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The polarization losses of the energy of a fast ion in a degenerate electron gas are calculated for 
different values of the Born parameter a = e2/fivF, where vF is the electron Fermi velocity. In the 
case of an ideal electron gas (a( 1) the energy loss is calculated analytically. It is shown, in 
particular, that stopping of high-velocity ions produced as a result of nuclear rections in surface 
layers of neutron stars (in the region of the strong degeneracy of the electrons), a substantial 
increase of the secondary-reaction rates can take place. This in turn can influence the character of 
the burster activity of the neutron stars. The energy loss calculated at the value a - 1 of interest in 
metal physics agrees well with the experimentally measured proton losses in a number of metals 
(Be, Al) at proton energies in the region of the maximum loss and lower. 

PACS numbers: 05.60. + w, 61.80.Mk 

91. INTRODUCTION 

It is known that fast ions moving in a plasma are 
stopped mainly by interaction with electrons. The polariza- 
tion energy loss of a nonrelativistic ion per unit length of 
path is determined by the expression (see, e.g., Ref. 1) 

where fik and &I are the momentum and energy transferred 
from the ion to the plasma electrons in the elementary inter- 
action act, E(W, k ) is the longitudinal dielectric constant of 
the plasma, in which the frequency w must be set equal to 
k-V, and V and Ze are the velocity and charge of the ions. 

Generalizing the results obtained in Ref. 2 for a nonde- 
generate electron gas to include the case of arbitrary degen- 
eracy of the electrons, it is convenient to represent the polar- 
ization loss (1) in the form 

where n, (V) is the density of the number of plasma electrons 
with velocities v<  V, while A (V) is a slowly varying function 
of V and has the meaning of the Coulomb logarithm (see 
Refs. 1 and 2, as well as 53 below), which in fact must be 
determined from the calculation. 

The present paper is devoted to calculation of polariza- 
tion losses in a strongly degenerate electron plasma. This 
problem is of interest, in particular, for astrophysical plasma 
(see 53), in which the characteristic values of the Born pa- 
rameter a=e2/fivF(l (v, is the Fermi velocity of the elec- 
trons), as well as for metal plasma (54), where a - 1. 

Fermi and Teller,3 Larkin,4 and Ritchie5 calculated the 
energy loss at V(vF in the case a(1. In addition, Larkin4 
and Ritchie5 obtained an expression for the polarization loss 
in the high-velocity limit. This expression is independent of 

the degree of degeneracy of the electron gas and is applicable 
to a degenerate gas at V>u,. Numerical calculations of the 
polarization energy loss in a degenerate gas at arbitrary V, 
for several values of a ,  were carried out by Lindhard and 
Winther,6 and also by Ferrel and Ritchie.' Yavlinskiis pub- 
lished recently detailed calculationsS for the electron gas of 
metals (a20.5). At V> u,, however, his calculations are not 
accurate, and, in particular, do not agree with the results of 
Refs. 4-7, inasmuch as he did not take into account the ener- 
gy lost to excitation of Langmuir plasmons. 

In this paper we calculate dE/dx numerically, with 
allowance for plasmon excitation, in a wide a interval of 
physical interest. At a(1 (for an astrophysical plasma) a 
simple analytic expression was also obtained for d E  /dx. At 
a - 1 the calculation results agreed well with the experimen- 
tal data on proton energy loss in a number of metals, and 
allowance for the excitation of the plasmons improves no- 
ticeably the agreement in the velocity region V 2  v,. 

92. GENERAL RELATIONS 

Recognizing that I ~ E  (o, k ) is an odd and Re ~ ( o ,  k ) is 
an even function of w, it is possible to change from integra- 
tion over all k in (1) to integration over the region in which 
w < 0. The longitudinal dielectric constant of a fully degener- 
ate electron gas was calculated by Lindhard9 and takes at 
w < 0 the form 

where 
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I and g2l-t-S2 (region IV). 

Here a = e2/fiuF, 6 = .Wc/2mevF and 0 = lo \/kv,. By vir- 
tue of (3) the imaginary part of the dielectric constant differs 
from zero for the values of6 anti il in regions I and I1 (Fig. 1). 
In regions I11 and IV the phase velocities of the electromag- 
netic oscillations o/k exceed v,. Since the Fermi distribu- 
tion is steplike, there are no electrons capable of absorbing 
these oscillations, so that I ~ E  = 0. 

The polarization losses of ithe ion energy (la) in a degen- 
erate electron gas take the form 

where u=V/u,, n, is the plasma-electron density and 
A ( V ) d  (u) is the Coulomb logarithm. We note that the 
quantity A (u) is connected with the friction coefficientg(u, a) 
introduced in Ref. 8 by the I-elations A (u < 1) = g/2 and 
A (u > 1) = gu3/2. We note also that in place of a one fre- 
quently uses the parameter r, = (47~n,a~/3)-"~ = (9r/ 
4)'I3a (a is the Bohr radius). 

Substituting (2) in (1) we obtain 

At u( 1 the integral in (5) breaks up into two integrals over 
the regions I and I1 (Fig. I), in which Im E#O. At u > 1, 
however, besides regions I and 11, it is necessary to take into 

FIG. 1. Regions of values of dimensionless arguments 6 and 0 of the 
dielectric constant E in which Im E ha!$ a different form (3). In region 111, 
thedashedlinesare thecurves0 (6 ) ofthe polesofthedielectricconstant at 
values a = 0.01 (a), 0.1 (b), and 1 (c). 

account"' the region 111, which corresponds to values 
( < 0 - 1 (Fig. 1). The point is that in this region is located 
the curve 0 = 0 (6 ) of the poles of the dielectric constant, on 
which Re(L?,g ) = 0. Therefore, although Im ~ ( 0 ,  6 ) = 0 in 
region HI, the intergral(5) over this region still differs from 
zero and easily reduces to an integral along the R (( ) curve 
with the aid of the relation 

From the physical viewpoint the contribution of region 
I11 describes the energy lost to collisionless excitation of 
Langmuir plasmons by the Landau mechanism (see, e.g., 
Refs. 4 and 5). This process begins to operate at u > 1, inas- 
much as under this condition the velocity V of the polariza- 
tion electron cloud around the stopping ion becomes larger 
than u,, and it becomes possible to excite the weakly damped 
plasmons. It must be noted that the curve ofthe poles o f 0  (g ) 
in the region I11 has a weakly pronounced minimum 
il (6) = 0,(5,) that lies in the immediate vicinity of the 
boundary f2 = 6 + 1 of the regions I1 and 111 (Fig. 1). Strict- 
ly speaking, plasmon generation becomes possible at a value 
u = a,, which increases with increasing a .  

53. POLARlZATlON LOSSES IN AN IDEAL ELECTRON GAS 
(a411 

The calculation of the Coulomb logarithm A (u) be- 
comes greatly simplified in the case of an ideal electron gas, 
for which the Born parameter a( 1. In this case the screening 
momentum k ,  = 2kF(a/r)'I2 (the reciprocal Thomas-Fer- 
mi static-screening radius) is much less than the quantum 
momentum 2kF = 2mevF/fi. It suffices then to use in (5) the 
dielectric constant (2), (3) in the limit ((1: 

Substituting (7) in (5) and discarding small terms -a ,  we 
obtainata(1 a n d u < l  

1 
--C(u), (8) 2 

where 

(9) 
The quantity C (u) can be calculated analytically for two val- 
uesofu:C(O) = 1 andC(1) = 8/3 - In 12 = 0.182.Forinter- 
mediate u, the calculation is performed numerically. With 
an error less than 1 %, the results are described by the simple 
interpolation formula 

The integral (5) is calculated analytically to the end at 
a ( l  and u > 1: 
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HereA, and A,, denote the components of A obtained upon 
integration in (5) over the regions I + I1 and 111, respective- 
ly. We present also an expression for A,,(u) 

In the limiting cases we obtain from (8)-(10) 

where kTF = v, = ( 4 a / ~ ) " ~ k ,  is the screening mo- 
mentum (see above) and o,, is the electron plasma frequen- 
cy. The asymptotic relations (12) and (14) coincide with the 
well known asymptotic relations in Refs. 4 and 5. 

The principal terms in expressions (8), (lo), and (12)- 
(14) forA (u) are the large logarithms. Confining ourselves to 
these terms, we can write down approximately 
A (u) - ln ( p,,, /p,,, ), where p,,, and p,,, are the maxi- 
mum and minimum impact parameters of the interaction of 
the ions with electrons, and have a simple meaning. Namely, 
the parameter p,,, - fi [2me (v, + V)] -' is determined by 
the maximum momentum transferred in electron collision, 
and varies in the range from p,,, (2k,)- ' at u 4 1 to p,,, 
zfi/2me V at u>l.  The parameter p,,, at u S 1 is deter- 
mined by the screening radius of the plasma: p,,, - k F ~ ~ ,  
and at u > 1 it is determined by the largest wavelengths of the 
plasmons excited by the ion: p,,, - V/wpe. In this case we 
have in (10) A,, =:ln (p,,, k,), A, =:In (p,,n k,)-'. There- 
fore at u > 1 in the impact-parameter interval p,,, 
S p S k ,' the ion energy loss is due to collisions with elec- 
trons, while in the interval k ,' S p 5 p,,, it is due to plas- 
mon excitation. 

Equations (8) and (10) give a kink on the energy-loss 
curve at u = 1. This kink is due to the use of the simplified 

1) dielectric constant (7) in the calculation of A (u) and 
becomes smoothed out when the exact dielectric constant (2) 
and (3) is used, see Fig. 2. 

We note that the Coulomb logarithm for a degenerate 
plasma depends on Vqualitatively in the same manner as the 
Coulomb logarithm that enters in the expression for the en- 
ergy loss in a nondegenerate in whichp,,, is deter- 
mined by the de Broglie wavelength of the particles. To es- 
tablish a correspondence with the case of a nondegenerate 
plasma, the velocities vF must be matched to the thermal 
velocity ofthe electrons v, = (~/m,)"' ,  while the Thomas- 
Fermi radius k F: must be matched to the Debye radius r,, 
= v,/o,, . Not only the Coulomb logarithms but the very 

expressi~ns for the polarization losses in a degenerate and 
nondegenerate plasma are quite similar. At Vsv, and Vs u, 
these expressions coincide ~ompletely,~.~ and at V<u, and 
V<vTe, after making the substitution v,+v,, they differ 
only by a numerical coefficient. In a nondegenerate plasma, 

FIG. 2. Energy loss in dimensionless units d3/dx = 3?raa3m, 
(2Zfi)-'dE /dx (a=fi2/me2) as a function of u at values a = 0.01 (a), 0.1 (b) 
and 1 (c). Solid curves-numerical calculations using the quantum dielec- 
tric constant (2), (3); dash-dot curves-numerical calculations with 
allowance for the plasmon excitation. The energy losses calculated from 
the analytic formulas (8)-(11) are also shown for a = 0.01 and 0.1, with 
(dashed curves) and without (short dashes) allowance for the plasmon 
excitation. 

in contrast to a degenerate one, the plasmon excitation pro- 
cess has no threshold and sets in smoothly with increasing V 
at V2 vTe . In a degenerate plasma, however, where the exci- 
tation is turned on at a fully defined ion velocity V = OovF 
(see above), it does not lead to the appearance of any notice- 
able singularity in the energy-loss curve (if the exact dielec- 
tric constant is used in the calculations, see Fig. 2). 

Earlier calculations of the polarization losses at arbi- 
trary u and aS0 .3  were performed by Lindhard and 
Winther.6 They did not obtain, however, the simple analytic 
formulas (8)-(1 l), although Eq. (10) can in fact be derived by 
using expressions (19') and (20) of their paper. Our results 
agree with the numerical results of Ref. 6,  but cover a larger 
interval of a values of interest for applications (see below). 
Numerical calculation of the energy loss at a( 1 were also 
made by Dar eta/ .  lo The values of dE /dx indicated in Fig. 2 
of their paper, however, are too high by approximately an 
order of magnitude and seem to be in error. 

The results are of interest for astrophysical conditions, 
particularly for the study of the activity of exploding x-ray 
sources. According to contemporary notions, x-ray bursts 
are due to nuclear combustion of matter in the surface layers 
of neutron stars, which are contained in tight binary systems 
(see, e.g., Ref. 11). Depending on the rate of accretion and on 
the parameters of the neutron stars, the combustion can take 
place at different depths, and in particular, at a depth where 
the electron gas is strongly degenerate. Consider, e.g., two 
successive reactions of the proton cycle 'D(p, y)'He, 
3He(3He, 2p) 4 ~ e ,  which is effective at not very high tem- 
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peratures T. In the first reaction, high-energy 3He ions are 
produced. The rate of the reaction isI2 

where n, and A, are the densil y and atomic number of the 
ions, E ( l ,2)  is the Gamow energy, C ~ 0 . 4 . 1 0 - ~ ~  cm3.sec-*, 
and T9=T/109 K. As a result of creation of 3He ions, their 
distribution function at sufficiently high energies E >  E, 
will differ from Maxwellian (see, e.g., Ref. 13). The limiting 
energy E, for a degenerate electron plasma can be easily 
estimated on the basis of the results for a nondegenerate plas- 
ma13 and the aforementioned similarity of the expressions 
for the energy losses in degenerate and nondegenerate cases. 
An estimate yields 

where Y is the frequency of the collisions of the 3He ions with 
the electrons with energy loss at u < 1; X3,, is the mass con- 
tent of these ions. If the distribution of the 3He ions were 
Maxwellian, the main contribiltion to the succeeding reac- 
tion would be made by ions with energy Eo=: T [E (3He, 3He)/ 
4 ~ 1 " ~ .  The energy ratio is 

E.  4T '13 v n ~ ~ . T ~ ' ~  (H1 ] ' + [C (aHe, 'He) .= [ E ('He, 'He) ] In-. 
C n H n ~  

(16) 
At a temperature T=: lo7 K we! have 

Therefore at a matter density p - lo5 g/cm3 (n, - loz9 
~ m - ~ ) ,  where the electron ga!r is strongly degenerate and 

ideal (a - lo-'), the energy E, =: Eo in a wide range of values 
of X,,, and X,,, i.e., the customarily employed expression 
for the rate of the reaction 3He (3He, 2 ~ ) ~ H e ,  obtained under 
the assumption of a Maxwellian distribution of the ions, no 
longer holds. This situation obtains apparently also for a 
number of other secondary reactions. A consistent calcula- 
tion can be carried out in such cases on the basis of the results 
obtained above and should yield substantially higher reac- 
tion rates. This in turn can influence the conditions for the 
ignition of the matter in x ray bursts in the surface layers of 
neutron stars. 

The results are of interest also for a plasma compressed 
to densities n, - ~ m - ~ ,  with a temperature not exceed- 
ing 0.3 keV (Ref. 14). Under these conditions the electron gas 
becomes degenerate, the parameter a - 0.1, and the polar- 
ization losses of the ions are well described by Eqs. (8)-(11). 

94. POLARIZATION LOSSES IN METALS 

In the study of polarization losses in metals, the case of 
interest is a - 1. For arbitrary u the energy losses in this case 
were calculated numerically. The results are listed in the 
table. The analysis becomes simpler in the limits of large and 
small u. 

At U <  1 and at arbitrary a ,  the integral with respect t o 0  
in (5) can be evaluated, after which the calculation reduces to 
the determination of the single integral: 

Thus, in this case A is independent of u .  As is well known (see 
Refs. 3-8), the energy loss is then dE /dx a u. At a - 1 the 
integral (17) was calculated numerically; the obtained values 
of A practically coincide with the values in the table at 

TABLE I. Dependence of the Coulonib logarithm A on the dimensionless velocity u = V / u ,  for different values of the parameter a. 
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u = 0.1. We note that at a( 1 the integral (17) can be easily 
calculated and yields ( 12). 

At u )  1 and at arbitrary a we obtain from (5) the well 
known4v5 expression (14), which does not depend on the de- 
gree of degeneracy of the electron gas. 

We note that at a- 1 the polarization energy loss de- 
pends on u qualitatively in the same manner as at a( 1 ($3). 
The most significant difference between these cases is that at 
a - 1 the static screening momentum k, becomes of the 
order of kF. We note also that with increasing a the maxi- 
mum of the polarization loss shifts towards larger u (Fig. 2). 

Good agreement between the calculated polarization 
losses and the experimentally measured proton energy 
10sses'~ is obtained also for beryllium (a -- 1 .O, v, z 2.2.10' 
cm/sec, Fig. 3). For aluminum (a -- 1.1, u, =; 2.0.10' cm/sec, 
Fig. 3) agreement with the data on the stopping of protons at 
energies in the region of the maximum of energy losses and 
lower is also obtained. At u > 2 the polarization losses in 
aluminum become lower than the total losses, apparently as 
a result of the appearance of losses to ionization. 

Our calculations for metals agree with the earlier less 
complete calculations of Lindhard and Winther,6 as well as 
with those ofperre1 and Ritchie.' They agree also with the 
recent detailed  calculation^,^ but only at values u<l .  At 
u > 1 the polarization loss in Ref. 8 is underestimated, inas- 
much as no account is taken there of the loss to excitation of 
the plasmons (see $2). As seen from Fig. 3, at u > 1 the loss to 
excitation of plasmons makes a noticeable contribution, and 
allowance for it improves considerably the agreement with 
experiment at proton energies in the region of the maximum 
of the energy losses and higher. 

The calculations performed for copper, gold, and lead 
are in worse agreement with the experimental data on proton 
stopping15 [apparently because of failure to take into ac- 
count the ionization losses, and also because the expression 
(2) and (3) for the dielectric constant is less applicable to these 

FIG. 3. Proton energy losses in beryllium and aluminum. The dash-dot 
curves are plots of the interpolation formulas given in Ref. 15 and agree 
well with the experimental results. Solid lines-theoretical calculation, 
dashed--calculation without allowance for plasmon excitation. The elec- 
tron effective mass is assumed equal to the free-electron mass. 

metals]. In the case of lead, there is good agreement with the 
experimental data on proton stopping, but only at u < 1.5. 
When the calculation results are applied to stopping of hea- 
vier particles it is necessary to take into account the effective 
charge of the heavy particle (see, e.g., Ref. 16.) 
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