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The charge exchange A+ + B -+ A + B+* with excitation, proceeding via the Landau-Zener 
pseudocrossing of the quasimolecular terms, is considered. A theory that is asymptotic with 
respect to a large internuclear distance is proposed for the computation of the term splitting at the 
pseudocrossing point. The final expression contains two factors, one of which is equal to the 
splitting for the process of charge exchange without excitation, A+ + B + A + B+ and can be 
computed from the well-known formulas of the asymptotic theory. The second factor describes a 
transition in the B+ ion. The results of the cross-section calculation for the process 
He+ + Hg(6s2) -+ He + Hg+(7p) are compared with the experimental data. 

PACS numbers: 34.70. + e, 34.10. + x 

51. INTRODUCTION 

The charge exchange A+ + B + A + B+* with ion ex- 
citation" proceeds with considerable efficiency in slow colli- 
sions in the cases when the Landau-Zener pseudocrossing of 
the quasimolecular terms corresponding to the initial and 
final states occurs. It determines, in particular, the popula- 
tion of the excited state in He-Zn, He-Cd, and He-Se lasers 
(see the bibliography in Ref. 1). In experimental investiga- 
t i o n ~ ' - ~  only the relative probabilities of excitation of the 
various B+* states are measured in the majority of cases, 
while the theoretical cross-section estimates are made as if 
the excitation of the B+ ion does not occur, which, of course, 
is not justified. In those cases in which the absolute cross 
sections can be measured, they are found to differ from such 
estimates by several orders of magni t~de .~  

The Landau-Zener pseudocrossing of the quasimolecu- 
lar terms, which is responsible for the process in question, 
occurs in many cases encountered in practice at large inter- 
nuclear  distance^.'-^ This allows us to use in the computa- 
tion of the term splitting A at the pseudocrossing point a 
theory that is asymptotic in the internuclear separation R 
and has the advantage that it is simple and its results are 
universally applicable. The formulas of the asymptotic the- 
ory (see, for example, Smirnov's monograph4) have been suc- 
cessfully used in term-splitting and cross-section calcula- 
tions in the cases of single-electron transfer (ordinary charge 
transfer), simultaneous transfer of two electrons from one 
atomic particle to another (two-electron charge transfer), 
and collisional interchange of two electrons by particles 
(spin exchange, etc.). 

But there has thus far not been a theoretical study of 
charge exchange with excitation, a process which is a two- 
electron transition in which one of the electrons goes over 
from one atomic particle to another, while the second, re- 
maining at the original center, gets e~c i ted .~ '  An asymptotic 
theory of such a process is developed in the present paper 
and shown to possess some fundamental distinctive features 
as compared with previously considered cases. 

52. ASYMPTOTIC THEORY 

Let us compute the exchange interaction that deter- 
mines the process 

AZ.+BZD+A(~.-*)+B(ZO+I) .  (1) 
where Z, and Z,  are the charges of the colliding atomic 
particles. Let us introduce the quasimolecule's electronic 
wave functions PI and PII, which go over, as the nuclei are 
separated (i.e., as R + oo), respectively into the initial- and 
final-state wave functions of the separate atoms. It is suffi- 
cient to consider the dependence of PI and PII only on the 
coordinates of the active electrons undergoing the transi- 
tions. 

In the case of the single-electron transfer 
Az.+Bza,A(za-l)+B(zb+l) (2) 

an approximate representation is derived in the asymptotic 
theory (see, for example, Ref. 5) for the exchange-interaction 
strength H,,(R )=A (R )/2 in terms of an integral over the 
surface S separating the regions where the electron resides 
when it is in the initial and final states: 

where n, is the unit vector normal to S (we are using atomic 
units). The functions PI and PI1 depend in this case only on 
the coordinates of the single active electron. As S we can 
choose the plane perpendicular to, and passing through the 
middle, of the line joining the nuclei of the quasimolecule. 

It is not difficult to verify that the general scheme for 
deriving the formula (3) is the same for the process (3) and 
leads to the following natural generalization of the formula: 

For simplicity of notation, we shall first assume the 
electrons to be different. Then S,  and n ,  have the above- 
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indicated meaning for the coordinate r,  of the first electron, 
i.e., the electron that goes over from one particle to the other, 
and the integration with respect to r2 is performed over the 
entire volume. 

As is well known, if in the single-electron case (2) the 
quasimolecular wave functions PI and PII for large R are 
approximately replaced by the functions of the correspond- 
ing separate atoms, the value of the numerical factor in the 
exponentially decreasing function A (R )turns out to beincor- 
rect. But if we use a similar approximation for the two-elec- 
tron process (I),  and, furthermore, represent the two-elec- 
tron wave functions in the form of a product of 
single-electron wave functions, then, according to (4), the 
splitting generally vanishes because of the orthogonality of 
the second electron's  orbital^.^' Thus, allowance for the devi- 
ation of the quasimolecular wave functions from the wave 
functions of the separate atoms is of decisive importance 
here. The indicated difference in the asymptotic theory is 
described with the aid of correction functions, which are 
approximately calculated for large R. 

Let us introduce the correction functions X, and x,, 
defined by the 

Here the r,, , are radius vectors of the j-th electron relative 
to the nuclei A and B respectively and p,(r,,r,) is the wave 
function, of the active electrons in the atomic particle B~~ 
and, generally speaking, takes the interelectron correlations 
into account. In the spirit of the strong-coupling method in 
collision theory, it is convenient for what follows to repre- 
sent this function in the form of an expansion in terms of the 
complete set of wave functions @, of the ion B'~" I": 

qb (rib, r2b)  = FV (rib) @ v  (b) . (7) 

Here Y is the set of quantum numbers determining the state 
of B ' ~ '  + I): the value v = i is assigned to the ground state; the 
value v =f, to the final state B I Z B +  I)* whose wave function 
enters into the formula (6). When the first electron is re- 
moved from the atom B ~ ~ ,  the term wth v = i is the dominant 
term in the sum (7): 

qb (rib, rzb) 1 r,b+m=ni(ria) e-pr~b@i(rZb), ribBr2br (8) 

where the exponential dependence on r,, has been separated 
out in the function Fi(r,, ): the residual dependence on r,, is 
contained in the factor II,(r,,). It is clear that the quantity 0 
is connected with the first ionization potential I, of the sys- 
tem B ~ '  by the relation p 2/2 = I,. In the formula (6) p, (r ,, ) 
is the wave function of the active electron in the system 

- ' 1  for large r,, we can separate out an exponentially 
decreasing factor from this function, too: 

(rib) =IIa (ria) e-ar*a, (9) 

where a is connected wth the ionization potential I, of the 
*(Z0 - 11 system by the relation a2/2 = I,. 

As is well known,' the exponential dependence of the 
atomic wave functions on the coordinates leads to a situation 

in which for large R the integration over r,  in the expression 
(3) or (4) is localized around the middle of the internuclear 
axis (x , , ,  y, ,  - l / (a  + p ) ,  Z, ,  = Z , ,  = R /2, the z axis of 
the coordinate system coincides with the internuclear axis). 
The integration over r, in (4) is, as can easily be seen, local- 
ized in the vicinity of the nucleus B, so that r , ,  ) r,, . It is in 
the above-described region of configuration space that we 
must seek the correction functions. 

Let us first consider the computation of the correction 
function X, for the initial state. The deviation of this func- 
tion from unity is caused by the particle's field, which is 
described by the potential 

UI (r,, rz) =Ua (r,) +UA (rz),  U ,  (rj) =-Z,/rj.+Z./R. (10) 

In the expression (lo), and in (1 3) below, we have includ- 
ed only a part of the repulsive potential for the nuclei (that 
part for which the perturbation potential for R -+ does 
not contain an asymptotic Coulomb term); the remaining 
part need not be considered in the computation ofd  (R ). Let 
us emphasize that the interelectron interaction has already 
been taken into consideration in the function p,(r,,r,). The 
perturbation (10) breaks up into a sum of terms that depend 
only on r,  and r,. Accordingly, the correction function can 
be factorized in the region of configuration space of interest 
to us, i.e., in the region where the approximation (8) is appli- 
cable: 

xI (ri, r2) =xI(') (ri) x!? (r2). 

The functionx 'I' is required in the region of deep subbarrier 
(classically forbidden) motion of the first electron, where it is 
computed by well-known methods of the asymptotic theory: 

The correction x(:) should be found in the vicinity of the 
nucleus B, where the electron motion is classically allowed. 
Here we can use ordinary perturbation theory, the first order 
of which corresponds, in our notation, to 

where E, is the energy of the state @, . 
In the final state the difference between the Hamilton- 

ian of the quasimolecule and that of the separated atoms is 
connected with a potential that can be conveniently divided 
into two terms as follows: 

The correction function can be factorized here, too: 

The quantity xi:) is computed similarly to X',", with the first 
term in the expression (1 3) taken into account as a perturbing 
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potential. The second term in (13) does not have a Coulomb 
asymptotic form at large r , ,  , and can therefore be neglected 
in the determination ofxi:'. It should be used as a perturba- 
tion in the calculation ofx':,' from a formula similar to (12). 

In the evaluation of the integral (4) for the splitting, the 
dominant contribution in the integration over S, is made by 
the neighborhood of the point r,, = R/2 (the vector R is 
directed from the nucleus B to the nubleus A). This value of 
r,, should be used in the formula for x?. After this, the 
integrand can be factorized, and the integrations over r, and 
r, performed separately. In the: lowest order of the asympto- 
tic theory the result fas the form 

where the factor A, is calculated from the well-known for- 
mulas of the asymptotic theory for the single-electron charge 
transfer, with the excitation of the B'~" I "  particle ignored. 
The remaining factors contain only the characteristics of the 
transition in the B'~"  +" ion from the ground state into the 
excited state in question. 

A generalization of the theory, on which we shall not 
dwell here, shows that the form of the final result remains 
unchanged when we take account of the indistinguishability 
of the electrons (i.e., when we symmetrize the wave func- 
tions) and also when we allow for the spins of the atomic 
cores. A refinement of the theory leads to the result that the 
functions Gi and Gf in the matrix element in (14) should now 
be taken to be the many-e1ec:tron wave functions of the 
B(zb + system. 

For the potential in the matrix element in (14) we should 
use the multipole expansion f0.r large R: 

where P,(z) is a Legendre polynomial and the angle O,, is the 
spherical coordinate of the second electron in a system with 
the origin located in the nucleus B and an axis oriented along 
the internuclear axis. Actually, the sum (1 5) always contains 
only one term with I = dl2, where dl2 is the change that 
occurs in the orbital angular momentum of the electron 
when the transition in question occurs in B ' ~ "  I " .  In particu- 
lar, for the transition with dl2 = 1 we arrive at an ordinary 
dipole matrix element, which is connected with the oscilla- 
tor strength, and is known in many cases. 

In the case of an S-S juncti,on the formula (1 5) leads to a 
null result. To compute the sp1it:ting here, we should seek the 
correction function for the second electron with allowance 
for the terms of the second-order perturbation theory, which 
yields 

where the summation is extend,ed to include those interme- 
diate states for which v, #O. 

53. DISCUSSION AND COMPARISON WITH EXPERIMENT 

In the asymptotic theory the term splitting is expressed 
in terms of the asymptotic form of the wave function of the 
atom with one electron removed. The latter function is ex- 
pressed in turn in terms of the wave function of the ground 
state of the ionic core. Therefore, our expression (1 5) for the 
splitting contains a matrix element that connects wave func- 
tions of the ion. In an earlier paper by Bylkin5 there arose 
matrix elements between single-electron orbitals of the ion 
and a core electron in the atom. Their nonorthogonality led 
to the appearance of corresponding (scrambling-type) over- 
lap integrals, which are responsible, in particular, for the s-s 
transitions that occur when the ion is excited. The scram- 
bling effects (which, generally speaking, are comparable in 
magnitude to the correlation effects) do not occur in the con- 
sistently asymptotic theory. Let us emphasize that no as- 
sumptions need be made in the theory developed in the pres- 
ent paper about the role of the correlation and the 
applicability of the single-electron approximation for the de- 
scription of the atom B. 

Another distinctive feature of the theory expounded 
above is the use of different methods in the computation of 
the correction functions for the various regions of the elec- 
tron motion. 

In the region of asymptotically large internuclear dis- 
tances the splitting given by the formula (15) is significantly 
smaller than A , ,  and decreases rapidly with increasing dl,. 

We have4 computed the splitting that determines the 
process: 

He' (Is)  +Hgo (6s') +He (IsZ) +Hg+ ( 7 p ) ,  

whose absolute cross section has been mea~ured .~  The term 
corresponding to the final state was assumed to be horizon- 
tal, and the polarization interaction in the initial state was 
taken into account. The oscillator strength for the transition 
in the Hg+ ion was estimated in the Bates-Damgaard ap- 
proximation. At room temperature the velocity of the atoms 
at the pseudocrossing point of the terms (R, = 6 . 4 ~ ~ )  is pri- 
marily determined by the acceleration of the atoms on ac- 
count of the polarization attraction in the initial channel. 
The computed Landau-Zener transition cross section 
a = 1.5 X 10-l6 cm2 is higher than the experimental value3 
a = (0.9 - 1.3)X lo-'' cm2. The latter, as discussed in Ref. 
3, is apparently much too low, owing to the indeterminacy of 
the branching ratio for the radiative decay of the final excit- 
ed state of Hg+ (let us note that earlier experimental esti- 
mates yielded higher values: according to Ref. 7, 
(r = 1.6X 10-l6 cm2, while according to Ref. 2, 
u = 8.5 X 10- l 5  cm2). On the other hand, the simplest theo- 
retical estimate presented above is an overestimate because it 
does not take account of the presence of competing excita- 
tion channels for the ion. There competing channels may 
correspond to states with an excited d electron in Hgt (the 
corresponding lines have not been identified in the spectrum 
of the Hg+ ion). The lack of data on the energies of these 
states makes it impossible for us to take them into considera- 
tion in the calculation. 
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' 'In the literature the indicated process is also called charge transfer into 
an excited state. But the latter term seems to us to be more justified for 
t h e r e a c t i o n A + + B + A t + B + .  

*'In Bylkin's paper,5 which is devoted to the investigation of the process in 
question, a consistent asymptotic theory is not constructed, and the 
splitting calculation is not carried through (see the discussion below). 

"The possible role of the nonorthogonality of the orbitals of the second 
election in the B~~ and B"" " systems is discussed below. 
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