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In continuation of previous work [S. V. Antipov et al., Sov. Phys. JETP 55,85 (1982)l the princi- 
pal properties of Rossby solitons in shallow rotating fluids of constant depth have been investigat- 
ed. It was shown for the first time that: 1) of all geostrophic vortices (with proper rotation frequen- 
cy less than that of the system) only Rossby solitons are stable, and the other vortices are rapidly 
transformed into zonal flows; 2) the drift velocity of Rossby solitons increases with their ampli- 
tude; 3) collisions of Rcssby solitons of different amplitudes (which invariably drift in the same 
direction) are inelastic; at sufficiently high velocities of approach the vortices merge into one 
Rossby soliton, the lifetime of which is determined by the viscosity of the medium; 4) as predicted 
theoretically [V. I. Petviashvili, JETP Lett. 32,619 (1980)], Rossby solitons are observed only in 
the form of solitary anticyclones, i.e., solitary fluid elevations (on the other hand, cyclones are 
fluid depressions which decay rapidly); consequently it is not possible to create a Rossby soliton in 
the form of a solitary cyclone-anticyclone vortex pair [V. D. Larichev and G. M. Reznik, Doklady 
Akad. Nauk SSSR 231,1077 (1976)] (for vortex sizes exceeding the Rossby radius): in place of the 
expected vortex pair one obtains a solitary anticyclone of larger size; 5) countercurrents in the 
geometry under considt~ration exhibit an instability (a variation on the classical Kelvin-Helm- 
holtz instability). The nonlinear regime of this instability is characterized by a marked asymme- 
try: the excitation thresholds of vortices of opposite vorticity are approximately the same, where- 
as anticyclones (where ithe vorticity is antiparallel to the angular velocity vector of the global 
rotation of the system) have significantly larger amplitudes and sizes than cyclones; anticyclones 
are Rossby solitons. The probable relation between the observed asymmetry to the nature of the 
vortex in the Big Red Spot of Jupiter is considered. 

PACS numbers: 47.30. + s, 47.20. + m 

I. INTRODUCTION 

The work reported in the present paper had two pur- 
poses. First of all, after the experiments1 which first obtained 
and investigated Rossby solitoins in a rotating shallow fluid 
of constant depth, which were predicted by t h e ~ r y , ~  it be- 
came necessary to clarify a number of questions of principle 
regarding the most general properties of Rossby solitons. 
The answers to these questions (briefly enumerated as items 
1) through 4) in the Abstract) comprise the first part of the 
paper. Second, both because ol'the intrinsic logic of the in- 
vestigation, and because of the obvious applications to the 
physics of planetary atmospheres, it became necessary to 
study properties of Rossby solitons which are not isolated (as 
in Refs. 1 and 2), but exist against the background of zonal 
flows with velocity shear. The experiments that were carried 
out, in which a Rossby soliton appears in a completely differ- 
ent situation, namely as a consequence of a Kelvin-Helm- 
holtz instability, are described in the second half of this pa- 
per. This part of the experiment was influenced by the quite 
effective experiments of Obukliov and collab~ratores,~-~ in 
which the instability of zonal countercurrent flows was in- 
vestigated in a different geometry, and where beautiful vorti- 
ces were obtained, reminiscent of the cyclones of Antarctica. 
The geometry of our experimelits has a very specific nature, 
allowing one to compare the results obtained here with the 

properties of the famous vortex in the Big Red Spot of Ju- 
piter, and make some assertions on its putative nature. 

The paper also considers some methodological ques- 
tions, to wit: why are such "genuine" vortices, which effec- 
tivly drag with them fluid particles, called not simply (and 
not only) vortices but also solitary waves or solitons; why are 
solitary waves which are not conserved in mutual collisions 
called solitons; why do vortices of both signs (both cyclones 
and anticyclones) drift around the rotation axis of the system 
in the same direction; and other similar questions. 

2. THE EXPERIMENTAL SETUPS AND CONDITIONS 

Two experimental installations have been used in this 
work. Thefirst (Fig. 1) had already been used in the previous 
experiments.' It was based on a small paraboloid of 28 cm 
maximum diameter rotating around the vertical symmetry 
axis with an angular velocity (the rotation period was 
T, = 580 ms) at which the fluid spreads along the surface of 
the paraboloid in an even layer of approximately constant 
depth. The thickness H,  of the fluid layer varied between 3 
and 10 mm. As a working fluid we have used either water or 
a solution of nickel sulfate in water (which had a viscosity 
approximately three times larger than water). In order to 
visualize the flows of the fluid we have used white test parti- 
cles floating on the surface of the fluid on the background of 
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FIG. 1 .  Schematic drawing of the experimental setups','2 for the excita- 
tion of single Rossby solitons (left) and for the generation of zonal flows of 
the fluid (right): 1-vessel with parabolic profile of the bottom, 2-surface 
of the fluid (water), which spreads along the parabolic bottom when rotat- 
ing, 3-photographic camera rotating along with the vessel, &rotating 
"priming disk," 5 and &rotating rings producing countercurrent flows 
with velocity shear. The paraboloid rotates around a vertical axis counter- 
clockwise with angular velocity 0,. In the top views the solid arrows 
represent theanticyclonal direction of rotation of the priming disk and the 
direction of flow of the fluid for anticyclonal shear, and the dotted arrow 
shows the drift direction of the Rossby soliton (the soliton fall behind the 
global rotation of the fluid). The angle a, is the angle between the rotation 
axis of the vessel and the normal to the fluid surface at the active point. 

the black bottom of the vessel, and a photographic camera 
rotating along with the paraboloid. To excite a solitary 
Rossby vortex at some working point (at a distance of 10 cm 
from the rotation axis) a thin metallic "priming disk," the 
diameter of which could be varied between 1.5 and 5 cm, was 
situated near the bottom of the fluid. The disk was brought 
for 2 to 3 seconds into rotation around the normal to the 
paraboloid at the working point and it gradually entrained 
the fluid on top of it and in its neighborhood into a local 
rotation. In the soliton scattering experiments the rotation 
velocity of the "priming disk" was varied in time, and it was 
thus possible to generate different Rossby vortices moving 
with different velocities one behind the other. In the experi- 
ments where bound pairs of vortices (cyclone-anticyclone 
pairs) were created, two priming disks situated next to each 
other at a distance of 5 mm along the same "meridian" sym- 
metrically with respect to the point with r = 10 cm were 
used in place of the single disk. The rotation velocity, the 
duration of the rotation and the instant of switching on were 
separately adjusted for each disk. The directions of rotation 
could be pairwise changed: for instance in one experiment 
the interior disk rotated in the anticyclonal direction and the 
exterior disk (the one farther from the axis) in the cyclonal 
direction; in a second experiment the interior disk rotated in 
the cyclonal direction and the exterior disk in the anticy- 
clonal direction. 

The second installation (Fig. 1 )  had at its basis the same 
paraboloid as the first one, but now two troughs were ma- 
chined into the central part of the paraboloid in which two 

rings of width 3 cm each could slide, rotating around the 
vertical symmetry axis. The distances between the rings and 
the walls of the troughs were 1 mm. The distance between 
the rings was also 3 cm, and its middle was at r = 10 cm from 
the rotation axis. The rings rotated relative to the paraboloid 
in opposite directions with the same angular velocity and 
created in the reference frame of the paraboloid counter- 
flowing flows with velocity shear, the direction of which 
could be reversed: for cyclonal shear the outer ring was ro- 
tating faster than the paraboloid, and the inner one was ro- 
tating slower; for anticyclonal shear the outer ring lagged 
behind, whereas the interior one advanced relative to the 
rotation of the paraboloid. The magnitude of the shear angu- 
lar velocity R,,,,, could be smoothly varied from zero to a 
value equal to the angular velocity of the main rotation 
0, = 2r/TO. The depth of the fluid in these experiments 
ranged between Ho = 2-20 mm. Observations have shown 
that as long as the magnitude of the velocity shear did not 
exceed a certain threshold, a laminar flow established itself 
in the fluid with two sharp jumps in the velocity in the region 
of the gaps between the rings and the adjacent portions of the 
wall of the vessel. The width of these jumps which were sepa- 
rated by a distance of 3 cm was approximately equal to the 
depth of the fluid Ho, i.e., was of the order of several millime- 
ters. Accordingly, the photographs of the traces of the test 
particles represent arcs of concentric circles around the rota- 
tion axis. In this regime the layers of fluid which are adjacent 
to the rings move approximately with the velocity of the 
appropriate ring. When the magnitude of the velocity shear 
exceeded a certain value, the character of the motion of the 
fluid changed radically, and quite interesting phenomena 
come into play, which we describe below. 

3. EXPERIMENTAL DATA 

A. Previous results 

Before reporting the experimental data obtained in the 
present work we would like to remind the reader that Rossby 
solitons, which are solitary "shallow water" gravity waves in 
the model of a rotating planet, are characterized by the fol- 
lowing characteristic traits': 

1) A Rossbj soliton is a solitary anticyclonal vortex, 
rotating around its proper vertical axis opposite to the global 
rotation of the medium. There is approximate equilibrium 
between the Coriolis force directed towards the center of the 
vortex and creating an elevation of the fluid, and the gradi- 
ent of the hydrostatic pressure (this is the so-called geostro- 
phic equilibrium). The frequency of the proper rotation of 
the vortex is small compared to the frequency of the global 
rotation, and therefore the centrifugal force from the proper 
rotation is much smaller than the Coriolis force. 

2) The characteristic size (diameter) of the soliton, 2a, 
defined as the distance between the opposite points of its 
profile at which the linear velocity of the proper rotation is 
maximal (see Fig. 2), is connected to the Rossby radius r,  by 
the relation 
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FIG. 2. The spatial profiles of the anlplar velocity w of the rotation of a 
vortex (a), the linear velocity Vof the particles in the reference frame of the 
fluid (b), the linear velocity V' of particles in the reference frame of the 
vortex (c), and the flow lines in the reference frame of the vortex (d) for a 
single Rossby soliton. In all pictures 1:he vertical axis represents the dis- 
tancep from the center of the vortex, the signs plus and minus correspond 
to displacements to the periphery of tlhe paraboloid and the rotation axis, 
respectively. The linear velocity is ch~~sen with a plus sign for motions in 
the direction of the drift of the vortex (left to right) and with a minus sign 
for motion in the opposite direction. The lower series of illustrations cor- 
responds to the regime with a smaller. region of captured particles, the 
region having contracted on account of viscosity. The capture region is 
bounded by the loop of the separatrix, denoted by the dotted line passing 
through the point S. 

where Ho is the depth of the fluid, g* = g/cosa,g is the accel- 
eration of gravity, f, = U2,cosa is the Coriolis parameter, 
and a is the angle between the vc:ctor 0, of the angular veloc- 
ity of the global rotation and the normal vector to the surface 
of the fluid at the given point. In the conditions of our experi- 
ment, r, = 2.1 cm for Ho = 5 Inm. 

3) A Rossby soliton drifts around the rotation axis of the 
system against the direction of the global motion of the fluid 
with a velocity V,, which is close to the Rossby velocity VR 
(see below for details). In the parabolic model (Fig. 1) the 
Rossby velocity is defined by 

V,=H,Q, sin a,. (3) 

For example, in the typical conditions of our experiments 
Ho = 5 mm, 0, = 11 s-', sina,, = 0.8, and V,  = 4.5 cm/s. 

4) If the amplitude of the soliton is sufficiently large, so 
that the linear velocity of the proper rotation (which is maxi- 
mal on the velocity profile of the vortex) exceeds its drift 
velocity, the soliton will entrain all fluid particles except 
those which are at the periphery of the vortex and have a 
velocity of rotation smaller than V,, . In the conditions of our 
experiments entrainment of particles occurs definitely if the 
rise AH of the vortex above the level of the surrounding fluid 
satisfies the (sufficient) conditio~n AH 2 0.2 Ho. 

In order to illustrate what was said, the lower row of 
Fig. 2 shows the same items as the upper row, but some time 
later. Figure 2 shows the profill~ls of the angular velocity of 
the proper rotation of the vortex (position a), of the linear 
velocity of rotation of the vortex at a section of the meri- 

dional plane perpendicular to its drift direction (position b ), 
and the profile of the velocity of the motion of the fluid in the 
reference frame comoving with the vortex itself (position c). 
A positive sign of the velocity at the profiles b and c corre- 
sponds to motion in the direction of the drift of the vortex, a 
negative sign corresponds to motion in the opposite direc- 
tion. Figure 2d shows the streamlines in the reference frame 
of the vortex. The curve with the point S where the velocity 
vanishes in the frame of the vortex is the separatrix; inside 
this curve is the region of particles captured by the vortex 
and outside it is the region of passer-by particles; at the point 
S the velocity of rotation is equal to the drift velocity of the 
vortex. As the vortex moves and its rotation slows down on 
account of viscosity, the diameter of the region of captured 
particles decreases, as shown by the comparison of the lower 
row in Fig. 2 with the upper row. 

B. The stability of Rossby solitons 

After the detection of Rossby solitons1 there naturally 
arose the question: are they just one of the "equally valid" 
particular solutions of the corresponding nonlinear equa- 
tion, or are they singled-out physically by something and 
should be observed in preference over other geostrophic vor- 
tices? To answer this question we have carried out the fol- 
lowing experiment. By means of priming disks of different 
diameters we have excited anticyclonal geostrophic vortices 
of different sizes, and have compared their parameters (size, 
drift velocity, lifetime) with the corresponding characteris- 
tics of the Rossby solitons. (Insofar as cyclonal vortices are 
concerned, it was already established in Ref. 1 that they are 
unstable and decay rapidly, see Subsection E below.) The 
lifetime r of the vortex was defined as the time interval from 
the formation of the vortex (its separation from the priming 
disk) to the time when the vortex lines open up and the tracks 
of the test particles stop forming closed trajectories around 
the axis of the vortex. One of the mechanisms of this pheno- 
menon is illustrated by Fig. 2: if the vortex is stable, the 
slowing down of the rotation of the vortex to a state in which 
the maximal rotation velocity falls below the drift velocity, 
V,,, ( V,,, leads to the disappearance of the capture region 
(Fig. 2). We call this mechanism laminar (for an explanation 
of the definition of the lifetime of a vortex for this case see 
Fig. 3). However, the experiments have shown that there 
exists another mechanism which limits the lifetime of the 
vortex even for V,,, > V,,. This mechanism is related to the 
decay of the vortex into zonal flow: in other words, there 
occurs a change of the spatial structure of the vortex for 
which the round "hillock" transforms into a drawn-out 
"crest." This second mechanism is thus related to the insta- 
bility of the vortex against decay. 

The results of the experiments in which the working 
fluid was water are represented in Fig. 3. (We remark right 
away that these results do not depend on the viscosity of the 
medium; see e.g., Fig. 3d as well as Ref. 6a.) Figures 3a and 
3b show the dependence of the lifetime of a vortex on its 
diameter, defined similarly to the diameters of the Rossby 
vortices, at the instant when the vortex may be considered as 
formed; H,, = 5-6 mm in the case 3a and Ho = 3 mm in the 
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FIG. 3. The dependence of the lifetime of vortices 

d in water on their diameter: a) H, = 5 mm and 6 
6 -  3 -  mm; b) H, = 3 mm. The dependence of the drift 

velocity on the diameter of the vortices (c) for 
H, = 5-6 mm and on the depth of the fluid (d); in 

4 -  2 -  the case d the diameter of the vortex satisfies the 
condition (4), and the prime denotes the case when 
the working fluid was a nickel sulfate solution. As 
diameter of the vortex we have taken the distance 
2a between the points on the profile where the Iln- 
ear velocity is maximal (see Fig. 2). 
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Vortex diameter,cm "0, 

case 3b. It is clear that if the diameter of the vortex exceeds a 
certain magnitude 

which increases with the growth of the depth of the fluid, the 
lifetime of the vortex reaches saturation, T,,,,, ; its magnitude 
is obviously determined by the time of laminar opening-up of 
the vortex trajectories. If the diameter of the vortex is sub- 
stantially lower than the threshold (4), the lifetime of the 
vortex turns out relatively short; it is determined by the de- 
cay of the vortex into a zonal motion6, and is smaller the 
smaller the diameter of the vortex becomes. For instance, if 
the diameter is only half as large as the threshold (4), the 
decay of the vortex into a zonal flow occurs over a time of the 
order of one rotation of the paraboloid, i. e., considerably 
faster than one rotation of the vortex around its own axis. 
Vortices of different diameter also have different drift veloc- 
ities (for constant amplitude AH. Figure 3c shows that as the 
diameter of the vortex increases so does the drift velocity, 
which reaches saturation. It is ekar from Fig. 3d Ehat the 
maximal drift velocity, just like the Rossby velocity, is ap- 
proximately proportional to the depth H, of the fluid, but 
numerically Vd, < V, . Thus, Vd, -- V, /2.5 under the condi- 
tions of Fig. 3d. If one takes into account the fact that ac- 
cording to the theory2 the drift velocity of the soliton must be 
somewhat larger than V, (or, what amounts to the same, if 
one takes into account the dependence of Vdr on the ampli- 
tude of the soliton), one can see that the experimental value 
of V,, is smaller than the theoretical value2 by approximate- 
ly a factor of three. There are reasons to believe that this 
circumstance does not contradict the principles of the the- 
 or^,^ and is partly due to the geometry of the paraboloid used 
in the experiments. 

A comparison of the experimental data with the enu- 
merated properties of Rossby solitons leads to the conclu- 
sion that the vortices which are observed in the range of 
conditions (4) are Rossby solitons which are the only ones 
among the geostrophic vortices which are stable. This stabil- 
ity also manifests itself in the fact that an extended anticy- 
clonal disturbance of a more or less arbitrary form decays 
into a "chain" of Rossby solitons (see Ref. 1) or reorganizes 
itself into a single Rossby soliton. A typical example of this 
type is given in Fig. 4, which shows the time evolution of an 

anticyclonal vortex which initially had an irregular form. It 
can be seen that over a time of the order of several rotations 
of the paraboloid the vortex takes on the shape, size, and 
drift velocity which are typical of a Rossby soliton, and con- 
tinues to exist stably over the "viscosity" time, in other 
words, becomes a regular Rossby soliton. This regularity 
expresses the fact (to which V. V. Yan'kov called our atten- 
tion) that a Rossby soliton is an "attraction" type solution of 
the nonlinear e q ~ a t i o n . ~  

C. The drift velocity of a Rossby soliton as a function of Its 
amplitude 

An investigation of the dependence of the drift velocity 
Vdr of the vortices on their amplitude AH was carried out by 
means of a camera which with one winding-up could take a 
series of approximately 15 pictures with adjustable expo- 
sures and intervals between exposures. Each such series cor- 
esponded to one pulse of the priming disk and yielded both a 
graph of the motion of the vortex relative to the fluid (from 
which Vd, was determined), and a total picture of-the distri- 
bution of velocities of the particles in the vortex as a function 
of time. An example of such a series was given in Fig. 4. 
(Similar series of pictures illustrate, among other things, the 
laminar opening-up of the particle trajectories in vortices of 
sufficiently large size, satisfying the condition (4).) The ve- 
locities of the particles in the vortex were determined direct- 
ly from photographs of the type of those shown in Fig. 4, and 
the amplitude AH was estimated from the maximal velocity 
Vro, in the vortex from the equation of geostrophic equilibri- 
um (the Coriolis force is equated to the pressure gradient in 
the fluid) 

2VOtQd cos a-g'AHla, (5) 

where a is the radius of the vortex corresponding to maximal 
velocity. The rotation velocity in the vortex and its ampli- 
tude AH decrease with time on account of the viscosity over 
the duration of each series of photographs (Fig. 5) and this 
allowed us to construct the dependence of Vdr on AH. A 
typical example of such a dependence is shown in Fig. 5. It is 
clear that Vd, increases with AH-in agreement with the 
theory2-and reaches saturation for large amplitudes (the 
latter phenomenon surpases the framework of the theoreti- 
cal predictions). It should be noted that the investigated 
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FIG. 5. The velocity of rotation of the particles in the vortex, which is 
maximal on its profile (a) and the drift velocity (b), as functions of time. 
The vortex diameter satisfies the condition (4), H, = 5 mm. The quantity T 
is the lifetime of the vortex. The dependence of the drift velocity of the 
Rossby soliton on its relative amplitude h = AH/H,, (c,d,e). H, = 5 mm 
(c), 6 mm (d), 9 mm (e), the diameter of the priming disk was D = 5 cm (c), 5 
cm (d),4 cm (e). 

FIG. 4. A series of photographs showing the evolu- 
tion of an anticyclonal Rossby soliton from an ir- 
regular initial disturbance, photographed by a cam- 
era rotating along with the paraboloid. A top view 
of the trajectories of white test particles floating on 
the surface of the water, with a black background, 
is shown. The white spot is the priming disk and its 
driver. The intervals between frames a-e were 0.6 s 
(one revolution of the vessel). The last interval was 
about 2.4 s (four revolutions of the paraboloid). The 
depth of the water was H, = 3 mm, the exposure 
time of the camera is 0.3 s. 

range of variation of the amplitude of vortices is sufficiently 
wide: the relative amplitude h = AH/Ho may reach values 
close to unity (whereas the theory2 assumes that the magni- 
tude of h is considerably smaller than unity). The data repre- 
sented in Fig. 5 may be considered as a basis for experiments 
on the collisions of Rossby solitons. Since, as follows from 
what was said above (and Ref. I), Rossby solitons always 
drift in the same direction, one can only produce collisions 
between solitons of different amplitudes which propagate 
one behind the other. 

D. Collisions of Rossby solitons 

Before discussing the experimental data on collisions of 
Rossby vortices we make one methodological remark. Ac- 
cording to an early definition (see, e.g., Ref. 7) a soliton was 
defined only as a solitary wave which remained unchanged 
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in collisions with similar waves. However, the subsequent 
development of soliton physics has shown that this defini- 
tion may not quite serve its purpose. Indeed, it is now well 
known (see, e.g., Ref. 8) that the result of the interaction of 
two-dimensional solitary waves described by the Kadomt- 
sev-Petviashvili equation9 (a two-dimensional generaliza- 

denote successive stages of the 
tion of the Korteweg-de Vries equation), or of three-dimen- 
sional solitary waves depends in principle on the angle under 
which the collision takes place; namely, in a definite range of 
collision angles there appears an irreversible effect: a third 
solitary wave is created. It hardly makes sense to call the 
same solitary waves solitons for some collision angles and 
not to call them solitons for other angles. We will designate 
as a soliton any solitary wave, whether or not it has passed sions of Rossby vortices (Figs. 6 and 7; see also Ref. 6b) show 
the collision test. that such collisions occur according to the following scenar- 

The result of experiments on the (most typical) colli- ios. 

FIG. 6. Different stages of approach and fusion of 
initially separated Rossby anticyclones produced 
by the priming disk D. The intervals between the 
frames a-f (in seconds): 0.6,0.6, 1.8, 1.8. The white 
spots are the priming disk D and its drive. 
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Scenario 1 (Fig. 6). At a sufficiently large approach ve- 
locity of the vortices they fuse irreversibly into a single vor- 
tex, which continues to drift stably in the fluid and has a 
lifetime determined by the viscosity of the medium; the new 
vortex is also a Rossby soliton. In the conditions of Fig. 6 
both vortices are formed approximately in the same manner. 
The experiments show that under different conditions, when 
one of the vortices is formed nnuch better than the other, it 
will "survive," swallowing its partner, independently of 
their mutual position. 

Scenario 2 (see Ref. 6b). At a small velocity of approach 
the solitons exist practically w,~thout interaction. The exam- 
ples of vortex structures ("chains of vortices") given in Ref. 1 
belong to the same category. 

Scenario 3 (Fig. 7). For an intermediate velocity of ap- 
proach the solitons (which have approximately equal ampli- 
tudes) mutually destroy each other and reorganize them- 
selves into a zonal flow. 

Finally, we stress the fact that in the experiments de- 
scribed here we never observed the phenomenon where one 
vortex passes through the othm, as is proper for some types 
of soliton.' Thus, the interaction of Rossby solitons is gener- 
ally inelastic: it seems that it is energetically more conven- 
ient for the solitons to fuse, ratlaer than remain separate. But 
in order for such a fusion to be: possible, if one can judge by 
the data presented here, the velocity of approach must ex- 
ceed a certain threshold. 

E. Asymmetry 

It was discovered in Ref. 1 that in the experimental ge- 
ometry which was investigated there do not exist long-lived 
(stable) solitary cyclonal Rossby solitons: such objects are 
unstable and decay rapidly, at least for sizes larger than or of 
the order of the Rossby radius (2). Cyclones with radii 
smaller than the Rossby radius have not been investigated, 
since in this parameter range (in our geometry) capillary phe- 
nomena may have a substantial influence. Anticipating a fre- 
quently asked question, we call attention to the fact that the 
sizes of cyclones which exist stably in the Earth's atmo- 
sphere seem to be determineti by scales smaller than the 
Rossby radius (2), which for the terrestrial atmosphere is 
about 3000 km (the corresponding diameter is already 6000 
km), i.e., turns out to be "too large." (The size of a terrestrial 
cyclone can be estimated from the example given in Ref. 4: 
only along the periphery of Antarctica is there room for a 
chain of six cyclones, and c:onsequently their radii are 
smaller than the Rossby radius (2).) In this sense terrestrial 
cyclones fall into the range of parameters which was not 
investigated in the present work (as well as in Ref. 1). It 
seems most likely that the armospheric vortices (but the 
geostrophic ones, with a propelr rotation period smaller than 
the global rotation period of the planet) are, from the point of 
view of wave motion, three-dimensional, rather than two- 
dimensional formations, and may therefore have radii 
smaller than the Rossby radius (2) (in this connection, see, 
e.g., Ref. 10). The data on the sizes of cyclones in a system 
with zonal flows can be found in subsection F. 

After the discovery of the instability of solitary cyclones 
there remained the question of principle: could such objects 
not exist within the solitary cyclone-anticyclone pair discov- 
ered in Larichev and Reznik's theoretical paper"? Accord- 
ing to them such a Rossby pair soliton in which the vortices 
are situated on the same meridian could move either against 
the global motion of the fluid with a velocity exceeding the 
Rossby velocity (3) (same as a single soliton), or in the direc- 
tion of the global motion with arbitrary velocity. In the ge- 
ometry of our experiments this would mean that in the first 
of the indicated cases the anticyclone should situate itself 
closer to the system axis, whereas in the second case the 
cyclone should be closer to the axis. (We recall that cyclone- 
anticyclone structures have been observed in the previous 
experiments,' where it was stressed that the cyclones enter- 
ing into these structures have a manifestly secondary charac- 
ter: they are "unwound" by the neighboring (primary) anti- 
cyclones on account of viscosity; accordingly, the particle 
velocities in them are considerably lower than in anticy- 
clones. Therefore the observation of vortex structures indi- 
catd in Ref. 1 more likely refers to the coexistence of almost 
noninteracting anticyclones.) 

The investigation of the possibility of production of a 
Rossby soliton pair was carried out by means of the de- 
scribed installation with two independent priming disks of 
diameter 3 cm situated next to each other (on the same me- 
ridian at neighboring latitudes) rotating in opposite direc- 
tions. The experiment was carried out in two variants. In the 
first variant the priming disk closer to the system axis rotat- 
ed anticyclonally and the neighboring disk rotated cyclonal- 
ly. Three series of pictures were taken in this variant: in the 
first series only the interior disk was switched on, in the 
second series only the second disk was switched on, and in 
the third series both disks were active. 

The experiments yielded the following results. Activa- 
tion of the "anticyclonal" disk produced a good anticyclone 
of the form which had been repeatedly demonstrated both in 
Ref. 1 and in the present work. The switching-on of the "cy- 
clonal" disk led to the effect explained in Fig. 8 in place of 
the expected cyclone, an anticyclone invariably unwinds(!). 
The activation of both disks leads in any case to the forma- 
tion of only an anticyclone, naturally one more powerful 

FIG. 8. The excitation of a Rossby anticyclone (shaded) for different di- 
rections of rotation of the priming disk D. The solid line represents the 
case when the disk rotates cyclonally, the dotted line depicts anticyclonal 
rotation of the disk. The arrows indicate the direction of rotation of the 
paraboloid around the point 0 and the drift direction of the Rossby soli- 
ton, respectively. 
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than in the two preceding series (this result should not cause 
any bewilderment). The resulting vortex is longlived and of a 
very regular shape-approximately like the one in Fig. 4 
(starting from frame c). In the second variant of the experi- 
ment the interior disk rotated in the cyclonal direction and 
the neighboring one was given an anticyclonal rotation. 
Only anticyclones were obtained in these experiments. The 
experiments have proved that no matter what the distur- 
bance of the fluid, it never propagated in the direction along 
the global rotation: the motion of the vortices is invariably in 
a direction opposite the revolution of the system, i.e., in the 
same direction as the drift of isolated Rossby solitons (anti- 
cyclones or the mentioned cyclone-anticyclone structures). 

Thus, in the conditions of the geometry of our experi- 
ments only the nonlinearity responsible according to theory2 
for the predominance of anticyclones over cyclones mani- 
fests itself, but not that nonlinearity which according to the 
theory1' finds its realization in isolated cyclone-anticyclone 
pairs. It is possible that for the observation of such paired 
solitons one must carry out experiments with vortices hav- 
ing radii a considerably smaller than the Rossby radius (2). 
In our device such experiments are impeded by two circum- 
stances: the possible interference from capillary phenomena, 
and a violation of the shallow water condition (a%Ho). 

F. The generation of Rossby solitons by fluid flows with 
velocity shear (the cyclone-anticyclone asymmetry of the 
nonlinear regime of the Kelvin-Helmholtz instability) 

In this subsection, which is closely related to the pre- 
ceding one, we discuss further manifestations of the asym- 
metry of the system with respect to the possible existence of 
vortices with opposite orientation of the vorticity (curl of the 
velocity) relative to the angular velocity vector of the system. 
One of the mechanisms for generation of vortices in a fluid 
(or plasma) is the Kelvin-Helmholtz instability of fluids with 
a velocity shear. Over the past few years, this instability was 
very effectively studied e ~ ~ e r i m e n t a l l ~ ~ - ~  in connection 
with the problems of the physics of planetary atmospheres. 
The characteristic of our experiments was that they were 
carried out on an installation which might be considered as a 
model for a homogeneous planetary atmosphere, the follow- 
ing conditions being simultaneously satisfied: 1 )  the fluid as a 
whole rotates around a vertical symmetry axis with angular 
velocity Oo; 2) the depth of the fluid is small compared to the 
Rossby radius (2); 3) the curvature of the surface of the rotat- 
ing fluid is sufficiently large, so that the Coriolis parameter 
f, has a significant gradient in latitude (the so-called beta- 
effect); at the same time the curvature radius of the surface is 
much larger than the Rossby radius (R,rR). Under these 
conditions the instability manifests itself in a new way- 
which is the subject of the present section. 

The experimental setup was already described before 
(Fig. 1) and it was noted that for a certain threshold value of 
the magnitude of the velocity shear of the counterflows there 
appears a Kelvin-Helmholtz instability, whose character de- 
pends essentially on the sign of the vorticity (curl of the ve- 
locity) in the system of counterflows. For positive curl we 
shall say that the system exhibits cyclonal shear, and for 

negative vorticity (the curl is antiparallel to a,) we call the 
shear anticyclonal. One of the most characteristic traits of 
the instability under consideration consists in the following 
Vortices which appear in cyclonal shear have quite small 
amplitudes and sizes (and these vortices do not become more 
intense upon arbitrary increase of the shear-up to its maxi- 
mal value when the angular velocity of the flows relative to 
the paraboloid becomes almost equal to 0,). The depth Ho of 
the fluid between the rings is kept under control and remains 
sufficiently large, for example, in the conditions of Ref. 12 
Ho = 8 mm for a ring velocity 91 cm/s. We note that the 
velocity of the flows satisfies the conditions V,  
S u < ( g * ~ , ) ' / ~ .  In this connection we indicate the depth Ho 
of the water between the rings for various magnitudes and 
directions of the velocity (u) of the exterior ring: a) Ho = 17 
mm for u = 0, b) Ho = 22 mm for u = - 43 cm/s, and c)  
Ho = 12 mm for u = - 43 cm/s, under the conditions of 
Fig. 2 of Ref. 12. For anticyclonal shear even a small excess 
of the shear above the instability threshold leads to the for- 
mation of large-amplitude vortices (Fig. 9). These vortices 
exhibit the following properties: 1) they are anticyclones (rise 
of the fluid level); 2) their sizes are substantially larger than 
the Rossby radius (2); 3) they are solitary formations with a 
sharply defined velocity profile; 4) they are stable and are 
observed in a stationary manner; 5) they drift against the 
global fluid motion with a velocity close to the Rossby veloc- 
ity (3). For example, they move relative to the fluid by ap- 
proximately 15" of arc for one revolution of the paraboloid 
for Ho = 5 mm. As the depth of the liquid increases by ap- 
proximately a factor of two the drift velocity of the vortices 
increases to 24" per revolution of the paraboloid (i.e., to 7 
cm/s). This velocity increases significantly also when the 
angular velocity Oo increases (this is related to the latitudinal 
gradient of the depth of the liquid, see Ref. 1). As for the 
number of vortices, near the threshold of instability this 
number is equal to four, and for larger shear (up to the maxi- 
mal value) it is equal to three. 

We designate this instability as a Kelvin-Helmholtz in- 
stability, since in accord with the generally accepted defini- 
tion it manifests itself through the generation and develop- 
ment of perturbations (in our case vortex perturbations), the 
characteristic scales ofwhich are larger than the width of the 
layer in which the velocities of the flow vary. 

Figure 9 is an illustration of the picture of observable 
anticyclones, corresponding to an anticyclonal shear with a 
velocity of the counterflows exceeding by a factor of about 
1.5 the threshold of instability (for details we refer the reader 
to Ref. 12). As the experiments have shown, this picture is 
observed stationarily and revolves around the system axis; 
for instance, for Ho = 1 cm it effects one revolution relative 
to the fluid in approximately 9 seconds. 

Comparing the experimental data with the properties of 
Rossby solitons listed above (Sec. 3A), we come to the con- 
clusion that anticyclonal vortices observed at negative shear 
are Rossby solitons. Regarding their oval shape, it is caused 
by the existence of velocity shear in the flow (the round soli- 
ton described above is observed in quiescent fluid, where 
there are no flowsl. 
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In the conditions of the experiments described here the 
threshold of observed instability corresponded to the rota- 
tion frequency O,,, of the counterflows relative to the para- 
boloid, which is approximate1:y by one order of magnitude 
lower than the angular velocity O0 of the global revolution. 
It  is appropriate to point out here that, as was shown by the 
measurements, the flow velocity of the surface layer of the 
liquid (where the white test particles float) is smaller by a 
factor of 1.5 than the velocity of motion of the ring situated 
under the given layer of fluid. i n  this connection one should 
take into account the fact that in Ref. 12, when we men- 
tioned the flow velocity we hati in mind the velocity of the 
rings. 

In the conditions of Fig. 9 the flow velocity at the sur- 
face of the fluid was approxima1:ely 20-30 cm/s, and the drift 
velocity of anticyclonal solitons (for Ho = 1 cm) was approx- 
imately 7 cm/s. 

The existence of a threshalld for the Kelvin-Helmholtz 
instability in the presence of the &effect follows from the 
known Rayleigh-Go criterion"' (a generalization of the Ray- 
leigh criterion to fluid flows in the presence of an inflection 
point in the velocity profile): 

where 

(see Ref. I ) ,  where y is the latitude ( a coordinate measured 
along a meridian) and u is the flluid flow velocity (u > 0) if its 

FIG. 9. The image of fluid flow for an anticyclonal 
shear of period T,,, = 1.7 s. The rotation period 
of the paraboloid was To = 0.58 s. The figure shows 
a top view of the trajectory of white test particles 
floating on the surface of the water on the back- 
ground of the black container bottom. The photo- 
graph was taken with a corotating camera with an 
exposure time of 0.25 s. The depth H, of the water 
was approximately 2 cm. The white spot in the cen- 
ter is part of the drive of the device. The exterior 
diameter of the paraboloid is 28 cm (see Fig. 1). 

direction coincides with that of the global revolution of the 
system; in the following estimates 

I dzu/ay2 ( - ( u 1 /ti2, 

where S is the charactristic size of the shear). The fluid flow 
along the parallel leads to the appearance of a meridionally 
directed gradient of the fluid depth, the magnitude of which 
is determined by the condition of geostrophic equilibrium: 

g*aH/4y=2Qou cos a. 

Making use of this equation together with Eqs. (2) and (3), we 
obtain an instability criterion (valid both for a paraboloid 
and for a system of the type of a planet) 

V , + ~ + r ~ ~ i 3 ~ u / d y ~  =O. (6') 

The validity of the criterion (6), (6') depends essentially on 
the sign of the flow velocity. Two cases are possible here: 
First case: u > 0. In this case the instability can develop only 
if 6 < r,, in other words, it can generate only small vortices 
of sizes small compared to the Rossby radius (2). The geome- 
try of this case is close to that of a tangential discontinuity. 
The threshold value of the flow velocity lul- VRS2/<, 
where the Rossby velocity VR is defined by Eq. (3). Second 
case: u < 0. In this case the instability can be excited both on 
small scales (smaller than the Rossby radius) and on large 
scales (larger than the Rossby radius). The threshold value of 
the flow velocity at large scales is close in magnitude to VR , 
i.e., to (approximately) that velocity with which the Rossby 
solitons propagate. This case is of greatest interest, since as a 

794 Sov. PhyS. JETP 57 (4), April 1983 Antipov etal. 794 



Anticyclone Cyclone 
possible impossible 

FIG. 10. A schematic drawing of the dispersion function w(k, ) for Rossby 
waves. The shaded region is described by an equation close to the Korte- 
veg-de Vries (KdV) equation (see, e.g., Refs. 7,9) implying the possibility 
of solitary waves (solitons) of raised fluid level enhancements and the im- 
possibility of solitary fluid level depression waves. 

consequence of the instability of the flow (which moves 
against the revolution of the system) the excitation of Rossby 
solitons is possible. 

In the experiments described here, for any orientation 
of the vorticity of the counterflows one flow (the exterior one 
or the interior one) will always lag behind the revolution of 
the system (i.e., has u <O). According to our analysis it 
would seem to be able to excite large-scale (6 > r,  ) Rossby 
solitons. In other words, from this point of view practically 
identical conditions are set up for the excitation of large cy- 
clonal and anticyclonal vortices. Nevertheless, the described 
experiments show that the excitation of large-scale anticy- 
clones takes place, whereas that of large-scale cyclones does 
not. This agrees with the fact (see Subsec. E) that anticy- 
clones are stable, and cyclones decay rapidly, apparently 
even faster than they are created (under the conditions of the 
geometry of our experiments. The cyclone-anticyclone 
asymmetry discussed in the present paper in its various 
manifestations corresponds to the intuitive notion that the 
direction of the Coriolis force is such that it facilitates the 
twisting of the particle trajectories into an anticyclone and 
impedes the formation of a cyclone (see also Fig. 11). 

G. Some considerations on the nature of the Big Red Spot of 
Jupiter 

The obvious similarity between the properties of the 
vortices which appear for anticyclonal shear, described in 
the preceding section and the Big Red Spot of Jupiter, both 
in shape, physical parameters, and drift direction, as well as 
conditions of existence, calls attention to itself. It is known 
(see, e.g., Ref. 14), that the Big Red Spot is an anticyclonal 
vortex, probably a Rossby ~ o l i t o n , ~ ~ ' ~ , ' ~ ~ ' ~  with east-west 
zonal counterflows surrounding it; it drifts in a direction 
opposite to the revolution of the planet, and has dimensions 
exceeding the Rossby radius. The spot has an oval shape, 
prolate in the drift direction, in the same manner as the vorti- 
ces in Fig. 9. In connection with the experimental results of 
the present paper the following fact seems important as a 
matter of principle: The Big Red Spot is "tied" to that lati- 
tude belt in the atmosphere of Jupiter where the shear of the 
zonal flows has anticyclonal direction and "ignores" a simi- 
lar belt somewhat to the north where the shear, being smaller 

FIG. 1 1 .  A comparison of the drift of Rossby vortices with the drift of 
particles in an inhomogeneous magnetic field: a) the drift of positive ions 
and of electrons in a field perpendicular to the drawing, with a gradient in 
the picture plane directed from the top to the bottom; b) the drift of vorti- 
ces ofopposite signs in a rotating system, the angular momentum vector of 
which is perpendicular to the plane of the drawing, and with the gradient 
of the Coriolis parameter is the picture plane, from the top to the bottom. 
In the left half of the picture thestraight arrow show thedirections of drift 
of the ions and electrons, and in the right half of the picture they denote 
the common direction of drift of anticyclones and cyclones. The dotted 
lines show that the particle trajectories in the anticyclone become less 
steep in the upper part and steeper in the lower part, on account of the 
Coriolis force; conversely, in cyclone is less curved in the lower half, and 
more curved in the upper half; for this reason both vortices drift in the 
same direction. 

in magnitude, has a cyclonal direction. This fact is manifest- 
ly analogous to the cyclone-anticyclone asymmetry of the 
nonlinear regime of the Kelvin-Helmholtz instability dis- 
cussed in the preceding section. The regime described there 
for the excitation of an anticyclone of size exceeding or of the 
order of the Rossby radius corresponds (as a whole) to the 
conditions in the Big Red Spot. It  should be noted that ac- 
cording to the instability criterion derived in the preceding 
section, the maximal velocity of the zonal flow of the wind 
(uJ,,, must not be smaller than the Rossby velocity (3), 
whereas in the region of the Dot Jul,,, = (50-50) m/s, and 
V, = 160 m/s.1° The escape from this difficulty could be 
seen, e.g., in the fact that from a wave point of view the Spot 
is not a two-dimensional formation, but rather a three-di- 
mensional object, and in this case the wave motion along a 
vertical line reduces the drift velocity of the Spot, and it 
becomes significantly smaller than the Rossby velocity de- 
fined in Eq. (3) (in this connection see, e.g., Ref. 10). Regard- 
ing the fact that the Spot is only one (whereas along the pe- 
riphery of the planet there is room for more than ten vortices 
of this scale), one might make the following conjecture: if the 
Spot appeared from a pre-threshold state of the system on 
account of some "local" process, then in the presence of hys- 
teresis such an azymuthally inhomogeneous state could be 
maintained by the existing shear of the zonal flows even if the 
magnitude of the shear is not sufficient to excite a chain of 
vortices (in the conditions of Fig. 9 such a chain consists of 
three vortices); in each zonal belt there could exist one Spot 
under these conditions. 

H. On the wave representation of Rossby vortices 

The question has often been raised why we call the 
Rossby vortices not simply vortices but (solitary) waves? Our 
answer is that the wave approach turns out often to be more 
fruitful and informative than the simple vortex approach. 
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Thus, in the main section of this paper the wave approach 
allowed for an intuitive prediction of the cyclone-anticy- 
clone asymmetry which is one of the most remarkable prop- 
erties of the Rossby solitons. Let us dwell in more detail on 
this question. (For this purpose we shall, as before, use the 
two-dimensional theory, which suffices for the derivation of 
qualitative results.) The dispel-sion law of two-dimensional 
Rossby waves has the form 

where w is the frequency of oscillations, and k, and k, are 
respectively the latitudinal and meridional wave numbers. 
The graph of the function w(lc,) is shown in Fig. 10. It is 
important to note two circumstances: first, the phase veloc- 
ity of the oscillations decreases with the increase of the wave 
number, and second, it increases as the depth of the fluid 
increases. Let us now considel- some local enhancement of 
the fluid level. If there were no dispersion, the upper por- 
tions of the profile would catch up with the lower ones on 
account of the nonlinearity, which would lead to a steepen- 
ing of the anterior wave front and a breaking of the wave. On 
the other hand, if there were ncl nonlinearity (the increase of 
the phase velocity with the depth of the liquid), then on ac- 
count of dispersion the upper ,portions of the profile corre- 
sponding to its steep slopes (and to corresponding larger 
wave numbers of its spectral components) would fall behind 
the lower portions. In a soliton involving enhancement of the 
fluid level the two indicated erects of nonlinearity and dis- 
persion have opposite signs ancl cancel mutually, and there- 
fore a stable wave packet (the soliton) becomes possible. It is 
easy to see that for waves corresponding to a depression of 
the fluid level the effects of the nonlinearity and dispersion 
have the same signs, and a so1ita.q wave becomes impossible. 
In other words, an anticyclonz~l Rossby soliton is possible, 
and a cyclonal one is not. (Of course, here we call attention 
only to a necessary condition; ia proof that the soliton must 
exist has to be given but in the case of the cy- 
clone the necessary condition fc~r nonexistence is already sat- 
isfied.) As we have seen above, this expectation of the wave 
theory is confirmed by experinlent. As regards the "usual" 
(or "simply vortex-type") appnoach it does not contain this 
essentially important informalion and has less predictive 
power than the wave approach. 

Considering further the Rossby soliton from the view- 
point of balance between nonlinearity and dispersion it is 
easy to estimate its characteristic size. Indeed, if the wave 
numbers are too small (k, < + /'rR )there is almost no disper- 
sion and the nonlinearity dominates; for wave numbers 
which are too large (k, > l/rR ) dispersion dominates. Thus 
only for moderate wave numbeirs corresponding to a scale of 
the order of the Rossby radius r, the balance between non- 
linearity and dispersion is possible with the formation of a 
soliton. As we know the radius of the Rossby soliton is in- 
deed close to the Rossby radius. And finally it can be seen 
that the drift velocity of the soliton relative to the medium 
must exceed somewhat (the more, the larger its amplitude) 
the maximal propagation speed of linear Rossby waves: 

(w/k,),,, = V, .  These conclusions are an additional illus- 
tration of the power of the wave approach. One may say 
simply: since a Rossby vortex has dispersion and moves rela- 
tive to the medium it is convenient in some cases to consider 
it from the viewpoint of a wave. 

I. On the drift direction of Rossby cyclones and anticyclones 

This problem requires additional clarification. Since 
the Rossby vortices are wavelike objects they must drift rela- 
tive to the fluid in the same direction as linear Rossby waves, 
i.e., opposite to the global revolution of the fluid, indepen- 
dently of their sign (cyclone or anticyclone). On the other 
hand, judging by the analogy between the motionof a fluid in 
the Coriolis force field and the motion of a plasma in the field 
of the Lorentz force,' at first sight there appears a difficulty: 
whereas plasma particles of opposite charges drift in oppo- 
site directions in an inhomogeneous magnetic field, vortices 
of opposite velocity curl (vorticity) must drift in the same 
direction. The essence of the difference is explained in Fig. 
11, where the left half (a) refers to the motion of charged 
particles in an inhomogeneous magnetic field (perpendicular 
to the plane of the picture) and the right half (b) refers to the 
motion of vortices in the inhomogeneous Coriolis force field. 
The intensity of the magnetic field and of Coriolis force in- 
crease from the top of the bottom of the figure. It is clear that 
at the points of higher magnetic fields the trajectories of 
charged particles have larger curvature for both signs, and 
therefore particles of opposite signs drift in the opposite di- 
rections. But the particles in a vortex (Fig. 11,b) are deflected 
by the Coriolis force always in the same direction (e.g., in the 
Northern Hemisphere on Earth always to the right). This 
means that at the points with the larger Coriolis force the 
trajectories of particles in anticyclone are more curved, and 
the trajectories in a cyclone become straighter. As a result of 
this both cyclones and anticyclones drift in the same direc- 
tion. This is exactly what happens in the experiment: both 
vortices drift in the same direction, against the rotation of 
the system as a whole (but the anticyclone is stable, whereas 
the cyclone decays rapidly). 
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