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The critical thermodyinamics of superfluid helium-3 in zero magnetic field is theoretically stud- 
ied. The free energies of the superfluid phases A and B are computed in the region of strong 
fluctuations by summing the ring diagrams. The equations of the binodals and the high-tempera- 
ture spinodals for the itwo phases are derived, and the magnitudes of the condensate amplitude 
jumps on these curves are determined. 
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The tendency towards flilctuational destabilization of 
second-order phase transitions in systems with many-com- 
ponent order parameters was discovered by Wilson and 
Fisher about ten years ago.' Since then several scores of 
models have been developed in which the interaction of the 
critical fluctuations leads to the conversion of the contin- 
uous phase transitions into first-order transitions. In solving 
the problem of the order of a transition, researchers in this 
field limit themselves in the overwhelming majority of cases 
to the investigation of the stabi~lity of the quartic form in the 
Landau expansion for the free energy of the system under 
consideration, and the inference of fluctuational "first-or- 
derness" of a phase transition is made on the basis of the fact 
that this form loses its positive: definiteness when T-T,. 

It is difficult to regard such a solution to the problem as 
comprehensive. The complete analysis should clearly in- 
clude the computation of the free energy of the ordered 
phase and the determination of the equation of state, the 
shape of the first-order phase transition line, the magnitude 
of the order-parameter jump, etc. The problem of carrying 
out such an analysis is especially critical in those cases when 
the interaction of the orderparameter fluctuations deter- 
mines not only the order of the transition, but also the struc- 
ture of the low-temperature phase. As is well known, for 
systems that can be in one of several ordered phases at 
T <  T,, allowance for the critical fluctuations can modify the 
relations, predicted by the Lartdau theory, between the free 
energies of these phases, and nnake thermodynamically sta- 
ble a phase different from the one predicted by the pheno- 
menological In such situations the computation of 
the free energy of the system below T, is an operation absolu- 
tely necessary for the establishment of the form of the sys- 
tem's phase diagram. Moreover, the solution of problems of 
the present type is now of direct practical interest, since the 
first experiments on the study of first-order phase transitions 
having a fluctuational character have already been pub- 
lished. 

In the present paper we consider the critical behavior of 
superfluid helium-3, a system which is characterized by fluc- 
tuational instability of its second-order phase transitions 
and fluctuational competition between the low-temperature 
phases. Below we shall compute the free energies of the 

phases A and B as functions of the condensate amplitude, 
derive the equations of the binodals and high-temperature 
spinodals, and determine the magnitudes of the order-pa- 
rameter jumps on these curves. Here for the free energies FA 
and F, we shall use an approximate representation in the 
form of Gaussian path integrals, which will enable us to car- 
ry all the computations through in the case of the nontrivial 
five-charge model with an eighteen-component order pa- 
rameter. 

Thus, the fluctuation Hamiltonian of a superfluid Fer- 
mi liquid withp pairing without allowance for the very weak 
dipole interaction and the fluctuation-spectrum anisotro- 
py,4 which is unimportant here, has the form6 

where the first index of pi, is a spin index, while the second is 
an orbital index. 

Let us briefly recall the principal relations characteriz- 
ing the thermodynamics of liquid helium-3 in the region of 
applicability of the Landau theory. The order parameter in 
the Anderson-Morel and Balian-Werthamer phases has the 
form7 

The free energies of these phases are equal to 

For the constantsfla a microscopic theory of the type of the 
BCS theory, but without allowance for the paramagnon ex- 
change, yields8 
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where N (0) is the density of states at the Fermi surface and 6 
is the paramagnon coupling constant. This constant has a 
threshold value 6, -0.4, such that for xi < 0 and 6 < 6,  the B 
phase is the thermodynamically stable phase; for 6 > a,, the 
A phase. 

Let us now discuss the role of the critical fluctuations. 
As is well known, the interaction of the fluctuations leads to 
the renormalization of the "mass" xo and the coupling con- 
stants pa .  The nature of this renormalization is such that, as 
x2 decreases, the coefficients of A in the expressions (3) de- 
crease until they vanish at some finite values of x2 (Refs. 4 
and 6); this is a harbinger of a first-order phase transition 
into one of the superfluid phases. To describe these phases 
and the phase transition itself, we need to go beyond the 
lowest approximation in terms of dressed charges. The con- 
tribution of the next order of perturbation theory to the free 
energy is given by a sum of ring  diagram^.^.'^ In the ring 
approximation the terms of the type p3(p) are completely 
ignored, and the Hamiltonian HA describing the interaction 
of the fluctuations with the condensate is similar in structure 
to the Hamiltonian of a free field. For the phase A it has the 
form 

The Hamiltonian HA for the B phase is equal to (6 )  

28 +$ fib + 2 c p . .  .' + ,(cpijcpji+cpij"Pjf*) + - 3 ~ I ' F ~ J  6 3 

(7) 
For the free energy in the single-loop representation we 

have the following representation1': 

whereab is the Hamiltonian of a free field with mass x ,  a4 is 
a Hamiltonian of the type (5), (7) with the bare coupling con- 
stants replaced by dressed charges y,, and y is the linear 
combination of the y,, that figures in the corresponding 
Landau expansion. For the A and B phases 

y,4 = y2 + Y4 + Y5, and YB = + y2 + ( ~ 3  + y4 + ~ 5 ) / ~ .  
The subscript R of the logarithm indicates that we have to 
make three subtractions at the point A * = 0 when comput- 
ing this term. 

The subsequent computations are, in principle, simple. 
The path integral in (8) is Gaussian, and its evaluation 
amounts to the calculation of some 18 X 18 determinant. In 
the case of the phase A the matrix corresponding to this de- 
terminant is diagonal, while in the case of the phase B the 
matrix can be diagonalized by elementary methods. As a 
result, we obtain for the two superfluid phases the free ener- 
gies 

PA=2d2-LAd4+8/,s 1 g, I [2f ( d Z ,  2+ v+x+2y)  +4f ( d 2 ,  v + y )  
+2f ( d Z ,  v+x-2y-22) +4f (d2 ,  v ) ]  , (9) 

FB=2dZ-LBd'+8/,, I g ,  1 [5f ( d Z ,  I+v+x+y)  
+5f (d2 ,  v+'/$ ( x + y )  - I) +3f  (d2, ~ + x - ~ / ~ y - ~ / , z - l )  j , 

(10) 
where 

In writing down (9) and (lo), we dropped in the square brack- 
ets the terms corresponding to the "soft" and Goldstone 
branches in the excitation spectrum of the system. It can be 
shown that the contribution of these terms to 7;; is actually 
proportional tog:, and allowance for them would lead in the 
present case to our exceeding the computational accuracy. 

The resulting formulas (9) and (10) are quite unwieldy, 
and their analytical investigation is possible only when 
Iga 141. In this case the dimensionless order parameter d )  1 
on the binodal and the high-temperature spinodal, and to 
find d and the form of these curves themselves we can use the 
following simplified expressions for the p: 

where 

=51 I+v+x+y 1"+51v+'/,(x+y)-I 1 ' + 3 ~ v + ~ - ~ / s y - ~ / s ~ - - f  1'. 

(13) 
Hence we can now easily determine the equations for the 
binodals, 

and spinodals, 

and also find the magnitudes of the order-parameter jumps 
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TABLE I. The values of the parameters M f .  ' and M ,A. ' at two points located in the L A  = L ' 
hyperplane, and corresponding to first-order phase transitions into the superfluid state in the 
weak-coupling regime. 

on these curves: 

Knowing the expressions for the free energies of the 
superfluid phases, we can determine to what extent the form 
of the phase diagram of liquid helium-3 as predicted in Ref. 4 
on the basis of an analysis of a quartic form of the type (3) will 
be modified when allowance is made for the ring diagrams. 
To do this, we need not, in piinciple, study the thermody- 
namics of the system in the en1 ire region of physically acces- 
sible values ofg,, u, x, y, and 2 .  For Ig, 14 1, it is sufficient to 
consider only a small neighborhood of the L A = L hyper- 
plane, in which FA = FB when the rings are neglected, and in 
the vicinity of which we can, consequently, observe the fluc- 
tuational competition of the saperfluid phases. Moreover, to 
answer the question posed, it ns not at all necessary to com- 
pute the magnitudes of the free energies of the A and B 
phases for thermodynamic-ejquilibrium values of d. The 
cause of this good luck lies in the virtually exact coincidence 
of the numerical values of the parameters M, and M4 for 
both phases when L A ZL '4 1 .  Let us, to demonstrate this 
fa&, give the values of M, and M4 at two points lying in the 
L A = L ' hyperplane in the (u, x,  y, z) phase space. The first 
of these points, for which L A := L = 0, corresponds to the 
stability boundary of biquadratic forms of the type (3), while 
the second point, where L A = L = 0.12, corresponds to a 
weak instability of these forms, which can be compensated 
by the sum of the ring diagrams even at small charge values 
(i.e., with (g, 1 ~ 0 . 0 5 ) .  The nua~erical data are given in Table 
I. The coordinates given there for the two indicated points 
were obtained through a computer solution of renormaliza- 
tion-group equations for v, x, y, and z (Ref. 4) with initial 
conditions dictated by the fol-mulas (4) and paramagnon- 
condensate values close to the "critical" value 6 = 0.27, i.e., 
close to that value at which the phase trajectories cross or 
touch the L A = L ' hyperplane: at the first-order phase tran- 
sition point. 

Thus, the "radiation" component of the free energy, 
while guaranteeing the thermodynamic stability of the su- 
perfluid phases when LA,  L > 0, makes at the same time 
virtually no contribution to tlhe difference FA -Fa when 
L A ZL *. This means that the structure of the low-tempera- 
ture phase in liquid helium-3 is determined only by the ac- 
tion of the fourth-order invariants in the expressions for F. 
Consequently, all the results obtained earlier, including the 
conclusion that the phase diagram contains a narrow "beak" 
formed by first-order phase-transition lines, remain valid 
within the framework of the above-developed more com- 
plete theory. 

The validity of the last assertion is, of course, closely 
tied-in with the fulfillment of' the condition Ig, / < 1. For 

Ig, 1 - 1 the actual picture of the critical behavior of super- 
fluid helium-3 can differ appreciably from the one that we 
have painted. Since it is not possible for us to find with any 
accuracy the magnitudes of the dimensionless charges on the 
first-order phase transition lines (even the bare vertices are 
known only approximately), we are not in a position to 
choose judiciously between the weak- and strong-coupling 
regimes. And although we can arguably assert that the quali- 
tative results of the theory do not depend on which regime is 
rea l i~ed ,~  it is nevertheless useful to consider a system for 
which problems connected with the possible transition into 
the strong-coupling regime do not arise. We have in mind the 
four-dimensional model with the Hamiltonian (1). In this 
case the ring approximation gives 

X 4  [ 2 # - L A S B d 4  + Fa,, x - I r l l ~ P ' *  
41 y ,  l 16nZ 81ndz]. (17) 

where the approximate-equality sign reminds us of the fact 
that these formulas are valid with logarithmic accuracy. 
Since in the case under consideration the first-order phase 
transitions occur at exponentially small values of L and 
the pattern of phase trajectories of the renormalization- 
group equations for the ratios of v, x, y, and z are the same as 
in three dimensions, the coordinates of the triple point, and 
the values of the parameters M 2, 'there, coincide practically 
exactly with those given in the first row in Table I. Conse- 
quently, everything said earlier about the character of the 
critical behavior in the weak-coupling limit remains valid. 
And the resulting formulas of the type ( 14)-(16) can easily be 
obtained from (17); they are, for brevity, not written out 
here. 

In conclusion, I thank V. L. Pokrovskii for a discussion 
that spurred me to carry out the present investigation. I also 
thank 3. N. Shalaev for a very useful advice. 

'K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28,240 (1972). 
'A. I. Sokolov and A. K. Tagantsev, Ferroelectrics 20, 141 (1978); Zh. 
Eksp. Teor. Fiz. 76, 181 (1979) [Sov. Phys. JETP 49,92 (1979)l. 

3A. L. Korzhenevskii and A. I. Sokolov, Pis'ma Zh. Eksp. Teor. Fiz. 27, 
255 (1978) [JETP Lett. 27,239 (1978)l. 

4A. I. Sokolov, Pis'ma Zh. Eksp. Teor. Fiz. 29,618 (1979) [JETP Lett. 29, 
565 (1979)l; Zh. Eksp. Teor. ~ i z .  78, 1985 (1980) [Sov. Phys. JETP 51, 
998 (198011. 

5A. I. ~okolov,  Zh. Eksp. Teor. Fiz. 79, 1137 (1980) [Sov. Phys. JETP 52, 
575 (1980)l. 
6D. T. R. Jones, A. Love, and M. A. Moore, J. Phys. C 9,743 (1976). 
'G. Barton and M. A. Moore, J. Phys. C 7,4220 (1974). 
'W. F. Brinkman, J. Serene, and P. W. Anderson, Phys. Rev. A 10,2386 
(1974). 

91. F. Lyuksyutov and V. L. Pokrovskii, Pis'ma Zh. Eksp. Teor. Fiz. 21, 
22 (1975) [JETP Lett. 21, 9 (1975)]. 

'OS. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973). 
"E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in: Phase Transitions and 

Critical Phenomena (ed. by C. Domb and M. S. Green), Vol. 6, Aca- 
demic Press, New York, 1975. 
Translated by A. K. Agyei 

800 Sov. Phys. JETP 57 (4), April 1983 A. I .  Sokolov 800 


