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A theory is developed of spontaneous bremsstrahlung of a slow electron scattered by a Coulomb 
center in the presence of a weak external monochromatic electromagnetic field. The external field 
is taken into account with the framework of first-order perturbation theory, and the unperturbed 
wave functions of the electron are used in the quasiclassical approximation. A simple analytic 
formula is obtained for the bremsstrahlung cross section. It is shown in which of the emitted- 
spontaneous-photon spectral intervals the theoretical results can be experimentally verified, 
without the strong slow-electron ordinary (Kramers) bremsstrahlung background that is pro- 
duced in the absence of an external electromagnetic field. It is concluded that the obtained quasi- 
classical cross section, which is valid for electron energies that are low compared with the Ryd- 
berg energies, supplements the well known fast-electron bremsstrahlung cross section obtained in 
the Born approximation for interaction of an electron with a Coulomb center: the latter cross 
section is valid at electron energies that are high compared with the Rydberg energies. Numerical 
estimates are presented for the obtained bremsstrahlung cross sections. It is concluded that the 
quasiclassical cross section exceeds by many orders the Born cross section for bremsstrahlung in 
the presence of a weak electromagnetic field. 

PACS numbers: 03.65.Sq, 03.65.Nk, 13.10. + q 

51. INTRODUCTION 

Spontaneous bremsstrahlung of a nonrelativistic elec- 
tron scattered by a Coulomb center is quite well known.' We 
consider here this radiation in the presence of a weak exter- 
nal classical electromagnetic field. We assume that this field 
is monochromatic. A solution of such a problem within the 
framework of the Born approximation in terms of the inter- 
action of the electron with the Coulomb center is contained 
in Ref. 2. The Born approximation is valid only for electrons 
of sufficient velocity, whose energies are high compared with 
the characteristic atomic energy, i.e., with the Rydberg ener- 
gy. 

In this paper we deal with the opposite limiting case, 
when the energy of the electron scattered by the Coulomb 
center is low compared with the Rydberg energy. The wave 
functions of such a slow electron in the field of a Coulomb 
center can be described within the framework of the quasi- 
classical approximation. We consider spontaneous emission 
of such an electron in the case of scattering accompanied by 
absorption or emission of one photon of an external given 
electromagnetic field (weakness of the field is also under- 
stood in this sense). We note in this connection that in Ref. 3 
was investigated stimulated bremsstrahlung of a quasiclassi- 
cal electron scattered by a Coulomb center, i.e., emission of 
one photon of frequency equal to the frequency of the exter- 
nal electromagnetic field. We, however, consider emission of 
a spontaneous photon with a frequency different from that of 
the external field. 

Since the initial and final states of the scattered electron 
are treated quasiclassically, the solution of our problem 
yields, apart from trivial notation changes, solutions of the 
following related problems: 1) spontaneous Raman scatter- 

ing accompanied by transitions between highly excited 
atomic states; 2) photoionization by Rydberg states of the 
atoms, accompanied by bremsstrahlung of ionized electrons 
at the same atom; 3) spontaneous bremsstrahlung of slow 
electrons, accompanied by their recombination after absorb- 
ing a photon of the external electromagnetic field. Cross sec- 
tions are obtained for all these processes. 

We use the atomic system of units f i  = e = Me = 1 (the 
speed of light is c = 137). 

52. GENERAL THEORY 

We assume that the external field $ cos wt (8' is the 
amplitude of the electric field) is linearly polarized, and 
choose the polarization axis along the z direction. We con- 
sider first, for the sake of argument, absorption of one pho- 
ton of this field by an electron, and it is more convenient to 
deal first with electron states in a discrete spectrum. We de- 
note by N = n,l,m the set of quantum numbers of the initial 
highly excited state of the atom (n-principal, I--orbital, 
m-magnetic), by N " the set of intermediate-state quantum 
numbers, and by N' the set of the quantum numbers of the 
final state of the discrete spectrum, when a photon from the 
electromagnetic field has been absorbed and a spontaneous 
photon of frequency v emitted. We assume initially, to be 
definite, that n' > n. 

The two-photon matrix element describing the consid- 
ered transition has the well known form 

Here V = z 8 / 2  is the amplitude of the perturbation due to 
the external electromagnetic field, and V' = ( 2 ~ v / v ) ' / ~  (r.e) 
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is the amplitude of the perturbation due to the electromag- 
netic field of the spontaneous emission (v is the normaliza- 
tion volume). Both perturbations are written in the dipole 
approximation, and e is the unit vector of the spontaneous- 
photon polarization. We assume hereafter v = 1. 

The transition probability per unit time, according to 
the Fermi "golden rule," is 

(2) dwNNv=2n 1 V N N v  1'6 ( @ n r n - ~ + v )  dpk, PI 
where dp, = d k/(27r)' is the number of final states of the 
spontaneous photon, and k = v/c is the wave number of this 
photon. 

Summing (2) over the final states of the electron N', 
which are located in a narrow interval near the values corre- 
sponding to the energy conservation law a,., = w - v, we 
use the known rule for highly excited Rydberg atomic states: 

We then obtain from (2), taking (1) and (3) into account, 

where dn, is the solid angle of the emitted spontane,ous pho- 
ton and 

Equation (4) determines the probability of emission of the 
spontaneous photon per unit interval of its frequencies. 

We proceed next to calculate the two-photon matrix 
dipole element (5) for transitions with different quantum 
numbers. 

We conclude this section by noting that the employed 
perturbation theory in terms of iT in lowest order is valid 4 if 
the condition 8'nf( 1 is satisfied. 

63. CALCULATION OF TWO-PHOTON MATRIX ELEMENTS 

We consider first the two-photon matrix element (5) for 
the transition nlm-n'l 'm'. Then 

I n a r l " m  n ' l ' m  + L) him In.,ltrm. 
V N N ,  = x ( ,,, on. ..+, 

n"l" 
(6 )  

Summing (4) over two independent polarizations of the 
spontaneously emitted photon and integrating over the solid 
angle do,  of its emission, we obtain 

n ' l 'm  
d w , l m  n"v38' -=- I vNN' 1 '. 

dv 3 c3 

We assume that the quasiclassical orbital quantum 
numbers are large enough, so that 1) 1. The dipole matrix 
element is then of the form 

where R i,"' is a radial dipole matrix element. By the same 
token, the dependence of the two-photon matrix element (6) 

on the magnetic quantum number m is explicitly separated. 
Averaging (7) over this magnetic quantum number of the 
initial state of the electron, we obtain the transition probabil- 
ity averaged over m: 

where 

We calculate now the radial two-photon matrix element 
(10). We consider first in sufficient detail the case I ' = I + 2. 
The main contribution to the sum (10) is made by terms with 
n" in the region where the energy denominators vanish: 
on., - o-- ,O for the first term and on., + vzO for the sec- 
ond. This agrees with the general concept of transition to the 
classical limit, according to which transitions via intermedi- 
ate state are transformed from virtual (without energy-con- 
servation law) to real (with energy conservation for the inter- 
mediate states). Of course, the number of states n" is quite 
large in the region where the energy conservation law is sat- 
isfied for the intermediate states. 

The radial quantum numbers n, n', and n" of the states 
differ very greatly. The corresponding quasiclassical radial 
dipole matrix elements were obtained in Ref. 5 and take at 
n' > n the form 

Here K, (x) is a Macdonald function. Equation (1 1) is validS if 
14n,n1 (otherwise the radial dipole matrix elements are ex- 
ponentially small). We note that, as already mentioned, the 
orbital momenta are assumed to be quasiclassically large, 
i.e., 1 )  1). 

Substituting (1 1) in (lo) we obtain from the first term of 
(10) the expression 

where 

In the derivation of (12) we took it into account the 
n" > n' > n. The quantity N, characterizes the region of 
quantum numbers n" of the intermediate state in the first 
term of (19), a region influencing the sum significantly. 

The sum in (12) is easily separated and is equal to 
- P cot n-Np The second term in the sum (10) is similarly 

calculated, and the values of n" for it are close to 

In the upshot expression (10) with I '  = I + 2 takes the form 
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In the resonant case we have 

ctg nN,+n-I (N,- [N,]  )-', (16) 

where [...I denotes the integer part of the number. This is 
tantamount to stating that only one resonant term with 
n" = [N,] remains in the sum (10). 

Substituting (15) in (9) we obtain the probability of the 
transition 1-1 + 2, averaged over the magnetic quantum 
numbers m of the initial state: 

We note that a structure of the type cotrN, appears also 
when multiphoton ionization of quasiclassical levels is con- 
sidered. 

On going to the case when the final state n' is in the 
continuous spectrum, we must substitute in (17) cot?rN,-+i, 
since the sum in (12) is replaced by an integral with respect to 
n" and is equal to ~ r i  when account is taken of the usual 
circuiting around the pole n " - N,+n " - N, - is. 

The probability of the transition 1 4  - 2 can be calcu- 
lated similarly. The result differs from (17) only in that the 
function K,,, reverses sign in both factors of (17). 

We turn now to the transition 1-1. It is effected via two 
intermediate orbital angular momenta I " = I + 1. Calcula- 
tions similar to those camed out above in the derivation of 
(17) yield 

From ( 1  7) and (1 8) we easily obtain the transition prob- 
ability summed over the orbital momenta I ' = I, I + 2 of the 
final states. We shall not present the corresponding formula. 

We have considered so far the probability of a transition 
with conservation of the magnetic quantum number, m-m. 
Actually spontaneous emission of a photon can change the 
magnetic quantum number by unity, so that m' = m + 1. 
The treatment of such transitions is perfectly analogous to 
that of the transitions analyzed above. Leaving out the rath- 
er laborious manipulations, we present only the result for the 
sumoverm'=m,mf 1 a n d 1 1 = I , I f 2 :  

n'i'm' 
~1'8~ (ctg nN,+ctg Z N , ) ~  

81rc2c3a2nS 

This result takes into acount also the transitions considered 
above with m' = m. 

We modify Eq. (19) for the case when the initial state of 
the electron is in the continuous spectrum (with momentum 
p), and the final state of the electron also belongs to the con- 
tinuous spectrum. We are interested here in emission of 
spontaneous photons of frequency v > p 2 / 2 ,  for at lower fre- 
quencies v there exists the usual spontaneous bremsstrah- 
lung in which the external electromagnetic field F? does not 
take part. This radiation has a much higher probability than 
(19), since we assume the external magnetic field $ to be 
weak and consider it in first-order perturbation theory. The 
process of absorption of a photon w and subsequent emission 
of a photon v (the first term in (10)) proceeds via an interme- 
diate state in the continuous spectrum, thus calling for the 
substitution cotrN,-i in (19). At the same time, the emis- 
sion of the spontaneous photon v and subsequent absorption 
of the photon w proceeds via a discrete-spectrum state, so 
that cot* should be retained in (19). Furthermore, replac- 
ing In1 in (19) byp-', wherep is the momentum of the inci- 
dent electron, we obtain 

The meaning of the sum here is the same as in (10). 
We now average the probability (20) over the orbital 

momentum Iof the initial level, assuming all the states of this 
level to be equally populated. We use to this end the relation 

The upper integration limit extends here to infinity in view of 
the rapid convergence of the integral. We then obtain from 
(20) 

where 

I ( ~ ) =  j t T " [ k $ ( t ) + K l ~ ~ ( t )  I [ K Y ; ( X ~ ) + K ; ( X ~ )  ldt .  (23) 
0 

The function f (x) has a simple analytic form at x> 1 and x( 1. 
At x) 1 

In addition, this function satisfies a condition that follows 
directly from its definition (23): 

Its value at x( l  can therefore be easily obtained from (24) 
with the aid of (25). We shall not cite it here. Figure 1 shows 
the numerically calculated function f (x) at x >  1. The value of 
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d ~ / d v ,  rel. un. 

FIG. 1. The universal function f (x) [see (23)] that enters in the expression 
(26) for the bremsstrahlung cross section. 

this function in the interval 0 <x < 1 can be easily obtained 
from the condition (25). 

The bremsstrahlung cross section is given by (22) divid- 
ed byp. We ultimately obtain for the cross section (summed 
over the polarizations of the emitted spontaneous photon, 
integrated over its emission angles, summed over the mag- 
netic and orbital quantum numbers of the electron final 
state, and averaged over the magnetic and orbital quantum 
number of the initial electron): 

(in contrast to the probability, the cross section does not 
contain the normalization volume, always taken equal to 
unity above). 

The result (26) obtained in the quaisclassical approxi- 
mation supplements the result of the Born approximation2 

which is valid at p,p ') 1, whereas (26) is valid when the re- 
verse conditionsp,pf(l hold. Comparing the two cross sec- 
tions we see that generally speaking the quasiclassical cross 
section exceeds the Born cross section appreciably. 

It is advantageous to express the result (26) in units of 
the usual cross section for bremsstrahlung in the absence of 
the external electromagnetic field g and calculated by the 
Kramers formula 

The ratio of the cross sections is 

The result (26) could be verified experimentally by in- 
vestigating the spectral distribution of the emitted spontane- 
ous photons (in this case, the energy conservation law 

p"/2-p'/2=o-v (30) 

sorts out automatically electrons with definite final energy). 
For separation from the ordinary bremsstrahlung of elec- 
trons in the absence of the external electromagnetic field $ it 
must be noted that the continuous spectrum of the ordinary 
bremsstrahlung (28) has a short-wave end point (at 
Y = Ep =p2/2), for when v is increased further the electron 
lands in the discrete spectrum (recombination) and the spon- 
taneous emission has a line rather continuous spectrum. In 
the presence of an external electromagnetic field of frequen- 

FIG. 2. Functional dependence of the spectral distribution of the cross 
section for bremsstrahlung in the presence of an external electromagnetic 
field Pcosot on v/o, where v is the spontaneous-emission frequency. The 
thick line corresponds to the example E, = h, where Ep is the energy of 
the incident electron. The long-wave boundary of the spectrum corre- 
sponds to the region where ordinary (Kramers) bremsstrahlung sets in; the 
short-wave boundary of the region is determined by the law of energy 
conservation in the presence of a weak external electromagnetic field. 

cy w, however, the short-wave end point of the continuous 
spectrum of the emitted spontaneous photons is located 
much farther, namely at v = Ep + w, so that in the interval 
of the spontaneous-emission frequencies 

Ep<v<E,+o 

the background due to the ordinary bremsstrahlung (28) is 
absent (apart from the line structure connected with the elec- 
tron recombination). As for the order of magnitude, accord- 
ing to (29) this cross section is of the order of E ;  'I3 g2 of the 
Kramers cross section (the field is measured in atomic 
units 8, = 5 x lo9 V/cm). To obtain this estimate we have 
assumed that the energy of the spontaneous photon and the 
energy w of the external-field photon are of the order of the 
electron energy Ep . 

The dependence of the cross section (26) on the ratio v/ 
w is shown in Fig. 2. According to the foregoing, this depen- 
dence should be considered in the interval 

Eplo<z~/o<l+Ep/o. (31) 

Both cases Ep > w and Ep < o are possible. By way of exam- 
ple, the thick line of Fig. 2 shows the case E, = 2w. Inside 
such a line, the recombination structure of the usual elec- 
tron-recombination process corresponds in (26) to frequen- 
cies va t  which co t~N~-oo,  i.e., where it is generally speak- 
ing incorrect. 

In conclusion, the authors thank I. Ya. Berson, N. B. 
Delone and M. V. Fedorov for valuable remarks which were 
taken into account in the course of the work. 
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