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An expression is obtained in coordinate space for the density of an induced charge in a strong 
Coulomb field. The treatment is based on a convenient integral representation, used earlier by the 
authors, for the Green's function of an electron in this field. The behavior of the potential corre- 
sponding to the obtained charge density is investigated at long and short distances. 

PACS numbers: 41.10.F~ 

The measurement accuracy of the energy of transitions 
between levels of muonic atoms is at present such (see Ref. 1 
and the bibliography therein) that account must be taken of 
the quantum-electrodynamic corrections when this quantity 
is calculated theoretically. At large Z (the nuclear charge is 
Z 1 el where e = - le 1 is the electron charge) the Bohr radius 
of the muon becomes smaller than1'& = l/m (m is the elec- 
tron mass) and the polarization of the electron-positron 
vacuum becomes significant. At distances =: l/m from the 
center the electric field is =:4.4(Za).1013 Oe (a = e2 = 1/137 
is the fine-structure constant), i.e., the processes take place in 
superstrong field. The calculation must therefore be per- 
formed outside the framework of perturbation theory in the 
parameter2' Za. 

Vacuum polarization in a strong Coulomb field was 
first considered in Ref. 2, where the Laplace transforms, in 
all orders in Za ,  were obtained for the induced-charge den- 
sityp(r) multiplied by ?. The first term of the expansion in Z 
that corresponds to this density of the potential q, (r) was first 
obtained earlier in Ref. 3. Starting from the results of Ref. 4, 
an explicit expression was obtained in the coordinate repre- 
sentation for the next term of the expansion of the potential 
in Za (proportional to (Za)3). The behavior of the potential 
at short distances was investigated in Refs. 5 and 6 by opera- 
tor methods. Computer calculations of individual contribu- 
tions to the polarization of vacuum were also undertaken, 
and reference to them can be found in the paper of Borie and 
Rinker. ' 

We obtain here for p(r) an expression accurate to Za 
directly in coordinate space. It  is convenient to take the ex- 
ternal field into account in the Furry representation. In ac- 
cord with the rules of the diagram technique we obtain for 
p(r) 

p (r) =-ie Tr [ G ( x ,  xr) yo], x-+x' ,  (1) 

Here f' is a Dirac matrix and the tilde labels renormal- 
ized quantities. The expression for the Green's function 
G (x,xl) of an electron in a Coulomb field is of the form 

where the contour of integration with respect to E passes in 
accord with Feynman's rule below the real axis in the left 
complex E half-plane and above it in the right. An integral 
representation was recently obtained7 for G (r,rll&J), valid in 
the entire complex plane of the energy E and containing no 

contour integrals, in the contrast to papers by others (see, 
e.g., Ref. 8). This last circumstance makes this representa- 
tion convenient for applications. The transition to the limit 
in ( I )  calls for a certain accuracy (see, e.g., Ref. 9), but the 
ensuing problems are eliminated upon renormalization. Put- 
ting formally r = r' in Eqs. (19) and (20) of Ref. 7, we have 

G(*)  (r, rl E) 

here 

T=xJ2,'(x) (y0E+m) +2iZaya(m(7n) T k  ctg ks) JzV(x), 
Y= [12- (ZCZ)~] %, x=2kr/sin ks, k= (m2-~2)%, n=r/r, 

(4) 
where J2,(x) is a Bessel function. For the attracting-field case 
considered here, G '+' and G '-' define the function G in the 
upper and lower complex E half-planes. G '+' and G '-' coin- 
cide on the inteveral ( - m,m) of the real axis, as they should. 
It is shown in Ref. 7 that the expression obtained for G (r,rll&) 
has analytic properties that follow from the general theory 
(see, e.g., Ref. 9), i.e., it has cuts along the real E axis from 
- m to - m and from m to m, corresponding to a contin- 

uous spectrum, and simple poles at points corresponding to 
the energy levels of the discrete spectrum. When account is 
taken of the indicated analytic properties and of the struc- 
ture of Eq. (3), the contour of integration with respect to E in 
(2) (where we assume t = t ' and r = r') can be deformed to 
coincide with the imaginary axis. The integration contour 
with respect to s in (3) can then also be rotated to the imagi- 
nary axis so that it extends from zero to - i~ in G'+' and 
from zero to ico in G'-'. Making these transformations and 
obvious changes of variables, and calculating the trace, we 
obtain 

where 
Z 

f ( y ,  t )  = y  - sin pt12,' ( y )  -2Za cth t cos pt12v(y), 
b (6) 

where I,,( y) is a modified Bessel function of the first kind. 
We note that the expansion (5) ofp(r) in terms of Za contains 
only odd powers of this parameter, i.e., the Furry theorem 
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does not hold. Expression (5) for p(r) calls for renormaliza-' 
tion, which we carry out on the basis of the physically ob- 
vious requirement: the total induced charge must equal zero. 
It is technically convenient carry out the renormalization in 
the momentum representation. By definition: 

m 
4n ( P )  = J d'rs7qp ( r )  = -- J ~ R  Rp ( r )  sin PR, 
Bm3 

(7) 

where p = Iql/m. Substituting the expression for p(r) from 
(5) in (7) and changing from integration with respect to R in 
(7) to integration with respect toy, we obtain 

The renormalized quantity p ( P )  must vanish at the point. 
/3 = 0. To obtain p( /3 ) we must accordingly calculate the 
asymptotic value ofp( P ) asP-tO, retain in it only terms that 
do not vanish as&-+O, and subtract the obtained asymptotic 
value from expression (8). As P a ,  the terms of different 
order in Za behave differently. Thus, the termp ,( ) which is 
linear in Z a  and is obtained from (8) by the substitution 
f ( ~ , t  ) - ? f l ( ~ l , t  1 9  where 

f t  ( Y ,  ~ ) = ~ Z ~ [ Y ~ ( X I ~ ) ~ I Z ~ ' ( Y )  -cth tI2, (Y)] (9) 

containsc,/B + C, asp-&. 1n.termsofperturbation theory, 
p,( p )  corresponds to the diagram of the polarization opera- 
tor in the lowest order in interaction: 

and the subtraction of the terms cl/P + C, coincides with 
the usual procedure of renormalizing the polarization opera- 
tor .?. Details of the calculation of p,( P ) can be found in 
Appendix I. For the renormalized quantity pl(  /3) we obtain 

As it should,p,( 0)  coincides (in the sense of Eq. (lo), where 
the tildes should be omitted) with the direct calculation of 
the polarization operator (see Ref. 9). The potential corre- 
sponding to the distribution of the chargep,, known as the 
Uehling p~tent ia l ,~  is of the form 

here K0(2R ) is a modified Bessel function of the third kind. 
This form describes lucidly the behavior of p,(r) as R-tO. 

The terms proportional to (Za)3 in (8) correspond to 
diagrams of the type of light scattering by light and contain 
prior to renormalization a logarithmic divergence. Their 
asymptotic form as P-4 depends therefore on the regular- 
ization method. If the regularization is carried out with an 
upper limit imposed on the integration with respect to ener- 
gy (x) ,  the asymptotic form is c, + c, I d ,  as noted in Ref. 2. 
If an upper limit of the sum over the angular momenta (I ) is 

imposed in the regularization, the asymptotic form is inde- 
pendent ofa. After the renormalization the result is indepen- 
dent, as it should be, of the regularization method. Finally, 
terms of order (Za)' and higher in (8) yield a constant as 
P+O. The details of the renormalization procedure are given 
in Appendix I. The renormalized expression for 
p2(P) = p ( P )  - p l ( P ) ,  wherep,(/?) is defined in ( l l ) ,  is 

where 

m 
1 

P= 1m {ln r (v-iza) + - ln ( v - i ~ a )  
2 (14) 

here $(7) = d lf l (7) /dr .  Taking the inverse Fourier trans- 
form, we obtain the renormalized expression for p, in coor- 
dinate space: 

here y = 2bR /sinh r, s = 2bR /t, and the remaining quanti- 
ties are defined in (6),  (9), and (14). Having an expression for 
p(r) and using the vanishing of the total induced charge, we 
can write the potential corresponding top(r) in one form or 
another. As indicated above, in some cases an important role 
is played by the behavior of the potential at small R. We 
present the first few terms of the expansion of p (r) at 
R = mr91: 

where C is the ' Euler constant, C = 0.577 ..., 
v ,  = [ l  - ( ~ a ) ~ ] " ~ ,  
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1 -  
~ = - 2 ~ a z  ;J dtl. (2Zat) cLVt (cth t - 

8Za I'(3/2-vl) D=- - - Zat '1 J dt t (=) I - ,  ( 2 ~ a t ) .  
n'"v12 (4v12-4) I' (2vi+2) 

Here Jo and J -  ,I are Bessel functions, 

g' ( z )  =dg/dz=d2 In I' ( z )  Id? 

The first term in the brackets in (16) stems from q,,(r) [Eq. 
(12)], and the contribution of the Uehling potential is con- 
tained in B and F. The quantity Ae corresponds to the in- 
duced point charge (SQ ' in the notation of Refs. 2 and 5) at 
the origin, and contains the contribution (ZU)~ and of higher 
order in the expansion in the parameter Za .  In a different 
form, SQ ' was first obtained in Ref. 2. The calculation of this 
quantity is the subject of Ref. 5, where it is represented in a 
form identical with (17) and it is shown that the result coin- 
cides with that of Ref. 2. In our approach it is simplest to 
obtain SQ ' from (13), if it is noted that SQ ' coincides with the 
limit ofp2( ) as/3-+~. In this case a part of SQ ' has already 
resulted from the renormalization (the quantity f2 in (13)), 
and in the remaining integral the contribution to SQ ' is made 
by the region x)l, so that we can neglect the unity in 
b = (x2 + 1)"'; this corresponds to the zero-mass limit used 
in Ref. 5. The quantities Fand D are calculated in Ref. 6. Fin 
(17) is identical with the corresponding result of Ref. 6, and 
the expression for D is given in Ref. 6 in a more complicated 
form. The first few terms of the expansion in terms in Za are 
identical in (17) and in Ref. 6. The singularity (pole) of D at 
v, = 1 is cancelled by an identical singularity in F (as v, = 4 
and R '"+R ), and this question is discussed in detail in Ref. 
6. The coefficients B, F, and D have a singularity proportion- 
al to l/vl as v 1 4  (Za-1). This singularity is pairwise can- 
celled out in q, (r) (16), viz., B and DR ,"', FR and the terms 
left out of (16) and proportional to R + ', a fact we verified 
directly. The term proportional to (ZU)~ in B was obtained in 
Ref. 4 and agrees with the expansion for B in (17). Details of 
the calculation of the coefficients in (17) are given in Appen- 
dix 11. 

At large distances R )  1, the Uehling potential decreases 
exponentially, and the contributions to the potential from 
terms (Za)3 and higher decrease in power-law fashion. The 
nonvanishing term in the expansion of the potential at R) 1 
is then proportional to R - 5  and appears only in the (Za)3 
term, a fact we verified by direct calculation. The result 
agrees with Ref. 2 and can be easily interpreted in terms of 
the effective Lagrangian (see Appendix I11 of Ref. 2). 

The authors thank V. N. Baier for interest in the work. 

APPENDIX I 

We transform the quantity P1(P) .  To this end, making 
in (8) the substitution f-fl, where f I (  y,t ) is defined in (9), we 
sum over I with the aid of the relation 

which can be easily derived by using the integral repesenta- 
tion for I,, ( y) (see Ref. 10, Russ. p. 972). We obtain thus for 
P I (  P 

Consider the first term in the square brackets of (1.2). Its 
integral with respect to t is 

0 

(1.3) 
The integral with respect toy is of the form (Ref. 10, Russ. p. 
686) 

The contribution of this term to pl(P) is thus 

Here xo> 1. To regularize the expression we have restricted 
the region of integration with respect to energy (the latter 
corresponds to the variable x). If we put 

the integration of the second term in (1.2) is carried out simi- 
larly and fo rp l (P )  we obtain3' 

(1.7) 
The renormalization reduces now to subtracting from the 
integrand in (1.7) the first two terms of the expansion as 
0-0; these terms are proportional to 1/P and to a constant: 

All the integrals in (1.8) are already convergent and x, can be 
replaced by w . Elementary calculations lead then to expres- 
sion (1 1) forp,(P) .  

We now renormalize the terms of order (Za)3 and high- 
er. We must calculate the asymptotic form of these terms in 
(8) as 0-0. We note that the contribution of In fl appears in 
the asymptotic form of the terms proportional to (Za)3 fol- 
lowing the method, indicated in the text, of regularization 
from the region t-P, I- 1/P, y- 1/P2. In this region the 
integrand in (8) takes, after subtraction of the terms linear in 
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Za,  the form - y-' sin ( fi yt /2b ) g( y,t ), whereg( y,t ) is de- 
fined in (14). We w r i t e P 2 ( )  in the form 

The integral of the expression in the square brackets in (1.9) 
converges, and its limit as p-+O is obtained by replacing 
sin( By sinh t /2b ) and sin ( pyt /2b ) by their arguments. We 
represent this limit (which does not depend o n p  ) in the form 

(I. 10) 

where w2(l ) corresponds to the contribution of the term pro- 
portional tog, and w ,(l ) to that of the term proportional to 
(f - f,). The value of 02(l ) is calculated in elementary fash- 
ion by first integrating with respect tot  and then with respect 
to x and y. We obtain 

oz (1) = ( Z a )  3/3F. (I. 11) 

When calculatingw ,(I )the integrals with respect toy are 
evaluated with the aid of (11.4): 

w OD d dx x m,(l)=J,Jdt [- -sin Pt-(e-zvt c t h  t ) -Za  cos pt c t h  te-"' 
2b d t  

xZ d 
+Zat - - cth t )  +Za c t h  te-'It 1. (1.12) 

b2 dt  

After integrating the terms with the derivative in (I. 12) by 
parts with respect to t  it is easy to integrate with respect tox: 

" 
s in  ( 2 Z a t )  

(0, (I!) =J d t  [ ~ a e - ~ l '  - 2t  e - ' ~ ' ]  c th  t .  (I. 13) 
0 

Ifw ,(I ) in (I. 13) is differentiated with respect to Za ,  the ensu- 
ing integrals can be evaluated with the aid of (11.13). Inte- 
grating with respect to Za with allowance for the obvious 
boundary condition w ,(I ) = 0, we obtain at Z a  = 0 

+Za($L)  + - (I. 14) 

Substituting w,(l) (1.14) and 02(l) in (1.10) we obtain 
w = - a. Renormalization calls for subtraction of this con- 
stant fromp2( #I ) (1.9). 

We consider now the contribution of the last term in 
p2(D)  (1.9). After substituting t-tt /y we integrate with re- 
spect toy  and x .  We obtain (we denote the contribution of 
this term by x ): 

where x,, 1 is the upper limit of integration with respect to 
x ,  and I,) 1. If we let xo-+CC at fixed I,, we obtain 

(I. 16) 

If, however, we let I,-+CC at fixed x, and take the sum and 
the integral, we get for x: 

(I. 17) 

It follows from (1.16) and (1.17) that at any regularization 
method the quantity x is completely eliminated by renor- 
malization, and we arrive at Eq. ( 13) for p2( /3 ). 

APPENDIX II 

We calculate now the coefficients B, F, and D. We con- 
sider the contribution made to these coefficients by the po- 
tential p2(r) that corresponds to the charge distributionp,(r). 
The asymptotic form of p2(r) as r 4  is uniquely connected 
with the asymptotic form of drp,(r)/dr. Using the Gauss 
theorem we have 

The terms arising in p2(r) as a result of renormalization ( g 
and L! in (15)) make no contribution to the sought coeffi- 
cients. For the sake of brevity we omit also fl(  y,t ) in (15), and 
defer to corresponding subtraction of the terms linear in Z a  
to the end. We can then represent Vwith the aid of (15) in the 
form 

where 

the function f ( y,t ) is defined in (6), p, = 2Za, and f, is the 
limit of the function f as X-+CQ. We use below the values of 
the integrals (see Ref. 10 Russ, pp. 722, 962, and 967): 

j d y  I ,  ( y )  e - g  c h  '=e-2v'/sh t ,  
0 

d x  (cos ax-cos a )  i ( I  -z2) v+>/z 

I 7C '+' cos a 
- - r -v - - J-v-i ( a )  

2 ( :)[ - w I ( I I . ~ )  

and expressions obtained from (11.4) with the aid of the re- 
currence relations for the Bessel functions. Integrating G"' 
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in (11.2) with respect toy and then with respect to x we ob- 
tain, using (I. 14), 

[ = I  0 

(11.5) 

As r 4  we have V ' 2 ' 4 ,  and the contribution of this term to 
the coefficient D is determined by the region y(1. We ex- 
pand the Bessel functions and integrate with respect toy and 
x, retaining in the sum over I the term with I = 1, which of 
highest order in r in this expansion. We obtain for D "' 

" dt V,+I  sin pot * J ,,, [ (4) J-.,(., - -1 . (11.6) 
r ( -v l )  

0 

The contribution of V"' to F is determined by the region 
X) 1. We expand f - f, at x) 1 in powers of l/x and replace b 
in the expression for G '2'in the argument ofthe 9 function by 
x. Integrating with respect to x and y we obtain 

2 "  1 " 
F"' = - z1 j dte-'~' [*'t sin *t 

n 411 -1 
I= ,  

+(sin pot+pot cos pot) (i+2v cth t )  . (11.7) I 
Only the argument of the 9 function depends on x in G '3'; 
integrating with respect to x we have 

where we have changed over to the variable v = y sinh t /2R. 
Recognizing that 

0 0 

we can represent V'3' in the form: 

2Hu 
@ = / o  (=, t )  +po oth tIm 

To calculate the asymptotic forms of the terms in the 
square brackets in (11.10) as r-0 it is convenient to match 
the values of t  in the integral with respect to u from zero to 
unity and the values of u in the integral with respect to v from 
unity to infinity. We obtain ultimately for the contribution 
of this term: 

Summing now the individual contributions, we obtain 
B - B 'I' + B '3' and D = D "' + D (3). In the expression for 
F = F'2' + F':' + FY' we can integrate with respect to t by 
using Ref. 10 (Russ. p 376) 

To obtain (16) and (17) we must subtract from the obtained 
expression the term linear in Za and add the asymptotic 
form of p,(r) (12) as r - 4  

The constant in the terms proportional to R in (11.14) cancel 
out exactly the subtraction terms for B + FR. As for the 
term DR 2v', its part linear in Za takes the form DIR ', and it 
was not subtracted explicitly in (17), for this would be an 
exaggeration of the accuracy of this formula. 

We proceed now to calculate the coefficient A (16). As 
indicated in the text, it is convenient to calculate it from 
expression (1 3) for p2( fl ), by taking the limit in the latter as 
fl-+ w . The value of 0 was obtained in Appendix I, where it 
was also shown that the contribution of the integral with 
g( y,t ) to  (1 3) is cancelled by the last term in the expression for 
0. The contribution to the remaining integral as fl-cx, 

should come from the region x, 1. Taking into account the 
relation (II.9), satisfaction of which ensures in fact the con- 
vergence of the integral with respect to x in (13), we can then 
represent this contribution in the form 

y sh t 1 x [ s i n ( T )  -ysh t sin (_ ) I  . 

The integral of @ in (11.10) makes a contribution to D that is w e  have again left out here f l  and shall subtract the terms 
determined by the region Rv/sinh t( 1 and a contribution to linear in Za at the end. The integral with respect to x in 
F (the region v, I). These contributions are equal to (11.15) is evaluated in the form 

8 
D(3)=- - r ( 3 / 2 - ~ i )  1 dt sin(pot) - 1 

n'"vIz (4vi2-1) r ( 2 ~ ~ i - 2 ) .  r(-v ,)  (sh t )="~  ' f dx [sin (t) -a sin (+)I =a ln:, a=y sh t. (11.16) 
0 

7 ( 3 ) -  2 
- 

1 "  
fi , - - dte-zvt [ P o  (cos pot- 1 )  cth + cth't) The expression sinh[t exp( - y cosh t )If,( y,t ) can be rewrit- 

n I = ~  4 v - I .  2~ ten in the form 

-sin pot (1+2v cth t )  . I d 
(11.11) sh te-Y ' f O ( y r  t )  = -(sh t sin(pot) yIzv(y) e-.Y C h  

dy 
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d 
- -(ch t sin p,tI,, (y) e-v c h  t ) .  

d t  
(11.17) 

Next, integrating by parts and using (11.4) and (II.13), we 
obtain 

the terms linear in Za have already been subtracted here. 
Adding A ,  to the remaining contributions we arrive at A of 
Eq. (17). We emphasize that the divergence of the individual 
contributions to the considered coefficients in the summa- 
tion over I is fictitious and drops out from the final equa- 
tions. 

"Wepu t f i=c=  1. r 
']The resu!ts that foll ! are valid at Za < 1. The case Za > 1 calls for a 

special analysis; it becomes necessary, in particular, to take into account 
the finite dimensions of the nucleus. 

"It can be assumed that the contour of interation with respect tos in (1.6) 
and accordingly in (1.7) does not go through zero, and the bypassing 
method turns out hereafter to be immaterial. 
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