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The fluctuation shift of the threshold of explosive instability is determined for weak breeding 
centers and criteria are obtained for the validity of the self-consistent-field approximation for the 
description of the stationary above-threshold state that sets in when a nonlinear mechanism limits 
an explosive instability. The instability threshold in a medium is calculated in the case of strong 
breeding centers with account taken of the contribution from paired breeding-center clusters. The 
analysis is carried out for media with different dimensionalities. 
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We consider here a medium in which an external ran- 
dom action produces for a short time spatial regions that 
serve as breeding centers for a certain substance. We discuss 
two fundamental problems, the calculation of the breeding- 
center critical density at which the threshold of explosive 
instability is reached in the medium, and the investigation of 
the fluctuation properties of the above-threshold stationary 
state that is established in the presence of a nonlinear mecha- 
nism that limits the explosive instability. 

The system considered by us is far from the state of 
thermal equilibrium. We assume the large reserve of matter, 
whose consumption in the course of the breeding reaction 
can be neglected, is uniformly distributed over the volume of 
the medium. The energy needed to initiate the reaction in the 
breeding centers comes from external sources. We note that 
the appearance of random breeding centers in the medium 
can be due, e.g., to its irradiation by short irregular laser 
pulses. 

It has been repeatedly noted in recent years (see Ref. 3) 
that a feature of open systems that are in strong disequilibri- 
um includes a special type of critical phenomena, namely 
effects of qualitative restructuring of the kinetic regime. 
Phenomena of this type include also the population of the 
medium above the threshold of explosive instability, when 
the presence of nonlinear limitation mechanisms in the me- 
dium establishes a constant average density level of the 
breeding matter. 

When considering a transition from stationary crystal- 
lization of an ordered phase to a growth of a disordered 
phase at a certain critical deviation from equilibrium, the 
term "kinetic transition" was used in Ref. 4. We regard it as 
justified to extend the use of this term and include among the 
kinetic transitions any qualitative restructuring of the 
steady-state kinetic regime in open systems that are in strong 
disequilibrium. 

If the kinetic transition is due to external random ac- 
tion, the fluctuating behavior near the transition point can 
be quite It will be shown here that for the effect 
considered by us, the population of a medium, the behavior 
is reminiscent in many respects of second-order phase transi- 
tions. In particular, there is critical slowing-down at the 
threshold, and the correlation radius of the density fluctu- 
ations becomes infinite at this point. At the same time the 

conditions for validity of the self-consistent-field approxi- 
mation are different, namely, in a medium of dimensionality 
d the fluctuation behavior due to external random action is 
similar to that of a medium of dimensionality d + 2 during 
an equilibrium second-order phase transition. 

51. FORMULATION OF MODEL 

We consider diffusion of a certain substance X in a me- 
dium where decay X -+ P and breeding X -+ X + X of this 
substance are possible. We assume that the decay rate a is 
uniform in space and constant in time, and that the breeding 
takes place only inside definite breeding centers that appear 
at random times in random points of the medium, but have 
the same shape, intensity, and lifetime. The corresponding 
mathematical model is the equation 

?is-an+f (r, t )  n+DAn-gnZ, (1) 

where n is the density of the diffusing substance and D is the 
diffusion coefficient. 

The fluctuating field f (r,t ) describes breeding centers 
that occur randomly independently of one another; this field 
is given by the sum of the identical pulses g(r,t ) located at 
random points (r,, t j ) :  

and the average number of pulses per unit time and per unit 
volume is constant and equal to m. Random processes of the 
type (2) are known as Poisson processes. 

The last term in (1) ensures limitation of the explosive 
instability in the medium. Its origins can vary. We note first 
of all that such a term appears in the kinetic equation when 
account is taken of the coalescence reaction X + X -+ X, 
which is the inverse of the breeding reaction. It is natural to 
expect that the coalescence reaction, in contrast to breeding, 
does not require activation, and therefore occurs every 
where in the medium. In addition, situations are possible 
when the decay product increases the decay rate (e.g., for 
some biochemical fermentation reactionss). If it is assumed 
that the restriction of the density growth is estasblished at 
sufficiently small values of n, the decay rate can be expanded 
in powers of the density n and only the linear (an) and qua- 
dratic (pn2)  terms need be retained. 
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We emphasize that the model considered by us is quite 
abstract. Equation (1) can appear in various application, in- 
cluding problems of mathematical ecology. In this respect it 
is similar to the basic models of percolation t h e ~ r y , ~  which 
have likewise extensive applications. 

We assume that the function g(r,t ) that describes an in- 
dividual breeding center is of the form 

The quality Jcharacterizes the breeding intensity and T, the 
lifetime of the center. The function ~ ( r ) ,  which determines 
the spatial shape of the center, decreases rapidly to zero at 
r > r,, so that r, gives the spatial dimension of the breeding 
 center;^ (0) = 1. It is convenient to introduce the dimension- 
less concentration of the breeding centers: c = rnd~ , ,  where 
d is the dimensionality of the medium. 

Depending on the relative density increment of an indi- 
vidual center, all the breeding centers can be divided into 
strong and weak. The density increment of a breeding center 
satisfies the equation 

which coincide formally with the Schrodinger equation with 
imaginary time and potential U (r) = - Jx(r). Its general so- 
lution is 

where the summation is over the discrete spectrum and the 
integration over the continuous spectrum of the linear oper- 
ator 

e=DA+lx (r) . (6)  

For breeding centers ( J>  0) the eigenvalues Ai belonging to 
the discrete spectrum are positive. They correspond (cf. (4)) 
to negative-energy levels corresponding to bound states in 
the potential well U (r). 

Let A, be the largest of the existing eigenvalues of the 
discrete spectrum. We define a breeding center as strong if 
A,I-,> 1 and weak if A,T,( 1. It can be seen from the general 
solution (5) that the increment of matter on a strong center is 
exponetially large." The value of A, can be connected with 
the parameters Jand r, that characterize the properties of an 
individual center. We can use to this end the analogy with 
the Schrodinger equation and recognize that A, corresponds 
to the deepest level in the potential well U. It is known (see 
Ref. 10) that in a deep well J>D /4 the lower level is of the 
order of 

In the opposite limiting case when JgD/*, corre- 
sponding to a shallow potential well, the estimate of A, de- 
pends on the dimensionality d of the medium. For a one- 
dimensional medium 

ha-J(Jr ,2 /D) ,  J D r  d=l; (84 

for a two-dimensional one 

and in a three-dimensional medium such a shallow potential 
well does not contain any discrete levels at all, i.e., all the 
eigenvalues A are negative. 

Thus, the short-lived (T,($,/D ) breeding centers are 
weak if J(J *, where 

If, however, the centers are long-lived (T,,~/D ) they are 
weak at J(J *, where 

In the opposite limiting case J>J * the breeding centers are 
strong. 

52. DETERMINATION OF THE THRESHOLD OF EXPLOSIVE 
INSTABILITY FOR WEAK BREEDING CENTERS 

The presence of a nonlinear limitation is immaterial for 
the determination of the threshold of explosive instability, 
since this threshold is determined by terms of the initial 
equation (1) that are linear in the density n. If we introduce 
the quantities averaged over the volume of the medium 

as well as the corresponding fluctuating components 
Sn = n - Fi and Sf = f -3 the changes of ii and Sn with time 
will satisfy the equations 

6n=- (a - f )  6n+DA6n+6fii-t (6f6n-(6f6n)). (12) 

Since the average concentration ii increases or decreases 
with time very smoothly near the critical point compared 
with the characteristic microscopic times, such as the life- 
time r, of an individual center, the quantity Fi in (12) can be 
regarded as constant. To determine the threshold of the ex- 
plosive instability, which manifests itself in an exponential 
growth of the density ii, it is necessary to calculate first the 
paired correlator (Sf Sn) that enters in Eq. (1 1). For this 
calculation we use the perturbation-theory diagram tech- 
nique for classical random processes, which was developed 
in Ref. 11 (see also Ref. 12). 

We first change over in the stochastic differential equa- 
tion (12) to Fourier components with respect to both the 
spatial and temporal variables. As a result this equation 
takes the form 

Here Sn, and Sf, are the Fourier transforms of the functions 
Sn and Sf, q=(w,k), and 

A formal solution of the integral equation (13) can be 
constructed in the form of an infinite iteration series in pow- 
ers of Sf ,. . Multiplying this infinite series by Sf, and carry- 
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ing out statistical averaging, we can obtain the correspond- 
ing expression for the correlator (Sf Sn), which is also an 
infinite series. In diagrammatic form, the first few terms of 
these series are represented by the diagrams 

A solid line with an arrow denotes the function G :, dashed 
lines with points on them denote irreducible correlators (cu- 
mulants) of the random functions Sfq. In contrast to Gaus- 
sian random processes, for which all higher-order correla- 
tors break into paired ones, the Poisson random process (2) 
has nonzero cumulants of all orders. Therefore several 
dashed lines can converge (be paired) on one point. 

Each line in the diagram (15) is set in correspondence 
with some value of the momentum q. Integration is carried 
out over the momenta of all the lines. At the vertices at 
which one dashed and two solid lines converge, the momen- 
tum conservation law q' = q" + q" is satisfied (q' is the mo- 
mentum entering the vertex as a solid line, q" is the momen- 
tum of the dashed line, q"' is the momentum going out of the 
vertex as a solid line). For the extreme left vertex q' = 0, and 
for the extreme right q "  = 0. The sum of the momenta of the 
dashed lines converging at one point is zero. 

The distinguishing feature of the series (15) is that it 
does not contain weakly bound diagrams that decay when 
one of the lines is cut. These diagrams have already dropped 
out in the course of the averaging because of the second inte- 
grand in (1 3). 

We introduce a function 2, defined as the sum of the 
diagrams of the series (15), under the assumption that a mo- 
mentum q is introduced in the extreme left vertex of each 
diagram. The function introduced in this manner satisfies 
the equation 

It is convenient also to define the Green's function G 
that satisfies the Dyson equation13 

G,-'=G: -'-z,. (17) 

With the aid of the function Gq, marked on the diagram by 
double arrows, we can carry out partial summation of the 
diagrams in the series for Hq : 

The explosive-instability threshold, as follows from (1 1) 
and (16), is defined by the equation 

a=j+Zo. (19) 

Using the Dyson equation (17) and Eq. (14) for G: we obtain 
an expression for the Green's function 

Gq= (- io+a-f+Dk2-Z,)  - I .  (20) 

It can be seen that at the threshold the Green's function has a 
pole at q = 0. Thus, the quantity 2, determines the fluctu- 
ation shift of the threshold of the explosive instability. To 

calculate it we estimate the condition for the convergence of 
the series (1 8) at different relations between the parameters 
and at different dimensionalities of the medium. 

If we retain in (1 8) only the first term, 2, is given by 

where S (q) is the Fourier transform of the paired correlation 
function (Sf (r,t )Sf (O,O)), i.e., 

S ( q )  = ( 2 n )  - " ' ( c l ~ ~ r ~ ~ )  D ( k ,  O )  D ( - k ,  - o )  , 
D(k,  o) = J ~ ~ r , " ( l - i o ~ , )  -'I!! ( k r o ) ,  (22) 

where !P (kr,) is the Fourier transform of x (r), and c is the 
dimensionless concentration of the breeding centers. Substi- 
tuting in (21) this expression for the paired correlation func- 
tion and integrating, we get 

the coefficients < are given by the following expressions: at 
Dr,(< we have ford = 1,2,3 

At D T , , ~  we have 

These coefficients are of the order of unity. Expressions (24) 
and (25) were obtained for a model in which it was assumed 
that the intensity of an individual breeding center does not 
remain constant during the time r,, but decreases smoothly 
like exp( - t /r0) from the instant of creation of the center. 

An estimate of the diagrams with irreducible correla- 
tors of order higher than second in the series (18) shows that 
each diagram with a correlator of order m makes a contribu- 
tion 

c!) ( J / J  *)"-'. 

Since the condition J(J * is the criterion of the weakness of 
the breeding centers, such diagrams introduce for weak 
centers only a small correction to H a'. 

The lowest of the diagrams with crossed dashed lines 
(the third in the series (18)) makes a contribution of order 
~ ' 6 ,  where 

Diagrams of this type introduce in 2, terms that contain 
various powers of the breeding-center concentration. We 
note that the contribution H from the first of the diagrams 
in the series (1 8) is of the order yr; '. Thus, the contribution 
from diagrams with intersection of dashed lines are small 
when the fluctuation shift of the threshold 2, is itself small, 
i.e., under the condition y(1. 

The condition y( 1 imposes a restriction on the concen- 
tration of the breeding centers. On the other hand, the explo- 
sive-instability threshold is reached at a perfectly defined 
value of the concentration c,, . Neglecting the fluctuation 
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shift, the value of c,, is given by the equality a =f and is 
therefore of the order of c;, -a/J. Stipulating that at this 
concentration the parameter y be really small, we obtain the 
condition 

satisfaction of which makes the fluctuation shift of the 
threshold for small centers (J(J *) small. In this case, taking 
into account the first fluctuation correction, the critical val- 
ue of the breeding-center concentration is of the form 

where the numerical coefficients 6 is of the order of unity. 
If the inequality (27) is violated, the threshold of the 

explosive instability is reached at much lower values of the 
density c.  The physical reason for such a strong lowering of 
the threshold was discussed by us earlier in Ref. 14, where we 
investigated the case of Gaussian fluctuations of the decay 
rates and of the breeding. If the condition (27) is violated, the 
principal role in the formation of the explosive-instability 
threshold is assumed by sparse clusters of week breeding 
centers, which can behave like individual strong centers. 
The calculation of the threshold of explosive instability in 
this situation calls for summation of an infinite sequence of 
diagrams in (18), containing intersections of dashed lines, 
and this is a rather complicated problem. We can only note 
that there is a preferred concentration value 

at which y = 1, and the contribution from the diagrams of all 
orders become of the same order of magnitude. 

43. FLUCTUATING BEHAVIOR IN A CRITICAL TRANSITION IN 
THE CASE OF WEAK CENTERS 

In the presence of nonlinear-restriction mechanism, a 
stationary value of the density ii of the breeding substance is 
established above the threshold of the explosive instability. 
We shall call this effect of populating the medium a kinetic 
transition in the considered system. 

The steady-state value of the average density E is deter- 
mined by the stationary solution of the equation 

Neglecting the fluctuation corrections, i.e., the last two 
terms of (30), this equation has a solution 

where c:, is obtained from the condition a = F  
As shown in 92, allowance for the fluctuations lowers 

the explosive-instability threshold c,, compared with the 
value c:,, which remains small when condition (27) is satis- 
fied. In the present section we investigate the behavior of the 
density fluctuations (Sn2) near the threshold and determine 
by the same token the region of validity of the self-consis- 

tent-field approximation for the considered kinetic transi- 
tion. 

Neglect of the density fluctuations, to which the self- 
consistent-field approximation reduces, is justified under 
the condition 

It is known that in the theory of second-order phase transi- 
tions15 this condition is always violated sufficiently close to 
the transition point if the dimensionality of the space is less 
than four. We shall see below that in a kinetic transition the 
situation is different. We note that since the density fluctu- 
ations Sn are caused in our problem by an action external to 
the system, the correlator (Sn(r)Sn(O)) need not diverge if the 
arguments are equal. 

The density fluctuations 6n satisfy the stochastic differ- 
ential equation 

6fi=- (a+2BE-f) 6n+DA6n+6f (r, t)E 
+ (6f6n-<6f6n>) - B  (6nZ-(6nZ>). (33) 

To find the value of (Sn2) with the aid of this equation we 
can again use the Wyld diagram technique." 

We introduce a function U, defined by the relation 

so that the following equality is satisfied 

Iterating successively in the equation for Sn, obtained 
by a Fourier transformation of (33), from which we discard 
on the basis of the inequality (32) the terms in the last paren- 
theses we can construct formally a solution for Sn, in the 
form of an infinite series in powers of the random force Sf,. . 
Multiplying two such infinite series for Sn, and carrying out 
the procedure of statistical averaging, we arrive at a formal 
series for the function U,, the first diagrams of which are the 
following: 

The summation in this series of weakly coupled dia- . 
gram leads to the Wyld integral equation 

The function 3 (q) in (37) is given by the diagram series 

We leave out of (38) all the diagram terms and put approxi- 
mately (q) = S (9). The, if we introduce a new function Z 1 
defined by the relation U, = IG, I2Z,, it will satisfy the inte- 
gral equation 
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Since the Green's function Gq has at the threshold a pole at 
q = 0, the main contribution to the integral near the thresh- 
old is made by the region of small q. Taking S (q) outside the 
integral we obtain, after simple algebraic transformations, 
Zq and then ( S n 2 )  : 

where 

The criterion (32), which ensures validity of the self- 
consistent-field approximation, is thus satisfied if pg 1. 
After performing the required calculations we can arrive at 
the following expressions forp in the case of media of differ- 
ent dimensionality: 

a) long-lived breeding centers, i.e., T , > ~ / D ,  or Z)ro, 
where Z = (DT , ) '~~ :  

b) short-lived breeding centers, i.e., Zgr,: 

Y (ro/l)  2, d=3, 
y (rO/l) '  ln ( rc / ro ) ,  d=2, 

y ( r 0 )  ( r r )  d=l .  

We have left out of the expressions for p numerical fac- 
tors of the order of unity. These expressions contain (except 
for a three-dimensional medium) the correlation radius of 
the density fluctuations 

which becomes infinite at c = c,, , i.e., at the threshold of the 
explosive instability. As a result, at d = 1 and d = 2 the val- 
ue of p increases when the critical point is approached, 
whereas in a three-dimensional medium (d = 3) ,u remains 
constant in the limit as c + c,, . 

We note also that the parameter y in expressions (42) 
and (43) is small ( yg l )  if the condition (27) is satisfied; it 
characterizes the fluctuation shift of the critical point (cf. 
(23) and (26)). 

According to the terminology used in the theory of 
equilibrium phase transitions, the region near the critical 
point, where the self-consistent field approximation is not 
valid, is called a fluctuation region. As seen from (42), for 
long-lived breeding centers, when condition (27) is satisfied, 
there is no fluctuation region at all in the case of a three- 
dimensional medium. For a two-dimensional region it is ex- 
ponentially narrow: 

and only in the case of a one-dimensional medium is the 
narrowness of such a region proportional to a power (name- 
ly, the square) of the small parameter y: 

For short-lived breeding centers (Igr,) the expressions 
for p contain in place of the parameter y the combination 
y(r,/l)'. This quantity is small under the condition 

which is more stringent than (27). If the inequality (47) is 
satisfied, the fluctuation region does not exist at d = 3 and is 
exponentially narrow at d = 2: 

and has a power-law narrowness at d = 1. 

Comparing these results with the conclusions of the 
theory of equilibrium second-order phase transitions, it can 
be noted that the fluctuations become significant for the con- 
sidered kinetic transition at a lower dimensionality of the 
region. A fluctuation region exists in fact only in the one- 
dimensional case, and not starting with d = 3. 

Estimating the contributions from the different dia- 
grams in the series (38), we can show that the contributions 
from diagrams with irreducible correlators of higher order, 
namely third, fourth, and sixth in the series (38), are small in 
the parameter J/J *. For long-lived breeding centers (Zsr,) 
the smallness of the contributions from diagrams with cross- 
ing dashed lines (the first, second, and fifth diagram in the 
series (38)) is ensured by satisfaction of the condition (27), 
and for short-lived ones (Zxr,) by satisfaction of condition 
(47). 

In our earlier paperI4 we studied an analogous kinetic 
transition in the case when the fluctuations in the decay rates 
and breeding were Gaussian. An erroneous statement was 
made there that the correlation radius of the density fluctu- 
ations remains finite at the transition point.'' Actually, how- 
ever, the correlation radius diverges at the critical point also 
for Gaussian fluctuations 

r.= [Dla (S/S,,-1) ] "'. (50) 

Taking this circumstance into account, one more conclusion 
of Ref. 14 must be altered. For one-dimensional media, the 
self-consistent-field approximation remains applicable in 
the Gaussian situation not up to the transition point, but 
only outside the fluctuation region: 

where r,,, = (D / a ) ' I 2 .  The conclusion of Ref. 14 concern- 
ing two-and three-dimensional systems remain valid when 
account is taken of the divergence of the correlation radius. 
Although a fluctuation region does appear formally at 
d = 2, it is exponentially narrow and can be neglected. 

The noted deviations of the fluctuation behavior from 
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the predictions of the theory of second-order phase transi- 
tions are far from accidental. It can be easily seen that in 
kinetic transitions such as population of a medium the fluc- 
tuation phenomena can never coincide with those observed 
in second-order phase transitions. Indeed, for a second-or- 
der transition only the average value'of the order parameter 
(7)  vanishes at the critical point, whereas the average fluc- 
tuation (Sv2) differs from zero at this point. In a kinetic 
transition such as population of a medium, the quantity n, 
which has the meaning of density, is nonnegative. It follows 
therefore from the vanishing of the average density n at the 
critical point that all the fluctuation densities n vanish at the 
same point, including the quantity (Sn2). In our opinion, 
this positiveness of the order parameter in a kinetic transi- 
tion is in fact responsible for this peculiar fluctuation behav- 
ior. 

94. DETERMINATION OF THE EXPLOSIVE-INSTABILITY 
THRESHOLD FOR STRONG BREEDING CENTERS 

The total increment of a breeding substance in an indi- 
vidual strong center during its lifetime is 

AN=nor,d exp ( h o ~ , ) ,  (52) 

where no is the initial density level and is constant in space, 
while r, is the localization region of the eigenfunction qo(r) of 
the operator (6) and corresponds to the maximum positive 
eigenvalue A,: 

The following estimates of r, are valid: r, -ro at J S D  /3, and 
r, = (D/Ao)112at J S D / ~ .  

The explosive instability threshold is determined from 
the condition that the increment of matter in the breeding 
centers be equal to its decay per unit volume and per unit 
time. If the mutual influence of the centers is neglected, this 
condition can be represented in the form mAN = an,, so 
that the critical concentration m,, of the centers is given by 
the simple expression 

Expression (54) does not take correlation effects into 
account. Actually, if two centers turn out to be accidentally 
close enough to each other in space and in time, there ap- 
pears, beside the individual increments in the two centers, 
and additional paired increment due to the fact that the ex- 
ponential growth of the density in the second center does not 
start from the space-averaged density no at that instant of 
time, but from a higher level, namely the density spot pre- 
served from the preceding first center. More complicated 
additional contributions, due to clusters of three, four, and 
more centers, are also possible. 

For a cluster of two breeding centers that appear at the 
instants t ,  and t, at the points r ,  and r,, the value of the 
additional pair density increment is 

AfiIS2  (r2-r, ,  t , - t i )  =norld exp (2h0r0)  j rpo (r-r , )  
X Gd(r-r', t2- t i -rO) q0 ( r f - r , )  dr dr', (55) 

where G, is the Green's function for the diffusion problem in 

a space of dimensionality d: 

G d ( p ,  T )  = (4nDr)-"' exp ( - p 2 / 4 D ~ ) .  (56) 

In the derivation of (55) it was assumed that the two centers 
do not overlap in time, i.e., t, > t, + T,. 

The average contribution from the additional incre- 
ment in paired clusters per unit volume and per unit time is 

wherep(p,r) is the probability density for the appearance of a 
second center at a distance p and at a time T after the first. It 
is known that for independently produced centers this distri- 
bution is of the form (see Ref. 16) 

p(p1 r )  =m exp [ - m V d ~ ] ,  (58) 

where V, is the volume of a sphere of radius p in a space of 
dimensionality d. The quantity dN,,2 must be compared 
with the average increment dN, = mAN in single centers. 

To calculate the average increment dN,,, it is neces- 
sary generally speaking, to know the explicit form of the 
eigenfunction qo(r), a form determined by the concrete type 
of the breeding centers. We, however, are primarily interest- 
ed in the limit of sufficiently low concentrations, when the 
centers in a paired cluster are far from each other in time. In 
this case it can be assumed that during the time of the diffu- 
sion spreading after the end of the action of the first center, 
the spot that remains from it extends to a region of space of 
size much larger than the initial radius r,. When calculating 
the additional paired increment it is then possible to neglect 
the density inhomogeneity in the region where the next sec- 
ond center appears. As a result, the expression for dN,,2 
becomes much simpler: 
- 
ANl,z=1/znomZr,2d exp (2hozo) 

Calculating the integral for media of different dimensiona- 
lity, it can be shown that, in order of magnitude - 

AN,,2-nor,zdmezA~T~ ( m / D )  d / ( d + Z ) .  (60) 

Thus, the additional average increment in the paired clusters 
is small compared with the average increment on single 
centers if the following condition is satisfied: 

This condition can be obtained also by stipulating that 
the volume of the space-time region, which is strongly per- 
turbed because of the increment of the density in the breed- 
ing center, by much smaller than the volume per center. If 
the inverse condition is satisfied, the indicated regions corre- 
sponding to different centers overlap strongly and the inde- 
pendent-center approximation is patently invalid. On going 
through the concentration value 

the contributions from the clusters made up of several breed- 
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ing centers increase rapidly, and the increase of matter in the 
medium increases strongly at the same time. 

The purpose of our analysis was to calculate the critical 
concentration of the breeding centers. Comparing (61) with 
(54) we see that the clusters do not play a decisive role in the 
formation of the explosive-instability threshold if the rela- 
tion a (a*  is satisfied, where 

a'= ( D / r t Z )  exp ( - - : k O ~ . ) .  

With increasing decay rate a ,  the contribution from clusters 
consisting of two centers begins to increase. The expression 
for the explosive-instability threshold, with account taken 
for the correction due to paired clusters, takes at a ( a*  the 
form 

where 

d= l ,  

d=2, 
' lsr ('/,) ( 3 i 2 / 5 )  ''1, d=3, 

and r ( x )  is the gamma function. 
If a 2 a*, the threshold drops substantially compared 

with mg'. The principal role in its determination is played 
then by clusters made up of a large number of centers. 

In conclusion we wish to emphasize that the explosive- 
instability threshold for fluctuating media can depend sub- 
stantially on the statistical characteristics of the random 
fluctuating configuration of the breeding centers. From the 
mathematical viewpoint the problems that arise here are no 
less interesting than the traditional problems of the theory of 
disordered media.16 In the present paper we have classified 
for the model ( 1 )  the principal qualitatively different types of 
critical behavior, and indicated solutions for several simplest 
cases. Among the more difficult and unsolved problems is 
the calculation of the explosive-instability threshold when 
the condition (27) is violated for weak centers, as well as for 
strong centers at large decay rates whena k a*.  We obtained 
criteria for the applicability of the self-consistent-field ap- 
proximation to the description of a kinetic transition such as 
population of a medium. Its applicability to weak centers is 

restricted by the condition (27) or (47). Even if these condi- 
tions are satisfied, points where the fluctuations are strong 
exists in the one dimensional case a narrow fluctuation re- 
gion near the transition. This fluctuation region can appar- 
ently be investigated by renormalization-group methods. 
What remains unclear is the character of the critical behav- 
ior in a kinetic transition for the case of strong centers, and 
also for weak centers when condition (27) or (47) is violated. 
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