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We study the motion of a single oscillator in the field of a given plane electromagnetic wave and of 
a beam of phased oscillators in a self-consistent electromagnetic field. We show that the motion of 
a single particle becomes chaotic when the field amplitude satisfies the condition for resonance 
overlap. The chaotic motion of a single oscillator is the cause for the chaotic behavior of a beam of 
oscillators in a self-consistent electromagnetic field. We obtain the spectra and correlation func- 
tions of the electromagnetic fields excited by the beam. We study the evolution of the distribution 
function for the beam particle energy. We show that the resulting average level of the oscillations 
excited by the beam can be estimated by using the resonance overlap condition. 

PACS numbers: 41.70. + t 

In different fields of physics a lot of attention has been 
paid recently to a study of the chaotic behavior of dynamical 
systems.'-3 The stochastic motion of such systems is deter- 
mined by their complex internal dynamics rather than by 
fluctuating forces. The simplest example of such a system is 
the non-linear oscillator acted upon by a regular periodic 
force. Chirikov and ~aslavskii' have shown that for suffi- 
ciently large values of the acting force the nonlinear reson- 
ances start to overlap and a stochastic instability in the mo- 
tion of the oscillator may occur. It is of value in principle to 
study the stochastization of the motion using such elemen- 
tary models, for it makes possible to predict the occurrence 
of stochasticity in appreciably more complicated systems. 

An important example of a nonlinear oscillator is a 
charged particle moving at an angle to an external magnetic 
field. It was shown in Refs. 4 and 6 that the motion of such an 
oscillator in the field of a slow wave (Vf(c, Vf the phase 
velocity, c the light velocity in vacuo) is stochastic in nature 
under conditions for resonance overlap. 

The present paper is devoted to a study of the stochastic 
motion both of a single oscillator in the field of a given plane 
electromagnetic wave and of a beam of oscillators in a self- 
consistent electromagnetic field. It is well known7 that a 
monoenergetic beam of such oscillators is unstable with re- 
spect to the excitation of electromagnetic radiation. If there 
is no retarding medium the elementary mechanism for such 
an instability is the normal Doppler effect. In the single- 
mode regime, at small amplitudes of the wave to be excited 
(low density beam of oscillators), the exponential growth of 
the amplitude in the initial stage gives way to amplitude os- 
cillations caused by the phase oscillations of the beam 
bunches in the field of the wave.' Such a picture of the insta- 
bility is observed under conditions of beam trapping in an 
isolated cyclotron resonance when the motion of the beam 
particles is regular. We show below that when the wave am- 
plitude is sufficiently large (dense beam of oscillators) a sto- 
chastic regime of the motion of the dynamical system con- 
sidered is realized. The elementary mechanism for the 
occurrence of stochasticity is then the overlap of the cyclo- 
tron resonances of charged particles. 

1. STATEMENT OF THE PROBLEM. BASIC EQUATIONS 

We consider the problem of the excitation of electro- 
magnetic oscillations by phased oscillators with a distribu- 
tion function 

where P, , PI, are the momentum components perpendicular 
and parallel to the z-axis, 8 the angle between P, and the x- 
axis (the z-axis is parallel and the x-axis perpendicular to the 
external uniform magnetic field H,), Px = P, cos 8, 
P, = P, sin 8, n, the oscillator density, 
yo = (1 + ~ ~ / r n ~ c ~ ) ~ ' ~ .  

The self-consistent set of equations describing the excit- 
ing of electromagnetic radiation by the oscillators (1) con- 
tains the equation of motion for the particles and the Max- 
well equations for the electromagnetic field: 

dP e dr P 
-- P e E  +- PIX [H+Ho], -=- 

d t  mcy ' 
(2) 

d t  mcy ' 

d H 
d E - c rot H-4nj, - crotE, -- 

a t  a t  

div H=O, div E=4np. 

Here E and H are the electric and magnetic field strengths, P 
the particle momentum, y the relativistic factor, j andp the 
current and charge densities, e and m respectively the charge 
and rest mass of a particle. 

We shall study the evolution of a spatially periodic per- 
turbation of the electromagnetic field with non-vanishing 
components Ex, E,, Hz and a wave vector k = (k, ,0,0) along 
the x-axis. The expressions for the electric and magnetic 
field strengths can then be written in the form 

E (x, t )  = {Re E, ( t )  eikx, Re E, ( t )  e'&, 0) (3) 

H (z, t )  = (0, 0, Re Hz ( t )  e'"}, k=kx. (4) 

One should note that the harmonic time-dependence of 
the fields is not singled out in Eqs. (3)  and (4). This approach 
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enables us to describe correctly the dynamics of the fields 
and of the particle motion in the stochastic regime when the 
excited fields have a broad frequency spectrum. 

Using the normal procedure of averaging over a spatial 
period of the field perturbation and also using Liouville's 
theorem about the conservation of the phase volume of the 
particle we easily obtain the following self-consistent set of 
nonlinear equations for the field and the beam particles: 

dh - --- dew i  - =-ih-wP2 1 j+ e-" dYo, (5b) 
d.t dr 

-2, 

In Eqs. (5), which are written in dimensionless variables 

P 
~=kct ,  Y =kz, p = - , y= (l+p,2+p,2)"2, 

mc 
eHz 1 h=-- eE.,, 1 

Ex,v = - - 
mc kc' mc kc' 

we have used the notation: 

The integration on the right-hand sides of Eqs. (5b) and 
(512) is over the initial values of the particle coordinates. 

The set of Eqs. (5) has the integral of motion 

pw+oHY +Im heiv=const. (6) 

Equations (5b) are equivalent to the inhomogeneous equa- 
tion of an oscillator and describe the excitation of a trans- 
verse electromagnetic field by particles. In its turn Eq. (5c) 
takes into account the excitation in the system of a longitudi- 
nal electric field which is, in fact, the collective Coulomb 
field of the charged particles. 

2. MOTION OF AN OSCILLATOR IN THE FIELD OF A GIVEN 
ELECTROMAGNETIC WAVE. RESONANCE OVERLAP 
CRITERION 

We noted in the introduction that when the condition 
for overlap of nonlinear resonances is satisfied there occurs a 
stochastic instability in the motion of the oscillator. To ob- 
tain a criterion for the resonance overlap we consider the 
motion of a particle in the field of a transverse monochroma- 
tic electromagnetic wave and in a constant external magnet- 
ic field. One easily obtains the equations describing the mo- 
tion of a particle in these fields from the set of Eqs. (5), 
putting in them 

where E~ = const is the given wave amplitude. We then get 

For the analysis of the set (7) it is convenient to use the rela- 
tions 

p.=pI cos 0, p,=p, sin 0, cp=?V+ (pI/oH) sin 0 
to change to the variables p,, 0, p. Using the integral of 
motion (6) we can write the set of Eqs. (7) in the new varia- 
bles: 

OD 

d0 oa 
-=-- 

I + e0 z I. (p) (z - -) oos (s0-I-r-cp) . (8) dz 
.--OD 

P L ~  'I 

E cp + - sin(cp-p sin 0-z) =const. 
W 

Herep = p,/wH, J, b) is a Bessel function of orders, and the 
summation is taken overs = 0, f 1, f 2 ,... . 

One sees easily from the set of Eqs. (8) that the particle 
interacts most effectively with a wave under the resonance 
conditions: 

soa='I. (9) 

We consider the case of small wave amplitudes when 
the change in particle energy A y as a result of the interaction 
with the wave is much less than the distance between neigh- 
boring resonances, i.e., A ~ < w ~ .  Retaining on the right-hand 
sides of Eqs. (8) only the resonance term and introducing the 
resonance phase 0, = s0 + r we get a set of equations which 
describes the motion of an oscillator under conditions of an 
isolated resonance: 

dPL d0. SOH -=eel.' (p) sin 0., - = - - 
dz dz 

+I.  
'f 

(10) 

We note that in the second equation of the set (10) we neglect- 
ed terms of order E ~ .  

When the deviations of the particle momentum from 
the equilibrium valuep, = [ 1 + s2w; ] ' I2  are small we can 
transform Eqs. (10) into the equations of a mathematical 
pendulum: 

-- do. p,, -- asp, -&I.' (p) sin o., - - 
dr dr  ye 6 ~ 1 ,  (lea) 

where Sp, =pl  -pis, p, =p,,/oH, y, = SW,. The motion 
of a particle is thus regular when the conditions for an isolat- 
ed resonance are satisfied. Clearly, the isolated resonance 
approximation is justified if the maximum width of the non- 
linear cyclotron resonance, 

(Ap) ,,,=4[ (y,2/p,,) I.' (p,) eel'", (11) 

which one easily finds from the solution of the set (lOa), is 
appreciably smaller than the distance between neighboring 
resonances: 
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FIG. 1 .  The transverse momentum 6pl as function of the time r for differ- 
ent values of the wave amplitude: a) E, = 0.05; b) E, = 0.2. 

If the condition 

oa&4[plaJ.' ( ~ 8 )  6 0 1 ' ~  

is satisfied the cyclotron resonances overlap. Under those 
conditions a stochastic instability may occur in the motion of 
the particle. ' 

To check the criterion for the stochastization of the mo- 
tion of the oscillator we integrated the set of Eqs. (7) numeri- 
cally. Numerical calculations were performed for w, = 0.5 
and an initial energy yo = 2. The resonance condition is in 
that case satisfied for s = 4. We give the results of the calcu- 
lations in Fig. 1. In these figures we give the time-depen- 
dence of the transverse momentum Sp, = p ,  - p,, for dif- 
ferent values of the dimensionless wave amplitude and for 
different initial conditions. 

For small values of the dimensionless amplitude 
E~ = 0.05 (Fig. la) the transverse momentum Sp, changes 
periodically with time within the limits from - 0.26 to 0.26. 
As the distance in momentum between neighboring reson- 
ances is about 0.5 the phase oscillations of the particle corre- 
spond to motion in an isolated resonance. This is in complete 
accordance with the condition (1 1) for the applicability of 
the isolated resonance approximation. As one does not aver- 
age in the numerical integration over the fast motion there 
are noticeable small-amplitude fast motions, caused by the 
effect of the other resonances, against the background of the 
slow motions in the region of the isolated resonance. 

The picture of the particle motion changes qualitatively 
for sufficiently large wave amplitudes. We show in Fig. lb  
the time dependence of the transverse momentum 6p, for 
E~ = 0.2 when the condition (13) for resonance overlap is 
satisfied. It is clear from this figure that the particle is not 
trapped in an isolated resonance but performs a complicated 

irregular motion. An important feature of the particle mo- 
tion is that an insignificant change in the initial conditions 
leads to an appreciable change in the picture of the particle 
motion. The difference in the initial values of the energy for 
the curves 1 and 2 of Fig. lb  is only 0.01. Notwithstanding 
such a small difference the evolution of the particle momen- 
tum differs greatly. These results indicate the presence of 
local instability of the motion in the system. 

3. RESULTS OF A NUMERICAL ANALYSIS OF THE 
COLLECTIVE EXCITATION OF OSCILLATIONS BY A SYSTEM 
OF OSCILLATORS 

In the preceding section we showed that for sufficiently 
large wave amplitudes, when resonances overlap, the motion 
of the oscillator becomes stochastic. One may expect that if 
as the result of the development of a collective instability the 
amplitude of the excited field in the system of oscillators 
reaches a value for which resonance overlap starts, the mo- 
tion of the particles becomes stochastically unstable and the 
system of oscillators goes over into the regime of generation 
of stochastic oscillations. 

The set of Eqs. (5) describing the excitation of electro- 
magnetic oscillations by an ensemble of phased oscillators 
was solved numerically for different values of the plasma 
frequency w, = 0.1 and 0.3 and for fixed values of the cyclo- 
tron frequency w, = 0.5 and of the initial energy yo = 2. 
The resonance condition is in that case satisfied for s = 4. 
The initial values for the amplitudes were given as follows: 
Re E~ = Re h = 5 X 10W3. The numerical calculations were 
performed for 100 particles. The accuracy of the calculation 
was monitored against the integral of the motion. 

We show in Figs. 2 to 6 the results of a numerical analy- 
sis of the set of Eqs. (5). Figures 2 to 5 show the time-depen- 
dence of the longitudinal and transverse components Ex and 
Ey of the electric field at x = 0 and also the spectral densities 
of the power and the correlation functions corresponding to 
them. 

We use for the spectral and correlation analysis of the 
electric fields the formulae 

where a&) is the Fourier transform of the process studied, 
u(t ). Using (14) we found the spectra of the electric fields E x ,  
Ey in the frequency range O < w , < 5 ~  with a resolution 
Aw = 2.5X 1 0 - 3 ~ .  The spectra and correlation functions 
shown in Figs. 2 to 5 are normalized to their maximum val- 
ues. 

We give in Fig. 6 the evolution of the particle distribu- 
tion function for different oscillator densities plotted for 
1000 particles per wavelength. 

For a low density of charged particles (w, = 0.1) the 
transverse component of the electric field is preferentially 
excited. In the initial stage of the instability (Fig. 2a) there 
occurs an exponential growth of the amplitude of the trans- 
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FIG. 2. The amplitude (a), spectral density (b), and 
correlation function (c) of the transverse field as 
functions of the time 7 at the point x = 0 for o, 

I - = 0.1. 

lo-' - 
b 

- 

verse electric field. Later its growth is replaced by slow oscil- 
lations which are caused by the phase oscillations of the par- 
ticle bunches trapped by the wave. The spectrum of the 
transverse component of the electric field has a narrow peak 
at the fundamental frequency of the oscillations (w = 1) and 
two satellites positioned on one side of the peak. The occur- 
rence of the satellites is caused by the modulation of the wave 
at the frequency of the phase oscillations of the particle 
bunches in the field of the wave. The correlation function of 
the transverse electric field is an oscillating function at the 
fundamental frequency with a slowly decreasing amplitude. 

The time-dependence of the longitudinal field (Fig. 3a) 
has a more complex shape caused by the coincidence of gyro- 
frequency harmonics. However, here also we observe an ex- 
ponential growth of the amplitude in the initial stage of the 

instability, later replaced by amplitude oscillations having 
the frequency of the phase oscillations of the particles in the 
field of the transverse wave. The spectrum of the longitudi- 
nal electric field (Fig. 3b) has several narrow peaks at the 
harmonics of the cyclotron frequency of a relativistic parti- 
cle (w = 0.25 fors = 1; w = 0.5 fors = 2; w = 0.75 for s = 3; 
w = 1 fors = 4) and the maximum intensity of the longitudi- 
nal field occurs at the second harmonic (s = 2) whereas the 
maximum of the transverse field occurs at the fourth har- 
monic. The correlation function of the longitudinal field is a 
periodic function of frequency w = 0.5 (as the spectrum has 
a maximum at this frequency) with a slowly decreasing am- 
plitude. 

A low density oscillator beam thus excites regular oscil- 
lations with a spectrum which is discrete in nature. One 
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FIG. 3. The amplitude (a), spectral density (b), and 
correlation function (c) of the longitudinal field as 

G functions of the time r a t  the point x = 0 for o, 
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G R FIG. 4. The amplitude (a), spectral density (b), and 
correlation function (c) of the transverse field as 
functions of the time rat the point x = 0 for w, 

b = 0.3. 

1 
2 

checks easily that the maximum value of the amplitude of 
the transverse field does not satisfy in this case the condition 
(13) for resonance overlap, so that the particles are in an 
isolated resonance with the wave and their motion is regular 
in nature. A convincing confirmation of this is also the shape 
of the energy distribution function of the particles at differ- 
ent times. It is clear from Fig. 6 that the excitation of the 
oscillations is accompanied by a small broadening of the dis- 
tribution function. As the value of the particle energy lies 
between the limits from y = 1.75 to 2.2 and the energy dis- 
tance between neighboring resonances is 0.5, all particles are 
in an isolated (s = 4) cyclotron resonance with the wave. 

The efficiency coefficient, defined by the relation 

reaches under the conditions for an isolated resonance 37%. 

When the density of the charged particles is increased to 
values at which amplitude of the field excited by the oscilla- 
tors satisfies the condition for resonance overlap the dynam- 
ics of the instability is completely different. Initially, as in 
the case of an isolated resonance, there is an exponential 
growth of the transverse field which is limited by the trap- 
ping of beam particles by the field of the excited wave (Fig. 
4a, ~ ~ 5 0 ) .  The level of this field is approximately twice the 
level necessary for resonance overlap so that the motion of 
the oscillators becomes chaotic. This kind of motion of the 
particles leads to a chaotic modulation of the amplitude of 
the transverse field (Fig. 4a, 50<~<200) and to the occur- 
rence of a chaotic longitudinal field (Fig. 5a). The difference 
in the behavior of the longitudinal and the transverse fields 
can be explained as follows. The time-dependence of the lon- 
gitudinal Coulomb field is, in accordance with Eq. (5c), com- 

FIG. 5. The amplitude (a), spectral density (b), and 
correlation function of the longitudinal field as 
functions of the time rat  the point x = 0 for up 
= 0.3. 
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FIG. 6. The evolution of the distribution function of the particle energy y 
for (a) o, = 0.1 and (b) o, = 0.3. 

pletely determined by the particle motion so that the chaoti- 
zation of the charged particle motion causes the chaotization 
of the self-consistent Coulomb field of those particles. The 
transverse electromagnetic field is described by the inhomo- 
geneous oscillator Eq. (5b) so that the chaotic beam current 
which occurs on the right-hand side of this equation can 
produce only an irregular modulation of the complex ampli- 
tude of the transverse field. 

In accordance with this picture of the instability we 
have the shape of the spectrum of the excited oscillations and 
the shape of the distribution function (Fig. 6b). The spectrum 
of the transverse field (Fig. 4b) is appreciably broadened even 
though it has a maximum at the basic frequency w = 1. The 
correlation function of this field, in contrast to the case of a 
low density beam, decreases with time rapidly while oscillat- 
ing at the main frequency. The spectrum of the longitudinal 
field (Fig. 5b) is continuous and appreciably broader than the 
spectrum of the transverse field. The shape of the distribu- 
tion function (Fig. 6b) shows that up to time r z 4 0  the insta- 

bility develops similarly to the case of an isolated resonance. 
However, already at TZ 80 the particle distribution function 
includes the region of several resonances; apart from the 
slowed down particles a group of stochastically accelerated 
particles is clearly visible. When the time increases further 
the distribution function is much more smeared out and the 
number of accelerated particles increases even though alto- 
gether there are more decelerated than accelerated particles. 

The chaotic motion of the oscillators and the smearing 
out of the distribution function (appearance of accelerated 
particles) leads to the fact that the level of the self-consistent 
field that has caused that motion decreases and, starting at 
time ~ ~ 2 2 5 ,  the average amplitude of that field corresponds 
to the value necessary for resonance overlap. This means 
that the level of field saturation is in final reckoning deter- 
mined not by the condition for particle capture, but by the 
condition for resonance overlap. 

The motion of a relativistic oscillator in the field of a 
plane electromagnetic wave with an amplitude which satis- 
fies the condition for overlap of cyclotron resonances is 
therefore chaotic in nature. Such a motion of a single oscilla- 
tor is the cause of the chaotic behavior of a more complex 
system-an oscillator beam moving in self-consistent elec- 
tromagnetic fields. The chaotization of the motion of an os- 
cillator beam starts at a sufficiently large density of charged 
particles when the amplitude of the excited electromagnetic 
field satisfies the resonance overlap criterion. We can then 
estimate the average resulting level of the excited oscillations 
from the resonance overlap criterion. 

It is necessary to note that in the system considered 
above, owing to the nonlinearity of the beam, higher spatial 
harmonics will be excited apart from the fundamental har- 
monic (governed by the initial conditions). The presence of 
those harmonics can in the general case lead to a consider- 
able change in the dynamics of the motion of the beam parti- 
cles. However, a numerical analysis of the model, taking into 
account the excitation of the spatial harmonics, shows that 
for sufficiently low beam densities (wi 4 I) ,  particularly for 
the values considered above, the amplitudes of the higher 
harmonics are small and they do not change the picture de- 
scribed here of the process of the chaotization of the particles 
and of the field. 

The authors express their gratitude to Ya. B. ~ G n b e r ~  
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