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We propose a new method for evaluating the eigenvalues of the transfer matrix in exactly soluble 
quantum systems on a finite chain. We demonstrate the method for the XXZ Heisenberg model as 
an example and apply it to a spin system connected with the Zhiber-Shabat-Mikhailov quantum 
field model and to a system with 0 (n) symmetry. The latter is of special interest in connection with 
attempts to find an exact solution of the Gross-Neveu quantum model and of the n-field model. 

PACS numbers: 75.10.Jm 

51. INTRODUCTION 

There are in the many-body system quantum theory 
well-known models for which the many-particle state wave 
functions can be evaluated exactly using the so-called Bethe 
coordinate Ansatz. Examples are the one-dimensional Hei- 
senberg magnet,'v2 the one-dimensional Bose gas with 6- 
function  interaction^,^ the Thirring m ~ d e l , ~ . ~  and so on. 

The advent of the quantum inverse scattering method6*' 
was an important stage in the development of the theory of 
exactly soluble quantum models. Using this method one 
found a deep connection between the solutions of the Yang- 
Baxter equation, integrable quantum systems, and exactly 
soluble models of statistical mechanics on a plane lattice. 

The Yang-Baxter equation has the following form: 

k,kzk, 

This is a functional equation for the matrix R L{(u) which 
acts in the direct product of two spaces and which depends 
on the spectral parameter u. Equation (1) arose in the study 
of quantum systems with a factorized s~a t t e r ing .~* '~  It is the 
condition for the self-consistency of the factorization of the 
three-particle S-matrix in a product of two-particle ones; 
R (u) then plays the role of the two-particle scattering matrix. 

One can connect with the matrix R (u) a model of statis- 
tical physics with states on the edges of a plane lattice. R $ (u) 
must then be interpreted as the Boltzmann weights matrix 
corresponding to the site on which the edges with the states i, 
j, k, I meet. The partition function of such a model on an 
N x M square lattice with periodic boundary conditions can 
be expressed simply in terms of the transfer matrix: 

Z=TrT ( u )  M, 

Rak(u) is nontrivial only in the direct product of Va by Vk: 
f,,i'...ily +fk (1 I&-L h+1 I N  

R.n(u)j.j, ... jNmRj0 jk (~)6 j i .  - - bk-,  6jr+, ,. .%- (3) 

The trace Tr is taken in the direct product of all spaces V, 
with k = l,.-,N. 

Baxter has shown for the &vertex model that Eq. (1) is 
the condition for exact solubility; using (3) it can be written 
in more compact form: 

R , ~  ( u )  RLs (u+v)  R , ~  ( v )  =R2s ( v )  Ris (u+vjR,2 ( u )  ; (4) 

T(u) then forms a commuting set: 

[ T ( u ) ,  T ( v ) l  =O. 

The existence of this commutability enables us to consider 
T (u) as a generating function for the Hamiltonians of quan- 
tum systems on a chain with an infinite number of conserva- 
tion laws and with a space of states, Vk, on the k th vertex of 
the chain. Thus, if R (u) is the matrix of the weights of the 8- 
vertex model, the corresponding quantum system is the Hei- 
senberg spin-f XYZ magnet." 

Knowing the eigenvalues of the transfer matrix T (u) we 
can evaluate the partition function (2) in the thermodynamic 
limit, the asymptotic behavior of the corresponding correla- 
tion  function^,'^ and also the spectrum of the integrable 
quantum system connected with T(u). 

The problem of the calculation of the spectrum of T (u) is 
solved for an R-matrix with a special structure. To construct 
the eigenvectors of T (u) in such models we use the algebraic 
Bethe Ansatz.' Unfortunately, if the R-matrix has a compli- 
cated structure there arise serious difficulties of a combina- 
torial nature in the construction of the many-particle states. 
The question of the applicability of the algebraic Bethe An- 
satz to the majority of models connected with the solutions 
of Eq. (1) still remains open. 

However, it was shown in Refs. 13 and 14 that the prob- 
lem of evaluating the largest eigenvalue of T(u) and those 
close to it can be solved in the thermodynamic limit as N-+ co 
without using the Bethe Ansatz by the "inverse transfer ma- 
trix" method. 

In the present paper this method is extended to the eva- - - 
Here Va is the space of the states on the horizontal edges luation of all eigenvalues of T (u) for a chain offinite length N. 
(indexes k,.-k,), V, is the space of the states on the vertical We show that the eigenvalues of the transfer matrix for finite 
edges which go to the k th vertex (indexes i,, j , ) .  The matrix Nsatisfy a set of functional equations which one can solve by 
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using the property thatR (u) is analyticin the spectral param- 
eter. We use the Heisenberg XXZ model as an example to 
demonstrate the method in $2. Then, in $3 we find the spec- 
trum of the transfer matrix, using the R-matrix of the 
Zhiber-Shabat-Mikhailov quantum-field model to construct 
it. In $4 we consider a system with 0 (n) symmetry. 

Q2. THE XXZMODEL 

The ~amiltonian of the Heisenberg XXZ model de- 
scribes an interacting chain of spin-4 atoms: 

where N is the number of atoms (sites) in the chain, A the 
anisotropy parameter, 4, o,Y, 4 are the spin operators 
(Pauli matrices) acting in the space of states of the nth site of 
the chain. 

It is well known that the XXZ model is connected with 
the 6-vertex model for a ferroelectric. The Hamiltonian (6) is 
the logarithmic derivative of the transfer matrix of the 6- 
vertex model: 

H=2 (AZ-I )  '"T' ( 0 )  T (0)-'-AN, (7) 
where T(u) is constructed, using (2). The Boltzmann weight 
matrix of the 6-vertex model has the following form: 

The parameter q is connected with the anisotropy parameter 
in (6): A = coshq. 

In this section we shall demonstrate how we can use the 
analyticity properties and the degeneracy points of the ma- 
trix (8) to obtain explicitly the eigenvalues of T(u). The Hei- 
senberg model is sufficiently well studied by transitional 
methods7 so that the present section is more of a method- 
ological nature. 

The matrix R (u) is skew-symmetric: 

and automorphic in u16: 

Rt? (u+in) =-alZRl2 (u)olz .  

Here 8, is the ith Pauli matrix in the first space and t ,  the 
transposition in the second space. 

In the point u = - q the matrix R ,,(u) is proportional 
to the antisymmetrization operator P , . It follows from Eq. 
( I )  that 

whence 

[PA is the symmetrization operator; P ,$ = (1 * P,,)/2; PI, 
is the permutation operator]. 

From (1 1) we get a block triangulaiity for the product: 

The matrix on the right-hand side is a 4 X 4 matrix, the 

matrix notation refers to the direct product V ,  x V,, and the 
matrix elements act in V, (V.=CZ). The upper diagonal 
block corresponds to the one-dimensional antisymmetric 
subspace, the lower one to the three-dimensional symmetric 
one. (u) is regular when u = - q. 

From (9), (lo), and (12) we get relations for the transfer 
matrix T (u): 

T ( u )  T (u+q)  =sh uN sh (u+2q) N i s h ( u + q )  N T ( ~ ) ,  (13) 
Tt  ( u )  = ( - l ) N T ( - u - q ) ,  (14) 

T (u+in) = ( -1)  NT (u)  . (15) 
We can easily evaluate immediately from (8) the main term 
in the asymptotic behavior of T(u) as u-+ co : 

M is the magnon number operator which commutes with 
T(u). 

Operating with Eqs. (13) to (16) upon some eigenvector 
of T (u) we get a set of functional equations for the eigenval- 
ues of the transfer matrix: 

~ l ( u ) A ( u + q ) = s h  ~ ~ s h ( u + 2 ~ ~ ) - ~ i s h ( u i ~ ) ' \ ' . ~ ( u ) ,  (18) 

AT) = (-1) A.Ll(-u-q),  (19) 

A(u+in)=(-l)",\(u),  (20) 

A (u) is the eigenvalue of T(u) in the m-magnon state, (u) is 
the eigenvalue of T(u) in the same state. 

From the explicit form of R (u) and from (1 6) and (1 7) it 
follows that 

For the determination ofA (u) one must therefore find the N 
coefficients c,, that is, 2Nreal unknowns. Equations (1 8) and 
(19) are a set of 2N + 1 equations for those unknowns. The 
cases N = 2,3 show that there are necessarily amongst them 
dependent ones and the set (18), (19) has many solutions 
amongst which are all the eigenvalues of T (u). It was suggest- 
ed by Stroganov to use Eq. (18) for real eigenvalues. 

One can easily find the solution of the set (18), (19) with 
m =0: 

11'O' ( u )  =sh ( U + l l )  A'+sll u". 

To construct other solutions we choose the following An- 
satz: 

A ( u )  =sh (u+q)  "A ( u )  i s11  u"B ( u )  . (23) 

We shall call it the analytic Ansatz. It follows from (18) that 
A and B can only be rational functions of ;l = e2" and each 
of them has the same number of zeros and poles. As A (u) has 
no poles for finite u, the poles of A must be the same as the 
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poles of B and the residues in them must cancel, i.e., 

The parameters vj are determined by the sets 6, and 6, from 
the condition that the residue vanish for all A = lj. The 
asymptotic behavior asA2-+ co determines a and b and in (23) 
there remain 2m unknowns. Hence, when 2m<N the num- 
ber of unknowns is not increased and Eq. (23) can be used as 
Ansatz for the solution of the set (14), (15). 

Indeed, (23) satisfies the set (18), (19) if 

Hence we get the explicit form of the solutions of the set (18), 
(19) in the m-magnon subspace: 

The numbers p, are solutions of the following set of equa- 
tions: 

where ( ,iij 1 = {p, - I ]  and m <N/2. 
Comparing expressions (26) and (27) with those known 

before7 we check that the Ansatz (23) enables us to evaluate 
all eigenvalues of the transfer matrix of the 6-vertex model. 

In the following sections we shall by means of the ana- 
lytic Ansatz method obtain expressions for the eigenvalues 
of the transfer matrices in some unsolved models. 

53. THE IZERGIN-KOREPIN MODEL 

The quantum-mechanical system considered in this 
section arose in the study of the quantum-field Zhiber-Sha- 
bat-Mikhailov model." The corresponding R-matrix was 
found in Ref. 15, it is a 9 x 9 matrix, and we shall not give all 
nonvanishing matrix elements because of their unwieldiness. 
The diagonal elements which we need have the form 

R,," ( A )  =R3,3' ( A )  =a (1) =he~-A-1e-5'+e-n-en, h=eU, 
Ri2"(1L) =RZ?'(h) =RZ? ( A )  

=RS,3Z ( A )  ~b ( A )  =he3"-h-Le-3'+ e-3n-e3*, 
R,," (h)  =R3," ( A )  =C ( A )  =he*-h-'e-n+e-*-en. 

The Hamiltonian of the system is the logarithmic deri- 
vative of the transfer matrix for u = 0. It describes an inter- 
acting chain of N sites with a three-dimensional space of 
states in the site: 

Here the A are Gell-Mann matrices acting in the nth site, 
Jap = Jap(r]) are constants characterizing the interaction; 
they are some functions of r] (Ref. 15) the explicit form of 

which we shall not give, to save space. The Hamiltonian 
possesses mixed P-symmetry: 

We shall show below that the eigenvalues of H are indepen- 
dent of the sign of 7 .  The Hamiltonian H can thus be inter- 
preted as a system interacting with an electric field under 
very special relations between the interaction constants and 
the magnitude of the field. 

We proceed to the evalution of the eigenvalues of the 
transfer matrix of the model. The Izergin-Korepin R-matrix 
is skew-symmetric: 

The matrix R,,(u) degenerates in the points A = - e4", 
- ec6", e4", e -4q into the projectors on the subspaces of 

dimensionality 1, 8, 3, and 6, respectively. From the degen- 
eracy of the R-matrix in those points one can obtain a block 
triangularity of the corresponding  product^'^ analogous to 
(12). Using the degeneracy points A = - e - 6q, A = e4" and 
the explicit form of R (u) we get functional equations for the 
eigenvalues of T (u): 

A(h)  A(-he-'*) =a ( A )  (h-') N +  (A-1) N i ( h ) ,  (30) 

~ ( - A e ' ~ ) A ( - h e - ' ~ )  =S ( A ) N A ( ~ )  + (h+e2*)~%(h) .  (31) 

HererS(A)=Ae39-A -1e-3q +e5q-e-5q, A =eu,  A ( A )  
and A (A ) are the eigenvalues ofother transfer matrices which 
have the same provenance as F (u )  in (13). 

From the skew-symmetry and explicit form of the R- 
matrix we get - 
A (A) = A  (-h-'e-"I), (32) 

( A )  =ANe3nN ( e Z q ( N - m ) +  l+e-Z'("-m)) + 0 (AN-'), A+oo, (33) 

where m is an eigenvalue of the magnon number operator 

M commutes with T(u). 
We shall look for the eigenvalues of T(u) in the form of 

the following Ansatz: 

A ( A )  =a (h )  NA ( A )  + b ( A )  NB (h )  +C ( A )  NC (A) .  (34) 
Substitution of this expression into (30) to (32) shows that it is 
a solution of that set if the following relations hold 
- 

A ( A )  A (A-') = I ,  
B (h )  --A (-hez9) A-' (Ae49 ), (35) 
C ( A )  =A-' (-hesn). 

Using the analytical properties of R (u) this leads to the fol- 
lowing answer for A (A ) in an m-magnon state: 

+b  (A)" 
he3*-pje-3" A+ pi 
hen-pje-"e*+pje-'-*. (36) 

j = l  
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The condition for the analyticity ofA (A ) for finite2 gives an 
equation for the numbers pi : 

The set of numbers is such that (pi - - ' I  = [,Cj 1 and m ( N .  
When u = 7 8 , 7 4  and at fixed 8 the Izergin-Korepin 

R-matrix becomes an SU(3) invariant R-matrix.I9 The corre- 
sponding limit leads in Eqs. (36) and (37) to results obtained 
in Ref. 19 using the algebraic Bethe Ansatz method. The 
results of the present section were obtained with V. I. Vi- 
chirko. 

§4.O(n)-INVARIANT MAGNET 

First of all we give a short description of the 0 (n)-invar- 
iant solutions of Eq. (1). The R-matrix is called 0 (n) invariant 
if the spaces in which it acts are spaces of the representation 
of the 0 (n) group and 

Rir ( u )  =Ti ( g )  T2 (g)Riz ( u )  Tt (g)-'Tz (g) -'.  

Here g is an element of the 0 (n) group; T, and T2 are repre- 
sentations of 0 (n) in the spaces V, and V2, respectively. Up to 
the present, three such R-matrices are known: R '","'(u) acting 
in the direct product of a vector representation by a vector 
one,I0R ('sS)(u) in the product of a vector by a spinor represen- 
t a t i~n ,~ '  and R (""'(u) in a product of a spinor by a spinor 
representation.20 These R-matrices satisfy the Yang-Baxter 
relation: 

(38) 
a, b, c take on the values v or s independently, and the lower 
indexes indicate the number of the spaces. 

The following R-matrices have the simples form: 
R ( " ~ " ) ( U ) ~ : ~  =u (u+2-n) 6j,i*6fiia-2 (u-n+2) 6j,i16j,i'+2~6i1iz6j,j2, 

The explicit form of R '""'(u) is rather unwieldy and we do not 
need it. The dimensionality of the vector representation 
space equals n. The spinor representation is irreducible for 
n = 2k + 1 and its dimensionality equals 2k, for n = 2k it 
splits into two irreducible representations with fixed chira- 
lity: V'+' with positive and V'-' with negative; the dimen- 
sionality of each equals 2k - '. uij are the 0 (n) generators in 
the spinor representation: 

The chirality operator is defined for even n: 

r= ( - i )  n1zyty2 . , . y,, r Z = l ,  [ r ,  y i ]  =o. (42) 

For even n, solution (40) splits into two: R and R ( " - '  

with fixed chiralities. 
In this section we shall obtain by means of the analytic 

Bethe Ansatz method explicit expressions for the eigenval- 
ues of the transfer matrices which we construct using (39) 
and (40): 

T. ( u )  =tr. R!:'°' (u )  . . . R:,) ( u )  , (43) 
T,  (u )  =tr. R!:'*' (u )  . . . R;:*' (u )  . (44) 

For odd n the index s indicates the spinor representation, for 
even n the index s = + which corresponds to R-matrices 
with fixed chirality. 

The simplest 0 (n) invariant Hamiltonian is the logarith- 
mic derivative of T,(u) for u = 0: 

where the ej!j' are the basis matrices in the I th site of the chain 
(eii),, = S,Sjb, M j!j' are the 0 (n) generators in the I th site. 

From (38) there follows the commutability of the sets T, 
and T, : 

[Tu(u) I T c  ( w ) ]  = [ T v  (u) Ts ( 1 0 )  I =[Ts ( u )  Ts ( w ) ]  =0. (45) 

The R-matrices (39) and (40) are skew-symmetric: 

R1(:IV) ( u )  'l=R!P") (-u+n-2),  (46) 
R~Y" ( u )  't=R~";.") ( - ~ + ~ - 2 )  ; (47) 

s, = s f o r n = 2 k  + 1,n=4k,sC = - s ,n=2k+2.Hence  
we get for the eigenvalues of T, and T, - 

h ( u )  =A,(-u+n-2), - (48) 
A,(u)  = (-I)"AS,(-u+n-2). (49) 

Using the degeneracy points of the matrices (39), (40), and 
R '"."(u) and the block triangularity of the corresponding pro- 
ducts of the R-matrices we can obtain for A, and A, the 
following set of functional equations: 

A. (u)A.( -U)  = (2'-u2)" ( (n-2)'-u2) "+uNAi ( u )  , (50) 

Heres, =sforn = 2k + 1,4k + 2;sb = -sforn = 4k;A,, 
A,, A,, and A, have the same meaning as A in (14). 

In contrast to the analogous equations in the XXZ mod- 
el, Eqs. (48) to (53) do not enable us to evaluate the expansion 
coefficients A, and A, in powers of the spectral parameter. 
The number of equations in them is less by N than the num- 
ber of unknowns. This is connected with the fact that the set 
of transfer matrices T, and Ts is not complete. To construct 
a complete set of transfer matrices we must find R-matrices 
acting in the product of a vector representation by an anti- 
symmetric tensor representation of arbitrary rank. How- 
ever, this problem is outside the framework of the present 
Paper. 

Nonetheless, the analytic Ansatz for the set (48) to (53) 
has a unique solution. Namely, we shall look for A, (u) and 
As@) in the following form: 

n-2 

&(u) =u"(u+4-n)*~(u)  + u x ( u + 2 - n ) " x  Q ( u )  
i- t 

+ (u-2) " (u+2-n) "H ( u )  , (54) 
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The eigenvalues of T, and T, above the "ghost vacuum" 
havesuchaformwithF=G, = H = A ,  =B, = 1.Byana- 
logy with models solved by the Bethe An~atz'. '~ we may 
assume that arbitrary eigenvalues of T, and T, have the form 
(54) and (55) with some rational functions F, G,, H, A, ,  and 
B, . 

From the explicit form of the dependence of R '"J' and 
R '"s" on the spectral parameter it follows that the unknown 
functions in (54) and (55) can only be rational and that for 
each of them the number of zeros must equal the number of 
poles. The condition of analyticity of A, and A, for finite u  
imposes, as in previous models, a restriction upon the struc- 
ture of the poles of these functions; it is necessary that the 
residues in the poles cancel in pairs. Substituting the expres- 
sions (54) and (55) into the set (48) to (53) we get for F, G,, H, 
A,, B, functional equations which have a unique solution 
satisfying the above enumerated analyticity properties. 

In order to write the solution compactly we introduce a 
set of functions: 

0 1  (ul {ut} {w} 1 = rI u-iu,+ I u-iw-1 +I-J u-iw+l 
u-iu,-I U-zw u-iw ' 

ut U) to 

+oh-, (u+I 1 {u:) . . . {uk} {w) ) .  

Here ( u ,  j indicates the set of numbers ( u f ' )  r;,, and simi- 
larly ( w , ) , ( w J . The products in (56) and (57) are taken over 
all numbers from the appropriate set. For the eigenvalues of 
T,(u) we have 

12-2 
I )  ' o,,,-~, ?(-u +T+ 11 {ul}. . . { u ( ~ - ~ , , , ~ }  {w}) 

n-2 N n-2 
A* (u) = (U - -j- + I ) ~ ( ~ - 2 ) l z  (-u+- + 11 {ut). . - {u(n-h)/z} {zu=j {to+} 

2 ) 

(60) 
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For the functions F, Gi, H from (55) we get 

u-iui+ I 
n=2k+l, H (u) = - = F (-u+n-2), 

u-iul-I 
Ul . . . 

UI U1.L . . .  (61) 

Gh-1 (u) = 
u-iuk-,+I-k 

Uk-, 

u-iw-2-k u-iw-k-I 
G k ( u ) = U  u-iw-k u-iw-k+l ' 

w 

GI (u) =G,-,-, (-u+n-2). 

For n = 2k the functions F, H, G ,... Gk - , retain their form, 
while 

From the condition that the residues in A, and A, must 
vanish for finite u we get a set of equations for the numbers 
lull, iw* 1, (w): 

For n = 2k the first k - 3 equations are the same, while the 
last ones have the form 

One can easily find the isotopic structure of the eigenvectors 
from the asymptotic behavior of T,(u) as U-PW : 

Here D is the dimensionality of the spinor representation. 
Comparing the asymptotic behavior of (58) to (60) as u-+m 
we find that the eigenvectors corresponding to (58) to (62) are 
the leading vectors in the irreducible representation with sig- 
nature(N-m,,m,-m, ,..., mk- ,  -m)forn=2k + l a n d  
(N- m,, m, -m ,,..., mk-, - m+m-,m+ -m-) for 
n = 2k. 

In conclusion we note that as N+OO Eqs. (58) to (62) 
duplicate the answers found in Refs. 10, 20 by the "inverse 
transfer matrix" method. 

s5. CONCLUSION 

The application of the analytic Ansatz model to other 
 model^^.'^.^' is of interest. No less important is the problem 
of the construction of the eigenvectors of the transfer matrix. 
To solve it we must, apparently, use the requirement of rea- 
sonable analyticity and symmetry of the eigenfunctions. 

The example of the chiral Gross-Neveu model5 has 
shown that the solution of the model of a G-invariant magnet 
turns out to be useful to find the spectrum of the correspond- 
ing G-invariant relativistic quantum-field model. The results 
of $4 may thus turn out to be useful for solving the 0 (n) 
invariant Gross-Neveu model and the n-field model. The 
latter are of interest as they contain asymptotic freedom. 

The author is grateful to L. D. Faddeev, V. E. Korepin, 
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