
A hydrogen atom in weak electric and magnetic fields 
A. V. Turbiner 

Institute of Theoretical and Experimental Physics 
(Submitted 2 1 October :1982) 
Zh. Eksp. Teor. Fiz. 84, 1329-1335 (April 1983) 

The behavior of the ground state of the hydrogen atom in weak electric g and magneticpfields 
is investigated in the cases when the fields are parallel and perpendicular to each other. The 
coefficients of the perturbation theory series are computed right up to terms - g 2 p  by a purely 
algebraic method based on a "nonlinearization" procedure. The problems of polarizability and 
magnetic susceptibility ;are discussed. 
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The behavior of the hydrogen atom in constant electric 
and magnetic fields is one of the: oldest problems in nonrela- 
tivistic quantum mechanics. But in contrast to other similar 
problems like the Stark and Zeeman effects, it has virtually 
'not been investigated. Right up to the present time even the 
problem of the classification of 1 he states of the atom in non- 
zero fields has not been solved, illthough it was posed in Ref. 
1, where an attempt was made to investigate the situation for 
weak fields. For this reason, we shall limit ourselves in our 
analysis to the case of the ground state, since the application 
of the method employed by us requires knowledge of the 
explicit form of the unperturbed wave function. Not a single 
quantitative analysis has thus far been carried out for the 
problem in question, although 'the qualitative investigation 
performed in Ref. 2 indicates that the physics is interesting. 
Notice that this problem is of interest for different branches 
of physics: semiconductor physics (an exciton in fields), as- 
trophysics, optics. In particular., it arises when an attempt is 
made to take into account the finiteness of the nuclear mass 
in the Zeeman-effect problem (see, for example, Ref. 3). 

In the present paper we construct a perturbation theory 
in terms of the fields 8? and &' for the lowest state of the 
spectrum in two important particular cases, of parallel and 
mutually perpendicular fields. The generalization to the case 
of arbitrary orientation of the fields iF and R i s  obvious. To 
construct the perturbation theory, we shall use the "nonlin- 
earization procedure,"4 within the framework of which the 
computation of the coefficients of the perturbation theory 
series is a purely algebraic proble:m, boiling down to the solu- 
tion of simple recursion relation~i.~ In our previous paper6 we 

h 

H = - V2 + V, we obtain the equation 

A -  ( V Q )  E - V .  

Now let us set 

and begin to develop a perturbation theory for the quantities 
@ and E in the following manner: 

Substituting (3), (4a), and (4b) into Eq. (2), and collecting 
the terms of the order of A "gk, we obtain the equation 

where the quantity Qn, plays the role of an effective pertur- 
bation potential, and is given by the following formulas: 

where the summation is performed over all m + p > 0 and 
m + p < n + k. Equation (5) together with (6) gives us all that 
we need for the computation of the corrections. 

The Hamiltonian corresponding to the hydrogen atom 
in constant electric and magnetic fields has the form 

successfully applied this procetlure to the problem of the 
P I = -  ~ ~ 2 / r - 2 8 z - & l , + ~ l ~ ~ ~  (zZ+ y Z )  

Zeeman effect, and for the first time determined the coeffi- 
cients of the perturbation theory series in 2Y right up to and 
including the term for the states with zero radial quan- 
tum number and magnetic quantum numbers m = + I, 
f (I - l ) ,  where I is the angular momentum. 

Let us briefly recall the main points of the nonlineariza- 
tion procedure as applied to the present problem. We write 
the wave function in the following form: 

the function @ having no singularities at real values of the 
arguments since we are consider~~ng the g ro~nd  state. Substi- 
tuting (1) into the Schrodinger equation H 3  = EJ1, where 

in the case when the fields are parallel and 

when the fields are perpendicular to each other. The field X 
is oriented in both cases along the z axis, while the electric 
field $ is oriented in the second case along thex axis; I, is the 
operator for the angular-momentum component along the z 
axis. The field is given in ordinary atomic units; the field 
Z, in dimensionless units (one unit = 2.3505 X lo9 G).  Since 
we are consideringfhe ground state, we can discard the para- 
magnetic term ( X I z )  in the Hamiltonian (7a), and then 
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r2 
T.',O1'=-2z=-2rY,O(0, cp), Votll= - 

6 
(Y2°-Yo0), (8a) 

while in the case of mutually perpendicular fields 

There is also a paramagnetic term ( iXd/dp ), since the angu- 
lar momentum component along the z axis is no longer an 
integral of the motion"; r, 6, and p are spherical coordinates 
and 

cos mcp, m>O 
Y,"=P," (cos 0) I sinlmlcp, m<O 

are spherical harmonics. 
Let us first consider the simpler case of parallel fields. 

Analyzing Eq. (5), we easily see that an arbitrary correction 
to the wave function @ !, contains a finite number of har- 
monics, and has the following form: 

where [n + k/4] denotes the integer part of the number 
(n + k /4). If k is an odd number, then 

The coefficient functions are polynomials in r, i.e., 

II 
n - i  ( 1  = aJm, 

and let us draw attention to the fact that the polynomial 
attached to the highest harmonic Y 11 + , (8,p ) contains only 
two terms; the polynomial attached to the next highest har- 
monic Y I: + , -, (6,p ) four terms; etc. We shall not write out 
the recursion formulas; they are fairly simple, and can easily 
be derived by the reader. We need only note that some of 
them can be resolved explicitly in the case of an arbitrary 
correction. For example, the coefficient function of the high- 
est harmonic is 

For n = 0, i.e., for $ = 0 (the Zeeman effect), the expression 
(I 1) coincides with the expression obtained in Ref. 6, while 
fork = 0, i.e., for 3' = 0, the formula (1 1) goes-over into the 
expression corresponding to the Stark effect. We can, in 
principle, find the coefficient function of next highest har- 
monic, etc., but the calculation becomes more and more 
complicated. 

The determination of the first corrections offers no fun- 
damental difficulties, but is rather tedious. Therefore, the 
computations were performed with the aid of the symbolic 
language REDUCE-2. The results for several first correc- 
tions to the wave function are given in the Appendix. 

Let us represent the expansion for the energy in the 
form 

E=Esz+EII(L', (12) 

where the term E,, is the sum of the energy expansions in the 
case of the Stark- and Zeeman-effect problems: 

while E li contains the cross-in the fields-terms: 

Notice that the cross terms in (14) were not known before." 
Let us now proceed to consider the caseAof mutually 

perpendicular fields. If we neglect the term (XIL) in the Ha- 
miltonian (7b), then the perturbation theory can be con- 
structed in a manner entirely similar to the case of parallel 
fields. Let us give only the final results for the cross terms: 

and note that the structure of the arbitrary correction 8 k, 
resembles that of @ !, : 

where & A ,  -0 when k is odd. The coefficient functions are 
polynomials, and resemble the @ !, in structure: there are 
two terms in each of those attached to the highest harmonics 
Y ; ~"(6 ,p  ); four in each of those attached to the next high- 
est harmonics, etc. The degrees of the polynomials are the 
same as in @ jj, . 

The situation is s o ~ e w h a t  different in the case when the 
paramagnetic term (ZIz) is taken into consideration. First, 
Eq. (5) gets modified, and it assumes the following form: 

the Q,, being given as before by the formula (6). Second, the 
structure of the correction @ A, to the wave function is sig- 
nificantly more complicated: they have the same fundamen- 
tal form and are given by the formula (16) in the case of even 
k, but do not vanish and are pure imaginary in the case of odd 
k; 

where k is an odd number. The coefficient functions are 
polynomials having the same structure as the R li (see (10)) in 
the case of even k, and 
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in the case of odd k. Notice tlnat, in the case of odd k, the 
polynomial attached to the highest harmonics 
y - n + Z m  

+ , - , (8,p ) contains three terms; that attached to the 
next highest harmonics Y ,-,",$2:(8,p ) five terms, etc. As in 
the case of parallel fields, the coefficient functions attached 
to the highest harmonics can be found explicitly, but we shall 
not give their explicit form: the formulas are similar to (1 1). 

As in the case of parallel fields, to find the first correc- 
tions, we used the symbolic language REDUCE-2. The ex- 
pressions for the corrections @ I,, are given in the Appendix. 

Let us represent the expalision for the energy in a form 
similar to (12), and give the final result for the cross terms: 

It can be seen from a cpmparison of (20) with (15) that 
allowance for the term (XIz) in the Hamiltonian decreases 
the coefficients of g 2 p  (by 34%) and of g22? (by 40%). 
Notice also the quite large values of the coefficients of the 
cross terms in (14) and (20), wliich is important for various 
investigations within the framework of perturbation theory, 
since the region of applicability of the theory shrinks sharp- 
ly. Also worthy of note is the fact that the coefficients at- 
tached to the cross terms in the case of mutually perpendicu- 
lar fields are consistently mucln greater than in the case of 
parallel fields. 

CONCLUSION 

Thus, we have succeedecl in computing, for the first 
time ever, the coefficients attached to the cross terms in the 
problem of the hydrogen atom in constant electric and mag- 
netic fields. This became possilble as a result of the applica- 
tion of the "nonlinearization" method, since it is difficult to 
conceive such calculations within the framework of the stan- 
dard approach with the use of sums over intermediate states 
or Green functions. Within the framework of the method 
used, all the calculations reduce to the solution of simple 
recursion relations. 

Let us discuss the physical meaning of the results ob- 
tained. To begin with, let us note that, since we are working 
within the framework of perturbation theory, the region of 
applicability of the results obtsdned is limited to the case of 
fairly low # and % fields. This is due to the fact that the 
series in powers of Z for fixed Z? has a zero convergence 
radius, and its coefficients increase in a factorial fashion. 
The series in powers of %' for fixed Z has a convergence zero 
radius with factorial growth of the coefficients in the case of 
parallel fields and a finite radius, of convergence in the case of 
perpendicular  field^.^' This circumstance is easy to under- 
stand when expressed in terms of Dyson's a rg~ment ,~ '  and 
we shall not discuss it in detail here. We only note that the 
atom is unstable in the case of parallel fields, although the 
probability for tunneling is exponentially small (in fairly 
weak fields). Let us now fix the  electric-field strenght 59, and 
write down the expression for the magnetic susceptibility of 
the atom: 

It can be seen that the standard term -P tries to 
decrease the magnitude of the susceptibility and make the 
atom less "diamagnetic," whereas the term - g2 (which ori- 
ginates from a cross term in the energy) increases the suscep- 
tibility, thus stabilizing the situation. This effect is more 
strongly pronounced in the case of perpendicular fields. 

Let us now consider a different aspect of the problem: 
let us fix the magnitude of Z, and write down the expression 
for the polarizability of the atom: 

If now we take a sufficiently weak field 8 ,  so that we 
can neglect the term - g 2 ,  then it is evident that the term 
-A@ decreases effectively the polarizability of the hydro- 
gen atom. Notice that, as in the preceding case, the effect 
manifests itself more strongly in the case of perpendicular 
fields. It is also worth while to emphasize that in fields of 
sufficiently high intensities 8 and 2' ( $ d m ,  in the case 
when they are related in a certain fashion, there occurs an 
effect, first observed by Burkova et al.,' whereby it is advan- 
tageous for the electron to be localized in some region of 
space away from the proton. From the physical point of view 
this is due to the appearance of a second well that under 
certain conditions can become effectively deeper than the 
Coulomb well. Thus, the atom acquires a large "stable" di- 
pole moment. 

In conclusion, let us briefly discuss the case in which the 
angle between the directions of the electric and magne+tic 
fields is equal to a. Let us assume as before that the field Z is 
oriented alon& the z axis, and let us choose the x axis such 
that the field g>es in thex-z plane. Then the components of 
the vector 59 are equal to #, = g,, = g cosa, 
8, =g, = 59 sin a ,  and #, = 0. It is easy to show that the 
energy E will be a function of only gi and g:, as well as of 
p. Hence it is clear that nontrivial dependences on the 
angle a occur in the perturbation-theory-series terms that 
are of higher order than those considered above, e.g., in the 
terms 921 ::*, etc., with the possible exception of the 
term 29; 59,, whose coefficient is clearly equal to - 3555/ 
16. 

In conclusion I wish to thank K. G.  Boreskov, E. A. 
Solov'ev and K. A. Ter-Martirosyan for useful discussions. 

APPENDIX 

Here we give a few first corrections to the wave function 
in the cases when the fields are parallel or perpendicular to 
each other. Their explicit form may turn out to be useful in 
different investigations performed within the framework of 
perturbation theory for the case of weak fields, as well as in 
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the construction of variational trial functions that are rea- 
sonable from the point of view of the "Dyson argument" (see 
the discussion in Ref. 4). 

Thus, the expansion of the ground-state wave function 
is taken in the form 

('4.1) 
and the corrections are given by the following expressions 

With the aid of the expressions (A.2)-(A.6) we can find 
the corrections to the wave function in the Rayleigh-Schro- 
dinger perturbation theory series. To do this, we must ex- 
pand the exponential function in the formula (A. 1) in a se- 
ries, taking the groundstate Coulomb wave function 
q0 = exp[ - r ]  to be a common factor. As a result, it turns 

out that each correction to the wave function in the standard 
perturbation theory is a sum of a finite number of harmonics 
with coefficient functions that are finite polynomials in rand 
have the Coulomb wave function as a common factor. If now 
we recall the standard-perturbation-theory formulas for the 
corrections to the wave function, expressed in terms of a sum 
over intermediate states, we obtain sum rules for the Cou- 
lomb matrix elements for the transitions from the ground 
into the excited states. These sum rules may turn out to be 
useful in applications and, in particular, in the investigation 
of the problem of the classification of the states in the present 
problem. 

"The presence of this term leads to some modification of the procedure for 
constructing the perturbation theory described above (see below). 
"In Ref. 5 the coefficient of g2&a2 is computed within the framework of 
the present approach, but there is an error in the final result. 
3'With the exception of the case 2' = 0, for which the radius of conver- 
gence is zero. 
4'The Dyson argument is applied to the case of quantum mechanics is 
discussed in the papers cited in Ref. 4. 
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Translated by A. K. Agyei 
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