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A solution is obtained for the problem of determining the configuration of the ground state of a 
system of magnetic or electric dipoles located at the sites of a simple cubic lattice. It is shown that 
the ground state consists of four sublattices and has continuous degeneracy with respect to two 
parameters. In two-dimensional systems a continuous degeneracy in one parameter remains, 
while in one-dimensional systems the degeneracy is completely lifted. The ground-state configu- 
ration has a vortical structure with point group D2 for electric dipoles and D2, for the magnetic 
moments; a particular case of a vortex structure is the previously obtained [J. M. Lattinger and L. 
Tisza, Phys. Rev. 70,954 (1946); 72,257 (1947)l antiferromagnetic state of such a system. Numeri- 
cal experiments performed by the molecular-dynamics method have confirmed the analytic re- 
sults concerning the ground-state configuration and made it possible to establish the laws govern- 
ing the formation of the ground state in finite samples and to observe the formation of a periodic 
vortex structure from an initial nonperiodic configuration. 

PACS numbers: 4 1.10. - j 

INTRODUCTION 

Lattinger and Tisza developed in their classic paper' 
the principles of investigation of the ground state of a system 
with dipole interaction, and deduced that the magnetic mo- 
ments located at the sites of a simple cubic lattice of an infi- 
nite three-dimensional crystal are antiferromagnetically or- 
dered. Although their paper left open many questions (the 
degree to which the solution obtained is general, the charac- 
ter of the degeneracy of the ground state, the influence of the 
shape and size of the sample, and others), this problem, to 
our knowledge, did subsequently not received due attention. 
The apparent reason is that in most physical systems the 
dipole interaction is a small perturbation against the back- 
ground of the stronger interaction that imposes the corre- 
sponding ordering on the system. Thus, in magnetically or- 
dered crystals the ground state of the spin system is 
determined by exchange interaction, and the role of the mag- 
netodipole interaction reduces to stimulation of the forma- 
tion of the domain structure, to renormalization of the mag- 
netic-resonance frequency, and to other effects that are 
extremely important but do not influence the character of 
the magnetic ordering. 

Recently, however, systems for which the dipole inter- 
action is decisive have attracted considerable interest. These 
are the nuclear magnetic moments at infralow spin tempera- 
tures (see, e.g., the review2), small ferromagnetic particles in 
a nonmagnetic molecular and liquid crystals con- 
sisting of molecules with constant dipole m ~ m e n t , ~  rare- 
earth ionic compounds having a predominantly dipole-di- 
pole intera~tion,~ and others. The need has therefore arisen 
to return to a more detailed analysis of a ground state de- 
scribed by a dipole-dipole Hamiltonian. 

The present paper is devoted to an investigation of the 
ground state of systems with pure dipole interaction between 
the particles in a simple cubic lattice. In Sec. 1 we separate, 
by analyzing the singularities of the spectra and of the eigen- 
vectors of the dipole-dipole interaction matrix, the mini- 

mum number (equal to four) of dipole sublattices for which a 
configuration corresponding to the energy minimum was 
found. The obtained structure has a vortical character and is 
degenerate with respect to two parameters. 

In Sec. 2 we study various causes of partial or total lift- 
ing of the spatial degeneracy of the dipole-sublattice orienta- 
tions. Methods of investigating the ground state of finite sys- 
tems are considered in Sec. 3, in which different system 
configurations are investigated on the basis of the distribu- 
tion function of the angles between the orientations of the 
dipoles in neighboring sites. In Sec. 4 are given the results of 
a numerical experiment carried out by the molecular-dy- 
namics method. The main results are discussed in the Con- 
clusion. 

1. STRUCTURE OF GROUND STATE 

We consider a system of particles with dipole moment P 
at the sites of a simple cubic lattice, described by the Hamil- 
tonian 

where rv is the distance between the moments located at the 
sites i and j. We shall seek the ground state, just as in Ref. 1, 
in the class of ordered configurations that are invariant to 
translations of the form 2aZ,i + 2 a l j  + 2a1,k; a is the lattice 
constant, 4 are arbitrary integers, and i ,  j, k are unit vectors 
collinear with the crystallographic axes. 

Following Ref. 1, the Hamiltonian 2? of the dipole in- 
teraction can be reduced to the form 

where N is the number of dipole moments in the sample, 
v = (vl, v2, v3) and p = (p,, p2,  p,) are the numbers of the 
unit-cell sites, a = (x,  y, z), cE is the lattice sum of the di- 
pole-interaction tensor. The configuration of the dipoles in 
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the ground state was found in Ref. 1, after diagonalizing the 
quadratic form (2), as a superposition of basic configurations 
corresponding to the maximum eigenvalue of the metric F f :  . 
An arbitrary configuration P of the ground state, for a unit 
cell of eight dipoles located successively at the sites (0, 0, O), 
(l,O, 01, (1, l,O), (0, LO), (1, 1, I), (0, 1, 11, (O,O,l), (l,O, I), is 
then represented in the form 

where Po is the modulus of the dipole moment of the particle, 
and a, 6, and c are the expansion coefficients. It can be seen 
from the right-hand side of this expression that at all values 
ofa, 6, and c the last four components of the matrix-columns 
corresponding to the directions of the dipoles on the upper 
face of the unit cell duplicate the first four components, 
which determine the dipole orientations on the lower face, 
and the dipoles have the same direction in those sites which 
are arranged along the principal diagonals of the unit cell (P, 
and P,, P,, and P,, etc.). Consequently, for an arbitrary con- 
figuration of the ground state, only the orientations of four 
dipole moments are independent. 

In contrast to Ref. 1, we introduce four sublattices that 
make it possible to decrease the dimensionality of the basis 
and carry out a complete analysis of the general solution. 
Assume that the dipole sublattices are sequentially arranged 
on the lower face of the unit cell in the sites (0, 0, O), (1,0, O), 
(1, 1, O), (0, 1, 0). The energy U of the dipole interaction, 
normalized to one particle, is given for a simple cubic lattice 
with four dipole sublattices for a spherical sample by7 

where P, is the sublattice dipole moment normalized to one 
particle; k and n are the indices of the dipole sublattices. The 
matrix q,, ' is of the form 

The two other matrices q,, " and q,, are obtained by re- 
spective permutations of two rows and two columns, the sec- 
ond and third for q,, " and the third and fourth for q,, Y .  The 
elements of the symmetric matrix (4) can be expressed in 
terms of the elements of the matrix F E , ,  and the value 
q = 1.336a-3 is determined by the lattice sums calculated in 
Ref. 1 for an infinite sample. The matrices qkn *, qkn Y ,  qknZ 
have identical eigenvalues: 

Since the determinant of the matrices q z  is zero, the direc- 
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tion of the dipole moment of one of the sublattices can be 
specified arbitrarily, and the directions of the other three 
sublattices are expressed in terms of the direction of this 
arbitrary sublattice. The state with minimum energy for 
each of the basis configurations will be realized for the maxi- 
mum eigenvalue A,  = 4q. We seek the ground state in only 
this basis. The sublattice moments Pk expressed in terms of 
the corresponding eigenvalues of the matrices qgn take then 
the form 

where a, b, and c are the expansion coefficients and are con- 
nected by the condition a' + b ' + c2 = 1 that the modulus of 
the moment be constant. Taking the condition Pk ' = P o ' 
into account, we change to a spherical coordinate system 

Pk=Po (sin Ok cos cp,, sin Ok sin cp,, cos O k )  . 
From the energy-minimum condition dU/dei = 0, dU/ 
6'pi = 0 we obtain from (3) 

Q i X  cos Oi  cos vi+Qi' cos oi sin c p , - ~ ;  sin ei=0, 
(71 
\ r 

sin 0, (Qikos cpi-QiX sin c p i )  =0, 

where 
I 

Q>= E q , , .  sin 0. eos 0,. Qi" qiku sin O A  sin 9,. 

I 

orz= 9,' COS 0,. (8) 
k= 1 

The general nontrivial solution of the system (7) is of the 
form 

f3,=03=$, O,=O,=n-9, 
(9) 

where $ and x are arbitrary angles, because det q;, = 0. 
Expressing the coefficients a, b, and c in (6) in terms of IC, and 
X ,  we can represent the projections of the dipole moments P, 
at the sites of the cubic lattice with coordinatesg = (h, k, I ) in 
the form 

ph;ll= ( - I ) ~ + ' P ~  sin 11; cosy,, ph[,= ( - I ) ~ + ' P , ,  sin $ sinX, 

~ h t l =  (-1) h+kPO COS $. 

Expression (10) determines the ground state of the Hamil- 
tonian (1). After substituting the values (10) for the angles of 
the sublattices in expression (3) we find that the minimum of 
the energy does not depend on the angles + and X, and it 
value per particle is 

U,,i,=-2qP,". (11) 

The substantially different dipole structures corresponding 
to one and the same energy (1 1) of the ground state (10) are 
exhausted when the degeneracy parameters + and x vary in 
the intervals O<$<a/2 and O q < a / 4 .  In the ground state 
the direction of the field H for the magnetic moment and E 
for the electric ones coincides naturally with direction of the 



FIG. 1. Vortex configuration of ground state of dipole systems: a-in 
space, b--projection on xy plane. The vortex lines are shown dashed; $ 
andx are the continuous-degeneracy parameters. 

dipoles in each sublattice and is determined in the following 
manner: 

i.e., U can now be represented in terms of the field Ek acting 
on the dipole moment of the sublatticedu = - Ek d P, , and 
again obtain (1 1). 

The arrangement of the dipole moments at the unit-cell 
sites is illustrated in Figs. l a  and lb. The dipole moments 
located at the vertices of the principal diagonals of the cube 
are mutually parallel. The dipole moments in the mutually 
perpendicular planes xy and xz are directed along the tan- 
gent to some closed line or vortex. The circulation of the field 
along this line differs from zero. Figure lb  shows the struc- 
ture of one layer for the values $ = 7~/2 and x = ~ / 3 ,  on 
which the vortex lines are shown dashed. In a layer shifted 
by the lattice constant relative to the one shown, the orienta- 
tions of the moments in the direction of the vortex lines are 
reversed. In the general case ($#7~/2) the vortex structure is 
three-dimensional, and continuous degeneracy with respect 
to the two variables $ andx manifests itself in the fact that it 
is possible to vary smoothly the orientations of the dipole 
moments by satisfying the conditions (10). Despite the sub- 
stantial distortion of the shapes of the vortices and of the 
change of the structure, the system energy remains constant 
and equal to - 2qP,2. In three cases, 1) $ = ~ / 2 ,  x + 0; 2) 
$ = T / ~ , x  = 7112; 3) q9 = 0, the vortex structure is antiferro- 
magnetic. 

In the particular casex = 7~/2 all the moments lie in the 
xy plane, i.e., we have a state of "fanfold structure" type, 
constituting a state made up of two antiferromagnetic sub- 
lattices with arbitrary angle (equal to 2x in this case) between 
their antiferromagnetism vectors.' 

The vectors in the right-hand side of (6) are representa- 
tions of the point group D,. The ground state of the Hamil- 
tonian (1) has therefore for the electric dipole moments the 
point group D,, while for the magnetic moments, as axial 
vectors, the ground state has the point group D,, . The dipole 
interaction in a simple cubic lattice consequently lowers the 
symmetry to rhombic. 

An interesting fact is the absence of dipole-dipole an- 
isotropy in an infinite cubic crystal at a matched rotation of 
all four sublattices, with the symmetry D, (D,, ) preserved. It 
is just to this rotation that an arbitrary continuous change of 
the angles q9 and x corresponds. Dipole anisotropy sets in if 

one considers not the ground state (for example, the well- 
known presence of dipole-dipole anisotropy in ferromagne- 
tic ordering of dipole moments). For low-dimensional and 
finite crystals, the degeneracy in $ and x is lifted and mag- 
netic anisotropy sets in also in the ground state. 

2. PARTIAL LIFTING OF THE DEGENERACY 

When finding the ground state of finite systems and 
when lowering their dimensionality, one can expect lifting of 
the degeneracy. We consider a cluster structure of eight di- 
poles placed in the vertices of a cube. Substituting the solu- 
tion (10) in the Hamiltonian (I), we express the cluster energy 
per particles in terms of the variables $ and X: 

+Csin2$ sin x -- , ( t )  
where 

We obtain the ground state of the cluster from the condition 
that the energy (13) be a minimum with respect to $ and X. 
From the equations obtained it follows that the configura- 
tion of the ground state will depend on the arbitrary anglex, 
defined in the entire interval from 0 to 27~. We choosex to be 
the independent variable; then $ is connected with x by the 
relation: 

ctg $=vzsin (x-nI4). (14) 

Substituting (14) in (13) we find that the energy per particle is 
equal to U = - 1.82P02/a3, which is much higher than the 
energy U = - 2.68P,2/a3 in an infinite sample. It can be 
seen from (14) that the polar angle $ lies in the interval 
35" 5 $5 145". Since $ cannot be equal to zero or T, the anti- 
ferromagnetic state is not a state with minimum energy, al- 
though its value U = - l .63P,2/a3 is close to the energy of 
the degenerate structure. However, addition of one face with 
four dipoles to the cube (say along the z axis) makes the anti- 
ferromagnetic state (the dipole moments are aligned parallel 
along thez axis, or antiparallel and make a checkerboard on 
the xy plane) energetically most favored. For an infinite rec- 
tangle with a base on one face of the unit cell, the energy of 
the ground state with antiferromagnetic arrangement of the 
moments is U = - 2.2PO2/a3. 

If a sphere degenerates into a disk with one layer of 
dipoles, then substituting (10) in the Hamiltonian ( I )  we find, 
after calculating the lattice sums, that the energy is indepen- 
dent of the anglex and is given by 

Expression (1 5) has a minimum value U = - 2.33PO2/a3 at 
$ = ~ / 2 ,  i.e., the dipole moments lie in the plane of the disk, 
forming the structure shown in Fig. 2b with arbitrary value 
of the angle X. 

The substitution of the general solution of the three- 
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FIG. 2. Histograms ofthe distribution functions of the angles between the 
directions of the nearest dipoles: a-vortical configuration of ground 
state; b-vortical final structure after relaxation from a helicoidal initial 
configuration. The dashed lines shown the W ( g  ) for the initial states. 

dimensional problem (10) in the dipole Hamiltonian and the 
subsequent minimization with respect to the parameters tC, 
and x can be regarded as a simple method of obtaining the 
ground state for the concrete cases of lowering the sample 
dimensionality. The results obtained by this method agree, 
naturally, with the expressions obtained by minimizing the 
dipole energy with respect to all the angles 8, and cpk of the 
dipole sublattices. 

The cases considered above show thus that with de- 
creasing dimensionality of space and with decreasing num- 
ber of particles in the system with the dipole Hamiltonian (1) 
the energy of the ground state, normalized to one particle, 
increases. At the same time, partial lifting of the degeneracy 
takes place, i.e., continuous degeneracy with respect to two 
variables turns in the planar case into degeneracy with re- 
spect to only one variable, and in the one-dimensional case 
the degeneracy is completely lifted. A special case is a three- 
dimensional cubic cluster in which degeneracy with respect 
to one parameter remained. It is naturally of interest to con- 
sider the change of the energy, of the configuration, and of 
the degeneracy of the ground state on going from a cubic 
cluster to a simple cubic lattice; this will be done after ana- 
lyzing the methods for investigating finite systems. 

3. METHOD OF NUMERICAL INVESTIGATION OF THE 
GROUND STATE OF FINITE SYSTEMS 

The limiting cases considered in the preceding section 
give grounds for hoping that definite regularities exist in 
samples of finite dimensions. This pertains to establishment 
of a stable configuration of dipole moment on the boundary 
of a sample, and to the character of the lifting of the degener- 
acy on going from a cubic crystal to an infinite sample. We 
shall use the circumstance that a state with minimum energy 
corresponds to an arrangement of the moments such that the 
local field at a site coincides with the direction of the dipole 
moments; this remains naturally valid for samples of any 
shape and with any arrangement of the dipole moments in 
space. 

The equation that makes it possible to find such a con- 
figuration is the Landau-Lifshitz equation 

amila t=-y  [ m i x  H,"] -gy [ m , X [ m i ~ H : ] ]  (16) 

where y is the gyromagnetic ration, Hf = - M - 'dZ/dmi 
is the dipole field of the ith particle, and f is the relaxation 

parameter. Since in the determination of the ground state 
interest attaches only to the projection of the dipole moment 
on the local field at the corresponding site, we can leave out 
of the right-hand side of (16) the first term, which describes 
the precession of the moment around the local field Hf. Tak- 
ing this circumstance into account and changing to a spheri- 
cal coordinate system, we obtain equations for the angles Bi 
and pi : 

-= Ey (H:'* cos 0i cos cpi+ll?' cos 0i sin c p i - ~ ? '  sin Oi) ,  
d t  

d ~ i  (17) 
- d t  = EY (eY cos c p i - ~  sin cpi) cosec oi .  

The different characters of the relaxation of the electric 
and magnetic dipole moments notwithstanding, the final 
state of the relaxation process is determined by equating the 
right sides of Eqs. (17) to zero. The resultant system of equa- 
tions (1 7) contains all the metastable configurations as well 
as the ground state. The method of finding the lowest mini- 
mum consists of going through all the solutions of the equa- 
tions and comparing them with one another. To search 
through all the metastable states it is necessary to specify 
different initial configurations and to carry out the relaxa- 
tion process in accord with Eqs. (17), and choose the struc- 
ture with the deepest minimum. 

To describe the different structures and distinguish one 
from the other, we introduce the distribution function W(f ) 
of the angles between the orientations ofthe dipoles in neigh- 
boring sites, with cos f = cos 8, = P, P, /Po2 . Obviously, a 
regular vortex structure of the ground state 10 is character- 
ized, for nearest dipole separated by a distance a, by only 
three different angles f, ,  f,, f,, for which we have 

P h k l P h + l k l  - 
cos b ,  = - sin2 g cos ~ X - C O S ~  Ip, 

PoZ 

COS b? = 
PhklPh l+ l l  - - - sinz -$ cos 2%-cosz 4, 

PoZ 
P h k l P h k l + l  

cos b 3  = = cos 2-$. 
Po2 

Since the values of f , ,  c,, and 5, are encountered for the 
regular structure (10) with equal probability, the distribution 
function W (f ) normalized to unity can be represented for 
such a configuration in the form 

a a 

The values of cos f, determine uniquely the type of structure 
of the degenerate state. The parametersx and tjr, the change 
of which does not change the energy of the ground state, are 
connected with 6, in accordance with (18) in the following 
manner: 

cos 2xX(cos 51-cos &)/(i-cos <3), f =53/2. (20) 

In the general case of a vortex structure, the distribu- 
tion function W(f )  differs from zero at three points Si at 
which 

Li+a 

g(bi)- W(5)sin 5 d ~ = ' / ~ .  (21) 
br-s 
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where ~4. In those cases, however, when the degeneracy TABLE I. Ground-state energy of lattice clusters inscribed in a sphere. 

parameters satisfy the condition cot $ = sinx, the two points 
c2 and J3 coalesce into one, and consequently g(Ji) differs 
from zero only at two points, withg(c,) = 2g(c,). For a "fan- 
fold structure" corresponding to a state with two antiferro- 
magnetic sublattices, W (f )has two values that are symmetri- 
cal about c = ~ / 2 ,  and one at the point c = P. For an 
antiferromagnetic structure with the filaments directed 
along an arbitrary axis, the nonzero values of W (J ) are at the 
points f i  = 0 and f i  = P, with g(0) = 1/3, g(a) = 2/3. 

For a finite number of particles and as a result of the 
destruction of the vortex (lo), smearing of the distribution 
function W(f 1 should take place on the boundary. In the case center of the sphere, and the coordinate system was oriented 
of strong smearing of W(6) it is convenient to identify the along the crystallographic axes. The system energy and the 
vortex structure by the function W2({ ) of the distribtuion of local fields were calculated by summing the paired dipole- 
the angles between the dipole orientations at sites separated dipole interactions over all the lattice sites, and no condi- 
by a distance 2a. For the ground state of an infinite sample tions whatever were imposed on the sample boundary (free 
W2({ ) differs from zero only at the point 6 = 0. boundary). The final configuration was taken to be a struc- 

4. RESULTS OF NUMERICAL EXPERIMENT 

The main questions faced in the computer experiment 
were the investigation of the energy, configuration, and de- 
generacy of the ground state on going from a cubic cluster to 
a spherical sample of a simple cubic lattice. Besides the influ- 
ence of the finite dimensions and of the shapes of the sam- 
ples, we investigated the configurations and energies of me- 
tastable states that have no translational symmetry with 
respect to orientations of dipoles with period 2a. 

The dipole-moment configurations with minimum en- 
ergy were determined by the method of molecular dynamics, 
using the system of relaxation equations (17). In Table I is 
given the ground-state energy per particle for lattice clusters 
inscribed in a sphere. The dipole moments were located at 
the sites of a simple cubic lattice, the origin was chosen at the 

Total dipole moment Number of 

- .  - 
ture satisfying the local-minimum condition. 

The orientations of the dipoles of a cubic cluster of eight 
particles relaxed to the ground state (10) independently of 
the initial configurations, which were chosen regular as well 
as random. No metastable configurations were observed, the 
energies of all the states coincided and were equal to 
- 1.82P02/a3 (see Table I and Sec. 2), and all the final con- 

figurations were degenerate with respect to one variable and 
satisfied the conditions (14). We note that in the final config- 
uration the orientations of dipoles located at the sites of the 
principal diagonal of the cube coincided. 

Subsequent minimization with respect to the coordina- 
tion spheres has shown that the appearance of degeneracy in 
the second variable [the lifting of condition (14)] appears in 
practice already in the transition from N = 56 to N = 88, 
i.e., in a sample with four coordination spheres. This corre- 

8 
32 
56 
88 

304 
968 
m 

TABLE 11. Final states o f  spherical sample (N = 304) for different initial states. 

*For the definition o f  the configuration see the text. 

I 
2 
3 
4 
9 

19 

-1.82 
-1.95 
-2.12 
-2.2 
-2.44 
-2.58 
-2.68 

Energy in nergy m 
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3.140-' 
4.1OW5 

1.2.10-' 
3.7.10-' 

1.104 
2.6.1Ow5 

0 

Cylindrical* 
Anticylindrical 

Radial 

Helicoidal with period 
4a . 

Ferromagnetic 

Antiferromagnetic 

Fanfold 
x=3O0, 
(p=90° 

Random 

Belobrov eta/. 640 

-1.96 
-2.28 

3.88 

-2.21 

0 

-2.38 

-2.37 

-0.03 

cylindrical mixed: anti- 
cylindrical + vortical 

two domains with vor- 
tical structure 

vortical 
%=W, 
9 = 55" 

vortical 
x=W, 
(p=7O0 

antiferromagnetic 

fanfold 
x=30e, 
(p=90° 

fanfold 
x=36", 
(p=74" 

-1.99 
-2.33 

-2.33 

-2.43 

-2.41 

-2.44 

-2.44 

-2.42 

metastable 
? 

metastable 

ground 

D 

D 

D 

ground 



sponds physically to the fact that the configuration of the 
ground state of the final sample can be broken up into an 
internal volume, where the orientations of the dipoles corre- 
spond to configurations of an infinite three-dimensional lat- 
tice (degeneracy in two parameters), and on the boundary 
surface, where the orientations of the dipoles recall the dis- 
tribution of vortices in an infinite two-dimensional sample 
(degeneracy in one variable in the plane of a disk). The transi- 
tion region from the inner volume to the boundary is blurred 
and contains from two to three coordination spheres. Since 
the directions of the dipoles and the fields coincide in the 
ground state, the corresponding surface and volume distri- 
butions of the local fields are formed already in a cluster with 
four coordination spheres. 

A histogram of the distribution function W (f ) for a vor- 
tex configuration of the ground state of the dipole Hamilton- 
ian shown in Fig. 2a. The dashed histogram in this figure 
shows the values of W(fi)  for the initial vortex structure 
($ = 4S0,x = 30"). The smearing of the distribution function 
W(f ) is due to the restructuring of the orientation of the di- 
poles in the transition region and on the boundary. 

The numerical experiment revealed several metastable 
states, on which we shall dwell in greater detail. In the initial 
configuration the dipole moments located in the xy plane 
perpendicular to the radius vector joining thez axis with the 
given site. For a cylindrical configuration the dipoles are 
parallel in planes perpendicular to the z axis, and for the 
anticylindrical-in the opposite direction. In these configu- 
rations the orientation of the dipole moments forms a system 
of parallel and antiparallel coaxial vortices. Since in both 
cases the field directions at the sites coincided with orienta- 
tions of the dipoles inside the sphere, the change in energy 
upon minimization (Table 11) is connected only with the 
reorientation of the dipoles on the boundary. In addition to 
the coaxial vortices, notice must be taken of the existence of a 
high density of local vortices (or diameter a) in the anticylin- 
drical structure; this explains the low energy of this state. 

In the radial initial configurations all the moments were 
oriented along the radius-vector of the corresponding sites. 
The high energy ofthis state is due to the fact that in each site 
the field and the dipole are oppositely directed. The relaxa- 
tion from the radial initial configuration into the final one 
has lead to division of the sphere into two regions with al- 
most vortical structure in each. The regions are separated by 
a plane passing through the center and directed perpendicu- 
lar to one of the crystallographic axes. In the nearest planes, 
where the lattice sites are located, the vortex directions are 
parallel. The barrier connected with transition ofthis config- 
uration into the ground state is due to the appearance of 
stability of the separating plane. 

The orientations of the dipoles in the initial helicoidal 
configuration were specified in the following manner: 

It can be seen from these expressions that the period of the 
initial state was equal to 4a along the z axis. Minimization of 
this configuration led to a ground state having a vortical 
structure with period 2a inside the sphere. Figure 2b shows a 
histogram of the final distribution function W (< ), from 

FIG. 3. Histograms of the distribution functions W,(g)  of the angles 
between the orientations of dipoles separated by a distance 2a. The dashed 
and solid histograms show respectively W,(g ) for the initial random con- 
figuration and for the final vortial structure. 

which it can be found in accord with Eqs. (20) that $z 75" 
and ~ ~ 4 0 "  (see Table 11). It must be noted that relaxation 
from a ferromagnetic state with period a and from random 
nonperiodic initial configuration (Fig. 3) also led to a vortex 
structure with period 242. If partial configurations of the 
ground state (antiferromagnetic and fanfold) were specified, 
they did not change in the process of minimization inside the 
sphere (see Table 11). The difference between the energies of 
their initial and final configurations is due to alignment of 
the directions of the boundary dipoles. 

The numerical experiments confirm fully the analytic 
results of Secs. 1 and 2. The main regularity in the formation 
of the ground state in finite samples is the appearance of 
vortical configurations. 

CONCLUSION 

We investigated equilibrium configurations of magnet- 
ic or electric dipoles placed at the sites of a simple cubic 
lattice. 

Analytic solutions for an infinite three-dimensional 
crystal or along corresponding directions of a low-dimen- 
sional crystal were sought, as in Ref 1, in the class of solu- 
tions having translational symmetry with period 2a. It was 
shown that the general solution in this class is the solution 
(lo), consisting of four sublattices whose dipole moments for 
a vortex structure (see Fig. 1) that is degenerate in two pa- 
rameters. The antiferromagnetic state obtained in Ref. l is a 
particular case of this vortex structure (corresponding to a 
two-sublattice model), not different in energy from the other 
vortex-structure configurations. 

We also investigated analytically the simplest low-di- 
mensional crystals and finite clusters of 8 and 12 particles. 
By low-dimensional crystal is meant here a disk of infinite 
diameter and one layer thick (two-dimensional crystal) or a 
rectangle of infinite length with base a X a ("one-dimension- 
al" crystal). The solution was sought in the class of four- 
sublattice vortex structures of the type (lo), having a period 
2a along the axes corresponding to the infinite dimension of 
the crystal. For a two-dimensional crystal, the degeneracy is 
lifted with respect to one parameter-the axis ofthe magnet- 
ic dipoles lies in the plane of the disk ($ = 77/2); a vortex 
structure with arbitrary value of the angle x is preserved in 
the plane. For the one-dimensional crystal the degeneracy in 
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x is lifted: The dipole moments lie along the axis of the one- 
dimensional crystal, forming an antiferromagnetic struc- 
ture. 

Corresponding to the minimum energy for a finite clus- 
ter (a unit cell consisting of eight particles) is a configuration 
in whichx and $are uniquely interconnected. Thus, not all 
vortex structures that are possible in an infinite crystal can 
be realized in such a cluster; in particular, the constraint (14) 
forbids formation of an antiferromagnetic structure. How- 
ever, the addition of one face with four dipoles to the cube 
(cluster a X a  X2a) leads to a situation in which antiferro- 
magnetic ordering becomes convenient. 

We performed also a numerical experiment by the mo- 
lecular-dynamics method for finite systems of 8 to 88, 304, 
and 968 particles (see Table I), located at the sites of a simple 
cubic lattice inscribed in a sphere of the appropriate diame- 
ter. We specified some initial configuration of the dipoles 
and the system relaxed to a minimum (to one of the minima). 
By specifying different initial configurations and calculating 
the energy of each final configuration, it was possible to clas- 
sify with sufficient probability the final configurations as be- 
longing to the ground or to one of the metastable states. The 
numerical experiment had two aims in mind. 

First, as indicated above, the obtained analytic solution 
(10) is general in a class of structures that are periodic with a 
period 2a. It is natural to ask whether some solutions that do 
not satisfy this condition exist. Second, it was of interest to 
trace the influence of the finite nature of the system on the 
character of the ground-state configurations. 

The numerical experiments have shown that the final 
states whose energy is close to the global minimum always 
have a sufficiently clearly pronounced period 2a, regardless 
of their initial state (stochastic initial structure, structures 
with period a, 4a, etc.) This is evidence of the stability of the 
obtained ground state. In one case (radially symmetric initial 
state) this law was violated, but only on one plane (of the type 
of a disclination plane or a domain wall) that divides the 
sphere in half; in each hemisphere the solution had a clearly 
pronounced period 2a. Metastable states, however, did not 

satisfy this condition. All the investigated excited states, 
structures with macroscopic inhomogeneities, and metasta- 
ble configurations always had an energy higher than the en- 
ergy of the vortex lattice. Consequently, within the frame- 
work of the numerical experiment the ground state of the 
dipole system on a simple cubic lattice is stable to long-wave 
fluctuations of the degeneracy parameters. 

As for the influence of the surface, it manifested itself in 
formation of a "skin layer" one or two lattice constants 
thick, in which the character of the configurations of the 
dipoles, remaining vortical, differed substantially from the 
configuration in the remaining volume of the sphere, where 
the configuration of the ground state was always close to the 
periodic vortex structure (10) typical of an infinite sample. 
Such a limited influence of the surface is due to the fact that 
the vortex structure, closing the magnetic (electric) fluxes in 
small volumes, leads to a strong screening of the dipole inter- 
action, so that the latter lose to a considerable degree their 
long-range properties. 

Thus, both the analytic calculations and the numerical 
experiment show that the ground state of a system of dipoles 
corresponds to configurations with largest possible number 
of vortices (closed force lines and field intensity) arranged 
with a minimum possible period. 
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