actually we attain a better 
accuracy, as will be shown in the sequel. 

We analyze now the diagonal elements of 2, (3.3) and 
show that we can disregard in their calculation, at the same 
accuracy, the restructuring of the wave function and confine 
ourselves to the change of only the energy spectrum. We 
consider the behavior of the integrand in different regions of 
momentum space. If the arguments p and (p + k + G,) of the 
coefficients a(G) lie far from the BZ faces, the leading term in 
2, is determined by the condition GI = G' = G" = 0, at 
which the expression in the square brackets (see (3.3)) can be 
replaced by unity. In this case all the remaining terms are at 
least as small as v;. 

We consider the case when one of the arguments, say p, 
lies near the BZ face corresponding to Go: 

and (p + k) is far from the BZ faces. In this case a noticeable 
contribution is made only by terms corresponding in (3.3) to 
G1+G,=O,G"  + G ,  =Oand(G, =OorG, = -Go).The 
corresponding integrand reduces then to 

It is necessary to consider simultaneously the symmetrical 
region of p corresponding to 

I PGO+'/,G,~ ( GxG,, 

in which the integrand is determined in analogy with (3.8) 
but with Go replaced by ( - Go). Replacing in this region p by 
( - p), we reduce the integral to the first region. Grouping in 
the resultant expression the second term with the first of 
(3.8), and the first respectively with the second, and recog- 
nizing that E,, np, and IC, I 2  are even functions of p, and 

a-p (-Go) =a; (Go), 

we can verify that at (pG,) = i G i  the term of the form 
(n, - n -,+ k ) / ( ~ p  - E~ + k )  can be taken outside the paren- 
theses. The expression remaining in the parentheses is then 
cancelled by I C, l 2  accurate to F:,, . At (pGo) # $G this can- 
cellation takes place already with accuracy linear in VG<,. 
However, if it is recognized that the relative volume of the 
integration region near the BZ faces, where the wave func- 
tion is effectively restructured, is of the order of pGc,, all the 
corrections to the result are again of the order of F;, .There- 
fore in this case, too, the expression in the square brackets of 
(3.3) can be set equal to unity and only the term with G, = 0 
remains. 

We consider finally the case when both arguments p and 
(p + k) lie in the immediate vicinity of BZ faces with respec- 
tive indices Go and Gh. If Gh is not collinear with Go, the 
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picture remains exactly the same as in the preceding case, 
since the integration along one of the faces of the BZ auto- 
matically takes the second argument out of the region where 
the corresponding a, + , + ,, (Go + G,) is of the order of uni- 
ty. On the other hand the integration region where both 
wave-function expansion coefficients are of the order of uni- 
ty is certainly small as p:. 

If G; is parallel to Go, this corresponds in fact to 
(k.G,)z&G,(G; - Go), i.e., k lies near one of the BZ faces 
parallel to the face with index Go. This is the only case when 
it may be necessary to take into account the restructuring of 
the wave function in the diagonal matrix elements of the 
polarizability (see Sec. 6). 

Thus, at arbitrary k ,  with exception of only the particu- 
lar case noted above, expression (3.3) for the diagonal polar- 
izability elements reduces, accurate to terms of order t:, to 

np-n~+ k to ( k ,  k )  =io ( L )  = 2 z  ---- . (3.9) 
E P - E P C ~  

It is interesting that, within the framework of the considered 
approximation, 2 (k ) has the same structure as for a homo- 
geneous electron gas, only with &:' replaced by E, and with 
the occupation numbers n:' replaced by n,, which are equal 
to unity for the states below the true Fermi surface. 

For the off-diagonal elements, the expression in the 
square brackets of (3.3) reduces, with the same accuracy as in 
(3.9), to a linear combination of the functions a,(G ), and as a 
result we obtain the simple representation 

(a, (GI +&+k (--G) ) 

It is easy to show that when the energy gap tends to zero the 
representation (3.10) corresponds to the limiting expression 
(2.13) containing a three-pole diagram (see also Ref. 8). 

4. BAND CORRECTIONS TO THE POLARlZABlLlTY f,,(k). 
NONDIAMETRAL KOHN SlNGULARlTlES 

In the analysis of the contribution of coherent restruc- 
turing of the electron spectrum to the polarizability we are 
primarily interested in two problems: of the scale of the band 
corrections tof,, and of the intensity of the so-called nondia- 
metral Kohn singularities, which are known to be absent in 
the approximation with a spherical Fermi surface. Their in- 
tensity should therefore be uniquely determined by the char- 
acter of the restructuring of the Fermi surface near the faces 
of the BZ. 

In (3.9), in the principal region of variation of p, the 
band correction is of the order of B:. It is obvious that a 
large contribution can be expected only from regions direct- 
ly adjacent to the BZ faces, where A&, - V,. From the form 
of expression (3.9) for x0 it is clear that the restructuring of 
the spectrum can be nontrivial in those cases when simulta- 
neously E, ZE, + Z E ~ .  Thus, a noticeable band contribu- 
tion should be expected at those k which connect states near 
the Fermi surface, and at least one of them must belong to 
the restructured region of the spectrum. In particular, the 

nondiametral Kohn singularities are realized just under sim- 
ilar conditions. 

It is clear that if k joins simultaneously two restructured 
regions near the Fermi surface (with the exception of k-G, 
see Sec. 6), the character of the obtained band corrections 
remains the same. We therefore carry out for simplicity an 
analysis corresponding to the case when the second end of 
the wave vector lands on an almost spherical part of the 
Fermi surface; the first lies then on the Fermi surface in the 
vicinity of the restructured spectrum near a BZ face. Retain- 
ing in the representation (3.4) for E, the correction from only 
one face and introducing a cylindrical coordinate system 
with the axis along G, and recognizing also that A&, depends 
only onp,, the triple integral in (3.9) reduces easily to a single 
integral 

where we have introduced the notation (see Fig. 1): 

F (pz)  =q2 (pz) -k lZp2  (pz) 7 p2 ( ~ z )  = ~ E F - P ~ ~ - ~ A E P ~  (GI 

8 (x) is the standard unit step function. We have left out of 
$ ( p , )  the band correction ,*, since it is inessential in 
the analysis that follows. The integration limitsp, are deter- 
mined from the conditionp2(po) = 0. In the general case 

I PO-pro I I P F O - ~ G ~ ,  ppo= ( 2 ~ ~ 0 ) " ' .  

An exception is the case when 

IpFt,-'IzG I I P ~ G V O ,  

FIG. 1. Intersection of the Fermi surface with a plane passing through the 
vectors k and G ,  in the expanded-band scheme with account taken of the 
energy gaps only on the BZ faces with indices G and - G.  The points 
correspond to the Fermi surface of the free electrons. 
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and then 

I P O - ~ F O  I lpFO-vG. 

We begin with an analysis of the second term in the square 
brackets in (4.1). The region where F( p,) > 0 is bounded by 
values ofp, that are roots of the equation 

F ( p , )  =O. (4.3) 

If we use the central intersection of the Fermi distribution 
with the plane passing through k and G (as in Fig. l), it is easy 
to verify that solutions of (4.3) are two values ofp, such that p 
and (p + k) lie simultaneously on the Fermi surface. For free 
electrons we obtain 

In this geometry we can confine ourselves to a discussion of 
only one root, say py corresponding to the plus sign. A non- 
zero contribution from the second term in (4.1) is obtained 
then in the region p, >p(O'. For Bloch electrons, the corre- 
sponding root of Eq. (4.3) is then shifted: 

If pp lands - in the band-restructuring region, then 
Ap, -pFo VG. Denoting by F, the value of the function F (  p,) 
for free electrons, the contribution of the second term to (4.1) 
and the change of the polarizability 2, on account of the 
band structure can be written in the form 

(4.6) 
At the point py' and in a region of order Ap, around it we 
have F ( p,)- V,. From this we see immediately that both 
the first and the second integral make a contribution propor- 
tional to (vG)3'2. In the case when the relation - bo - pFo l/pFo - V i, is valid, the last integral - is negligibly 
small, and in the case I pFo - 1G I/pFo - V i ,  whenp, andpFo 
actually lie in the vicinity ofpy), we have F(p,)-  VG and the 
third integral also becomes proportional to (pG)3'2. 

We consider now the first term in the square brackets of 
(4.1). The band correction A2, connected with this term is 
due on the one hand to the value 

$ ( p Z )  - $ o ( P , )  =-Aep.(G) 

(see (4.2), and on the other hand to the change of the upper 
limitp,. The first contribution is obviously always quadratic 
in G. The second term has the same smallness if the follow- 
ing relation holds 

I PO-PFO (lpP0-vG2, 

while in the case 

I p~o-'lzG I /p.wo-Vc 
since 

,Do= ( 1 /2k2+kzpz)  - k L v ;  

in the intregration interval ( p,, pFo), the change of the polar- 
izability is proportional to (b)312. 

We arrive thus at the important result that at arbitrary 
k the maximum correction to the polarizability, due to res- 
tructuring of the electron spectrum near the BZ faces, obeys 
the law 

A ~ ~ W V  :Ia. (4.7) 

An explicit expression - for A i  under the assumption 
( pFo - 1G I/pFo > V, can be represented in the form 

1 - (k2i k ,+2p~o'  I)%D ( k / G ,  x / G )  + O ( o G 2 ) .  
- Axo ( k )  = - ---- 
Q n2kl 

(4.8) 
Here A p,, obtained accurate to v:, is of the form 

The dimensionless function Qz is a sum of two integrals 
with finite limits, which stem from the first two terms in (4.6) 
and depend only on dimensionless parameters. At arbitrary 
k, the function Qz changes little and is close to unity in order 
of magnitude. Therefore the factor that precedes Qz, written 
out in explicit form, makes it possible to track the k-depen- 
dence of the coefficient of the parameter t g 2  in (4.7) and the 
vanishing of this contribution when departing from the re- 
gion of the spectrum restructuring near a BZ face. In the 
latter case A p, itself becomes proportional to v:. 

The region of k where Af, behaves in accordance with 
(47) is, naturally, small. In the basic phase space volume, Aj ,  
is proportional to 7:. This is clearly seen from Fig. 2, where 
plots ofA2,JV; are shown for two values of VG, 0.028 and 
0.056 Ry (the first value corresponds to IG,,,I = 1.428 and 
pFo = 0.930). This are the values for aluminum. In the basic 
interval of variation of k, the two curves are almost indistin- 
guishable. In the interval k /pFo = 1.7-1.9 the two curves are 
different and their ratio is dl, in accord with the obtained law 
(4.7). The position of the nondiametral Kohn singularity is 
marked in Fig. 2 by the arrow k,. The arrow k, in the same 
figure shows the position of the kink typical of the singular- 
ity corresponding to k, which joins the points "a," and "b " 
(see Fig. 1) belonging to sections with different curvatures of 
the Fermi surface (see Ref. 9). 

Near a definite k, that corresponds to a nondiametral 
Kohn singularity (k, joins two Fermi-surface points having 
strictly antiparallel values of the group velocity, see Ref. lo), 
the function Qz will contain a nonanalytic addition of the 
formxln 1x1, due to the second term of (4.6). This anomalous 
addition is localized in the narrow interval 
A k = Ik - k, [ 5 x .  We obtain the explicit form of this anom- 
alous contribution to the polarizability, choosing by way of 
example the k, that joins the points a and b in Fig. 1. To this 
end, we consider the second integral in (4.6) and expand the 
function F ( p , )  in powers of the small deviation 
x = p, - p,(k) near the lower integration limit 

Choosing the direction of the change A k along the face 
(Ak Ilk,), we expand the analytic function A,(k) in powers of 
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-5 
FIG. 2. Band corrections to the diagonal elements of the polarizability, 
referred to the square of the energy-gap parameter V, (p = 120"; 

-10 - dashed-V, = 0.028 Ry, solid-V, = 0.056 Ry). 

/A k / .  It is easy to verify that A, (h) ,  the first term of the 
expansion, is exactly equal to zero. Taking (4.2) into account, 
we obtain for A, 

The next terms of the series contain additional powers of the 
small parameter x .  We retain for A, only the term that is 
leading at sufficiently small lA kl and stems from terms that 
contain second derivatives of with respect top,: 

A, (k)  =GkZ/21c. (4.12) 

count taken of the results of the preceding section, it follows 
directly that the contribution made to the phonon spectrum 
by the off-diagonal polarizability elements is always sub- 
stantially larger than that of the band corrections to x,(k), 
since the quantity At ,  will contain an extra small factor "V,, 
in an overwhelming range of variation of k and the param- 
eter F in a narrow singled out region Ak. It is clear that 
allowance for Ax,(k) is meaningful only if the off-diagonal 
elements (3.10) are included in the dynamic matrix. To illus- 
trate the foregoing, Fig. 3 showst,(k,k + G) and Ax0(k) cal- 
culated with the parameters corresponding to Fig. 2. 

After determining the contribution to the integral from the Allowance for the energy gap in the electron spectrum 

narrow interval O<x<x, we obtain has little effect on the general form ofx,(k,k + G) (cf. curves 
a and c of Fig. 3, where curve c corresponds to expression 

[SB: :anom] (2.13) for the free electron gas). The true band structure be- 

Q G .L 'h 2% " Ak 
A X ; ~ ~ ( ~ ) - - ~ ~ ~ [ P P . ' - ~ G ' ]  n k ~  (6) 1 

(4.13) 

The anomalous contribution is of the already noted small- 
ness scale (4.7). The derivative of (4.13) with respect to lA kl 
has the usual logarithmic singularity 

- 
dAxanom /dAk- ( x / G )  '" ln I Ak/. I . (4.14) p '\./ 

The coefficient of the logarithm, however, has an additional . . . .  ... U.!l'f .... 
small parameter - compared with the diametral Kohn .... 

singularity. This, in conjunction with the fact that the anom- 
aly is localized in a very narrow interval Ak 5 x outside of 
which the very character of the analytic Ai,(k ) dependence 
changes, explains why it is difficult to discern the nondiame- N.uP 

tral Kohn singularities in the phonon spectra of metals. 
It is clear that the structure of the expression for Af,,,, 

(4.13) remains the same for any other geometry of the non- u 
diametral Kohn singularity. 

5. OFF-DIAGONAL POLARlZABlLlTY ELEMENTS. THREE- 
I 

PARTICLE SINGULARITY -2.fl;l L 
From the form of expression (3.10) for the off-diagonal 

polarizability elements, in con,unction with (3.61, it follows FIG. 3. Off-diagonal element of polarizability as a function of k: a )  
xo(k,k + G)  with allowance for the band structure (see (3.10)) (q, = 120", 

directly thatxo(k,k + G) contains compared with - X O ( ~ )  (see V, = 0.056 Ry); b ) band correction Aj , (k ) ;  c) result of perturbation the- 
(3.9)) the first power of the small parameter V,. With ac- ory. 
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comes essential only in the analysis of the three-particle sin- 
gularity typical ofto(k,k + G) (Ref. 1). 

It is known that in the case of a free electron gas such a 
singularity appears info(kl,k,) when the three vectors k,, k,, 
and - (k, + k,) form an acute triangle whose vertices lie on 
the Fermi surface. The anomalous contribution behaves 
then like 

This results in a substantially stronger singularity compared 
with the Kohn anomaly. 

The dynamic matrix (2.2), however, contains off-diag- 
onal elements of x,, a feature of which is that one of the 
vectors of the triangle must be a reciprocal-lattice vector 
that connects directly states on the Ferrni-surface sections 
reconstructed from the Fermi sphere. To analyze the proper- 
ties of the singularity it becomes necessary to include the 
restructuring of the electron spectrum explicitly in the off- 
diagonal elements (3.10). As a result the secondary energy 
denominator that stems from (3.6) does not vanish at any 
value of k, and remains of the order of V, in the in the res- 
tructuring region. As a result, the root singularity (5.1) in the 
derivative ofto(k,k + G) with respect to k becomes smeared 
out in this interval, even though outside this interval its 
square-root character is fully preserved. On the other hand 
the presence of denominators in the two terms of (3. lo), typi- 
cal of x0(k), leads to the appearance, in the same region of 
A k, of non-smeared Kohn anomalies of the nondiametral 
type (the arrows k and k ;; in Fig. 3.). A similar comparison 
was first cited in Brovman's dissertation. ' ' 

In the immediate vicinity of & the derivative 
dxo(k,k + G)/d k has a behavior similar to that of dAjo(k)/ 
a k near a nondiametral Kohn singularity (the amplitude at 
the logarithm is also proportional to (v,/E,)"~). However, 
the smallness of Axo(k ) compared with jo(k,k + G), in con- 
junction of preservation of the (A k /ko)-'I2 dependence out- 
side the interval A k - x makes the singularity of the off-diag- 
onal elements to be integrally much more strongly 
pronounced than inAx0(k). It must be stated right away that 
in the phonon spectrum this difference can be even more 
strongly pronounced because of the presence, in high-sym- 
metry crystals, of a contribution of off-diagonal elements of 
jo from the entire group of equivalent pairs of reciprocal- 
lattice vectors G, and G, (see (2.2)), which determine the 
singularity at one and the same 16. This is particularly clear- 
ly demonstrated by the example of transverse phonon 
branches, which are determined only by those terms of (2.2) 
with G,, G,#O. All these circumstances were used for an 
experimental observation of a three-particle singularity in 
a l~minum.~  

Figure 4 shows the group velocities do/dq for the trans- 
verse branch in aluminum at q parallel to the [loo] axis. 
Curve 1 corresponds to calculation of the phonon spectrum 
with allowance, in the electronic part of the dynamic matrix, 
for only the diagonal elements of the polarizability. Curve 2 
corresponds to inclusion of the off-diagonal elements in the 
form (3.10). It is clear form this figure that the anomaly in the 

FIG. 4. Group velocity of phonons in aluminum: 1) only diagonal ele- 
mentsx (k,k) taken into account in the dynamic matrix, 2) result of inclu- 
sion of both diagonal and off-diagonal elements x (k,,k,) (qll[100], 
points-from Ref. 4, dashed curves-perturbation theory, solid-band 
modell. 

aluminum phonon spectrum, observed in Ref. 4 at 
q/q,,, = 0.43, is a singularity due to three-particle interac- 
tion. ~ 

It can thus be stated that the presence of nondiametral 
Kohn singularities does not prevent observation of three- 
particle anomalies. On the contrary, in the general case the 
latter mask considerably the weaker nondiametral singulari- 
ties, whose observation calls for a very particular choice of 
experimental conditions. 

6. KOHN ANOMALY IN SOUND 

Of particular interest is the case when the chemical po- 
tential E~ of the electrons is inside the energy cap corre- 
sponding to a definite Go (such a case takes place, for exam- 
ple, in cadmium at Go = [ lol l  and vectors equivalent to it). 
The corresponding upper band is then empty, and the 
boundary of the electron distribution in momentum space 
has flat sections congruent with the faces of the BZ. The 
situation in this case is equivalent to the giant Kohn anomaly 
produced in the phonon spectrum when the Fermi surface 
has flat sections. l 2  In the latter case the logarithmic singular- 
ity appears in the dispersion law itself, owing to the large 
phase space occupied by the states at the boundary of the 
distribution of the electrons displaced by a definite wave vec- 
tor into other states that likewise belong the distribution 
boundary. But this is precisely the situation in the case con- 
sidered here. The only difference is that the energies of the 
states adjacent to opposite sides of the distribution boundary 
differ from one another by the value of the energy gap 2VG0. 
In the latter case there is singularity in the mathematical 
sense, but at small VGo a very strong anomaly can occur in 
the phonon spectrum.I6 

The condition k = Go means that such an anomaly 
should occur in the spectrum as q-+O, i.e., in the speed of 
sound or in the limiting optical frequencies, as well as in the 
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initial part, corresponding to small values of the wave vector 
q, of the phonon spectrum. 

To determine the character of this anomaly one must 
turn to the general expression for the diagonal elements of 
the polarizability 2,(k) (3.3). As already noted in Sec. 3, at 
kllGo we are unable in the general case to replace the expres- 
sion in the square brackets by unity if k is close to 
(G; - G0)/2. In our case this means that the coefficients 
ap (G) must be retained for values of G equal to zero, Go, and 
- Go. We must now integrate (3.3) with respect to p, retain- 

ing a, (G) and the corresponding I Cp + , + .\ ,. 
We restrict ourselves to k = Go +A k(A kllGo) with 

lA kl smaller than x, and find the first three terms of the 
expansion of 2, in 1 A k 1 : - 

x o ( k ) = ~ o ( ~ o ) + ~ i ~ k + ~ 2 ( ~ k ) 2 + .  . . . (6.1) 

The integrals obtained are quite unwieldy in the general 
case. If, however, we determined beforehand the first and 
second derivatives of the integrals in (3.3) with respect to k, 
then at A k = 0 the integrals can be calculated directly. We 
present here only the result: 

We have used here the notation 

For comparison, we present the expression for the polariza- 
bility of free electrons 

Recognizing that in (6.1) Ak 5 x and <-%/Go, it can be 
easily seen that restructuring of the electron spectrum 
changes the order of PGo in the polarizability. The band ef- 
fects thus manifest themselves in this case most strongly, as 
follows from a comparison with the general situation (4.7). 
In fact, these effects turn out to be much stronger in the 
phonon spectrum. As can be seen from (6.1) and (6.2), the 
first and second derivatives are proportional to v:o and 
l/vGo, respectively. Turning to the expression for the dy- 
namic matrix in the long-wave limit (see Ref. I),  in which we 
retain only the leading contribution from the diagonal ele- 
ments of the polarizability 

dcp ( G )  + iz [ qaq" (G) + (q=GP+G'yP) qT -- 
M 

G+O 
dG' 

1 d" ( G )  + - G ~ G ~ ~ ' ~ ~  , 
2 dG'dG 

4nz2e2 Q 3  - 
c~(k)=- + - xo (k) I Tik I 'IF (k) , Q o = Q / N ,  

k2Qo Q 

we see right away that the acoustic region of the phonon 
spectrum depends on 

The corresponding terms in (6.4) contain in place of the usual 
factor V ;  in this case V,  raised only the the first power. This 
effect should manifest itself particularly strongly for trans- 
verse phonons, since their dynamic matrix does not contain 
a first term (see (6.4)) and the indirect interaction due to the 
electrons is determined only by the polarizability Fourier 
components with k = G#O. It must be taken into account 
here that what is larger is precisely the second derivative 
8 '2,/6'k I (the z axis is parallel to G). At the same time 

(i.e., of the order of (v,)'. Therefore an anomalous contribu- 
tion to the transverse sound is always present when the wave 
vector q is nonparallel and nonperpendicular to G. We note 
that the sign of the second derivative, B, in (6.2), is deter- 
mined by whether the chemical potential is higher or lower 
than the middle of the energy gap. In sound velocity in- 
creases in the former case and decreases in the latter. 

Naturally, the considered anomalous contributions 
pertains to only one group of reciprocal-lattice vectors that 
are equivalent with respect to the crystal symmetry, whereas 
the expression for the sound velocity contains the sum over 
all the vectors G. In addition, since the contribution of the 
ion lattice is not at all sensitive to the electron spectrum, an 
anomaly in the sound is realized against the background of 
other normal contributions. It must therefore manifest itself 
substantially if, as is frequently the case in polyvalent metals, 
the electron contribution cancels substantially the contribu- 
tion of the ion lattice, especially in anisotropic metals. It was 
just this circumstance that manifested itself strongly in cad- 
mium. 

Let the wave vector of a phonon in a uniaxial metal lie in 
the basal plane. We consider the phonon branch with polar- 
ization along the c axis. For this branch the square of the 
sound velocity, proportional to the elastic modulus C,,, can 
be represented in the following simple form: 

1 ' z 1s (G) 12G,'d29 (G),nGI2, .ST:= - cci= - 
P 2QopGf0  

(6.6) 

the index 1 labels the projection of G on the q direction, while 
the index 3 corresponds to the component of G along the c 
axis; S (G) is the structure factor. 

In the case of cadmium the Fermi surface goes off below 
the BZ face (the higher zone is empty) for a family of twelve 
equivalent faces with G = [loll  (see, e.g., Ref. 13). We write 
down the anomalous contribution to s$, from these recipro- 
cal-lattice points: 
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I 6 " FIG. 5. Group velocity of phonons in cadmium, calculated 
I 
I with allowance for the presence of flat boundaries of the - 
1 Fermi distribution on faces of the (101) type. The Fermi 
I 
I 

level is in this case at the upper edge of the energy gap on the 
indicated BZ faces (dashed curves-perturbation theory, 
solid-band model). 

T K T f  M 

Direct calculations shows that in the case of cadmium the 
chemical potential lies close to the upper edge of the gap. 
Taking this into account, as well as the value V,  = 0.034 Ry 
known from an analysis of the Fermi surface,13 we obtain as 
an estimate of (6.7) 

Comparing this quantity with the experimental value 

sT,2=2.6. 1OL0 (cM/c)', 

bility in the form (3.3), which takes into account the 
restructuring of the spectrum and of the wave functions of 
the electrons near the BZ faces. This utterly unusual behav- 
ior of the group velocity was first observed in cadmium in 
Ref. 5. For comparison, the same figure shows the group 
velocity obtained within the framework of group velocity for 
the dynamic matrix. We note two very distinctive circum- 
stances. First, it can be clearly seen by comparing the curves 
how the usual Kohn singularity (arrow in Fig. 5), which inci- 
dentally is readily observed in magnesium14 in which the 
upper band above the faces with G = [I011 is partly filled, 
vanishes and is replaced at q = 0 by an anomaly whose am- 
plitude, for reasons noted above, is finite. Second, attention 
must be called to the relatively large change of the sound 
velocity. 

we see that the anomalous contribution changes the sound 
velocity by an amount of the order of its value. 7. CONCLUSION 

The anomalous contribution is localized in the interval The results of the present paper allow us to formulate a 
Aq-x .  This means that the group velocity should have a number of general premises. This pertains first of all to the 
relatively narrow peak near q = 0. Figure 5 shows the calcu- phonon spectrum of nontransition metals as a whole. In- 
lated values of the group velocity for the branch T, of cad- deed, if the electronic part of the dynamic matrix 5 : B  is 
mium, obtained by using in the dynamic matrix the polariza- represented in the form 

1 1 
Dea"q) = = [[C (q+~) ' (q+.G)  V Vq+r 1'- & (qf G )  / r  (q+G) 

n 
G 

where i ,(q + G) is defined in accord with (3.3), can determine the phonon spectrum of the metal in the entire 
xo(q + Gl,q -+ G,) in accord with (3.10), and the functions BZ, with allowance for the restructuring of the electron 
contained in them are defined in accord with (3.4)-(3.6), we spectrum accurate to quantities of the order of v:. This 
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reveals the entire phonon-spectrum fine structure due to the 
restructuring of the energy spectrum and of the electron 
wave functions both far and near the BZ faces. 

In the overwhelming majority of cases, as follows from 
the analysis in Sec. 4, for the diagonal elements of the polar- 
izability it suffices to use the much simpler expression (3.9). 
The latter, together with (3 .  lo), takes adequate account of 
the role of the gaps in the band structure of the valence elec- 
trons. 

In principle, by using Eqs. (2.9), (2.10), and (3.3), it is 
possible to obtain an iteration procedure that makes it possi- 
ble to take successively into account terms of higher order in 
powers of ( VG/,zF). 

The restructuring of the electron spectrum near the BZ 
faces influences substantially the establishment of an hierar- 
chy of singularities in the phonon spectrum of a metal. After 
the usual diametral Kohn anomaly, the strongest is the so- 
called three-particle singularity, which acquires only a 
slightly smoothed form because of the finite width of the gap 
in the band structure. Still weaker is the nondiametral Kohn 
singularity, which should be masked in many cases by the 
three-particle singularity. 

Under certain conditions (see the preceding section) the 
band restructuring of the electron spectrum can lead to an 
entirely new type of anomaly-singularities in the sound or, 
in other words, in the phonon spectrum at q = 0. 

Although allowance for the energy gaps, as shown by 
analysis, influences relatively little the integral form of the 
phonon spectrum, it can be quite substantial in the analysis 
of definite region of phase space, especially when it comes to 
strongly anisotropic polyvalent metals such as cadmium, be- 

ryllium, or white tin (8-Sn). It seems that the difficulty of 
exhaustively describing the phonon spectra of these metals 
are caused to a considerable degree by failure to take into 
account the role of the energy gaps in the band structure of 
the valence electrons. 
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