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An approximate theory is constructed for the magnon spectra of yttrium-iron garnet, a classical 
object for experimental studies in magnetism. It is shown that the problem of calculating the 
frequencies of all 20 magnon branches over the entire Brillouin zone contains two small param- 
eters. First, because of the large number of magnetic atoms in the unit cell the distance between 
nearest interacting magnetic atoms is small in comparison with the lattice constant and, accord- 
ingly, with the wavelength of a spin wave. An effective long-wavelength character thus arises in 
the problem. Second, there are a large number of wave-vector directions along which many 
elements of the Hamiltonian matrix vanish by symmetry in the basis which diagonalizes this 
matrix for k = 0. These matrix elements thus have an additional, angular smallness for arbitrary 
directions of k. These matrix elements can be taken into account using perturbation theory. As a 
result, the large elements of the Hamiltonian matrix are few in number, and they can be eliminat- 
ed by several two-dimensional rotations. Approximate expressions, differing from the computer 
calculations by 5 lo%, are thus obtained for the frequencies. For temperatures up to 400 K the 
temperature dependence of the magnetization is calculated in the spin-wave approximation, and 
good agreement with experiment is obtained for the following values of the exchange integrals: 
Jad = - 35.0 K, J,, = - 14.5 K, J,, = 0.0 K. 

PACS numbers: 75.30.Ds, 75.50.Gg, 75.60.Ej 

Yttrium-iron garnet (Y3Fe,0,,-YIG) is a marvel of na- 
ture. Its role in the physics of magnets is analogous to that of 
germanium in semiconductor physics, water in hydrodyna- 
mics, and quartz in crystal acoustics. There are several rea- 
sons for this. First, it has the narrowest known ferromagne- 
tic resonance line and the lowest spin-wave damping. 
Second, with 80 atoms in the unit cell, each of which must 
find its proper location, the YIG crystal growth was so well 
perfected that its acoustic damping is lower than that of 
quartz. Third, it has a high Curie temperature T ,  = 560 K, 
so that experiments can be done at room temperature. For all 
these reasons, YIG has become indispensable both in micro- 
wave technology and in experimental physics for studying 
new effects and phenomena in magnets. 

Detailed studies have been made in YIG ofthe tempera- 
ture dependence of the magnetization, specific heat, para- 
magnetic susceptibility, frequency and damping of long- 
wavelength spin waves, and much more. To analyze all these 
experimental data it is necessary first to know the spectrum 
of the elementary excitations of the magnet-the spin waves. 
The primitive cell of YIG contains 4 formula units of 
(Y: + Fe: + Fe: + 0:;). Eight of the iron ions Fe3+ are locat- 
ed at octahedral (a) positions and 12 at tetrahedral (d ) posi- 
tions with regard to the immediate environment of 0'- 
ions.' There are 20 magnetic ions in all, and the magnon 
spectrum of YIG accordingly contains 20 branches. Their 
energy lies between 0 and 1000 K. In the low-temperature 
limit, only the long-wavelength part of the spectrum of the 
lower "ferromagnetic" branch is important. Its energy is 
easily calculated because all 20 magnetic moments in the 

primitive cell oscillate almost in phase and can be treated as 
one common magnetic moment. 

In the exchange approximation2 

or=o),,(ak)',  o,,=",, ( S J , , + ~ J ~ ~ - ~ J , , I ) ,  (1) 

where a is the lattice constant and we, is the "exchange" 
frequency. Here J,, , Jdd, and Ja, are the exchange integrals 
between nearest neighbors in the corresponding positions. In 
YIG one has a=: 12.5.10-' cm and we, ~ 4 0  K. 

It has long been known3 that formula (1) is valid in a 
rather small region of k space (ak 5 l), with a volume less 
than 1% of the volume 2(21~/a)~ of the whole Brillouin zone. 
The magnon energy in this region does not exceed 40 K. To 
describe the thermodynamic and kinetic properties of YIG 
at higher temperatures, one cannot treat the crystal as a one- 
sublattice ferromagnet, even if only the lower spin-wave 
branch is excited. The point is that even for ak 2 1 one can- 
not assume that the magnetic moments of all 20 ions in a unit 
cell oscillate in phase. Therefore, to find the spin wave fre- 
quencies (including those of the lower branch) one must gen- 
erally speaking solve the complete problem of the oscilla- 
tions of the 20 magnetic sublattices, which amounts to the 
diagonalization of a 40 X 40 matrix. It is simple enough to 
calculate the frequencies of all twenty magnetic branches at 
k = 0 using group theory and making use of the high degree 
of symmetry of the problem: the invariance of the exchange 
interaction with respect to rotations and the symmetry 
(group 0 Lo) of the garnet lattice.' Harris3 has constructed a 
perturbation theory forak< 1 and found a correction - k to 
the frequency of the lower branch (1). However, in his com- 
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puter calculation he evaluated the magnon frequencies wJ (k), 
j  = 1, ..., 20 for the most symmetric direction kl([l11] and for 
several rather arbitrarily chosen values of the exchange inte- 
grals. It turned out that the frequencies of the 19 "optical" 
branches densely fill the interval from 200 to 600 K, and so 
generally speaking there is no temperature interval in which 
magnons are excited on only two branches. The widespread 
opinion that YIG can be treated approximately as a two- 
sublattice ferrimagnet is therefore lacking foundation. 

In this paper we construct an approximate theory of the 
magnon spectra which yields analytical expressions for all 
20 branches over the entire Brillouin zone (i.e., for ak 5 5) 
with an acceptable accuracy of the order of 10% in a realistic 
interval of values of the exchange integrals. In $1, which is 
by way of an introduction, we give the familiar Heisenberg 
Hamiltonian of the problem, incorporating, as is custom- 
a r ~ , ~  the exchange interactions Jad, J,, , and Ja, between 
nearest neighbors. We then, for simplicity, use the quasiclas- 
sical approximation and, with the aid of a Holstein-Prima- 
koff transformation: arrive at the canonical equations of 
motion for the complex spin-wave amplitudes a,(k) and 
a:(k), which are the classical analogs of the Bose operators 
for the creation and annihilation of magnons. The quadratic 
part of the Hamiltonian function determines the spin-wave 
frequencies w, (k), j  = 1, 2, ..., 20. To evaluate these frequen- 
cies it is generally necessary to diagonalize a 40X 40 matrix. 
However, in the exchange approximation for a collinear 
structure, the problem, as we know,3 reduces to the diagona- 
lization of a 20 X 20 matrix. 

Before proceeding with the analytical solution, we 
made detailed computer studies of the problem: using an 
iterative procedure we evaluated the functions wJ (k) and the 
eigenvectors for all j = 1, ..., 20 different sets of exchange 
integrals and for the directions kll[lll], [100], [110], and 
[113]. The results of these calculations are presented in $2. 
Analysis of these results shows that there are hidden small 
parameters in the problem, which lead to the circumstance 
that the eigenvectors of the oscillations in a certain sense 
vary slowly with k over almost the entire Brillouin zone. One 
of these parameters is related to the large number of magnet- 
ic atoms in the unit cell (N = 20). The distance between near- 
est neighbors is therefore smaller than the lattice constant. 
As a result, a suitably constructed long-wavelength approxi- 
mation is valid over the entire Brillouin zone. This is aided 
by the high degree of crystal symmetry, which causes a num- 
ber of matrix elements to vanish in the symmetric directions 
[ 1 1 11 or [loo]. Since there are many such directions, the ma- 
tric elements assume a numerical "angular" smallness in ar- 
bitrary directions as well. 

In 553-5 we construct an approximate analytical the- 
ory of the magnon spectra of YIG. In 53 we transform the 
Hamiltonian matrix to the "irreducible" basis of the point 
group 0,. It is well known5 that the representation generat- 
ed by the permutation of the 8 iron ions in a positions in the 
unit cell of YIG decomposes into two one-dimensional re- 
presentations r1 (identity) and T, and two three-dimensional 
representations T, and 7,. The permutation representation of 
the 12 ions in d positions decomposes into two one-dimen- 

sional representations 7 ,  and r4, two two-dimensional repre- 
sentations T, and T69 and two three-dimensional representa- 
tions T8 and 7,. Because the representations T ,  and T~ occur 
twice, the Hamiltonian matrix contains four pairs of off-di- 
agonal elements even for k = 0. In 53 we eliminate these for 
arbitrary k with the aid of four separate canonical u-v trans- 
formations, each of which involves only one pair of basis 
functions. In such a representation, which we call "quasi- 
normal," the Hamiltonian matrix is diagonal for k = 0. Its 
diagonal elements serve as an approximation for the spin- 
wave frequencies and, in the nondegenerate case, describe 
these frequencies well over the entire Brillouin zone. Before 
we given these frequencies, let us introduce the following 
notation for the combinations of trigonometric functions 
which occur in them 

a,.  - VL-COS 29i COS 91 COS 91, Yi j l=COS 2qi sin q j  sin q r ,  
q i j l = c O S  2qi COS q j ,  xijl=sin 29, sin qj ,  

"ijl=COS 2qi COS 2qj COS 291, pi j l=COS 2qi sin 2qj sin zql.  
(2) 

Here the indices i, j,  and I take on the valuesx, y,z, i#j# I # i, 
and q = ak/8, where k is the wave vector of the spin waves. 
The functions aijl,, yq1, etc. are combined into symmetry 
groups a +, , y, , etc., which are sums over even and odd 
permutations of the indices x, y, z. For example, 

The 20 branches of the magnon spectrum of YIG can be 
broken down into three groups according to the nature of the 
oscillations for k = 0. 

1. a branches. On these branches only the spins in the a 
positions oscillate at k = 0. There are four such branches: 
w,(k), w,j(k), j  = 1,2,3. Here the first frequency index corre- 
sponds to the number of the irreducible representation, and 
the second to the number of the basis function in the irredu- 
cible representation, if it is not one-dimensional. The fre- 
quencies of the a branches in the quasinormal approxima- 
tion are: 

aso ( k )  = o a + 4 0 J a c v ,  6 1 a = - 3 0 1 a d + 4 0 J a a 7  
(4) 

(k) = o . + 4 0 J a , p ,  C I I ~ , " ( ~ )  = o r s o  (k) = @ a - 2 0 J a a ~ .  

2. d branches. On these branches only the d spins oscil- 
late at k = 0: 

o r O ( k )  = o d + Z O J d d a ,  0 d = - 2 0  ( l a d - J d d ) ,  
o.5,' (k) = 0 5 z 0  ( k )  = ~ d +  I O J d d a ,  o B L O  ( k )  = @ & Z 0 ( k )  = @ d - i o l d d ~ ~ ,  

osgO ( k )  = a d +  2 0 J d d r ,  o s z O  ( k )  = 0 8 S 0  ( k )  = a d - f o J d d * ( .  (5) 

The notation here follows the same principles as for the a 
branches. 

3. a-d branches. Here the spins at both the a and d 
positions oscillate. These branches arise because the same 
irreducible representations (7, and 7,) occur in the decompo- 
sition of the a and d permutation representations. Since the 
identity representation T ,  is one-dimensional, while the re- 
presentation r9 is three-dimensional, there are eight a 4  
branches. Their frequencies in the quasinormal approxima- 

606 Sov. Phys. JETP 57 (3). March 1983 Kolokolov et at. 606 



tion can be written in the form 

The letter index d is assigned to four modes [including the 
ferromagnetic (FM) mode rd ,I. The excitation of a magnon 
of this type decreases the magnetization of YIG by one Bohr 
magneton, just as the excitation of any d-branch magnon 
does. On the other hand, the excitation of a magnon of the 
four branches with index a [including the antiferromagnetic 
(AFM) mode ral ] increases the magnetization by one Bohr 
magneton. This property is shared by any a mode. 

In $4 we obtain corrections to expressions (4), (5), and 
(6) for the frequencies o:, (k), o:, (k), w:(k) and &(k) of the 
spin waves which are nondegenerate at k = 0, using second- 
order perturbation theory in the off-diagonal elements of the 
Hamiltonian matrix in the quasinormal representation. The 
expressions obtained for the frequencies are entirely satisfac- 
tory and differ from the results of the numerical calculation 
by no more than a few percent. 

In $5 we construct a perturbation theory for the fre- 
quencies of the spin waves which are doubly and triply de- 
generate at k = 0. The problem here is complicated by two 
factors. First, because of the degeneracy it is necessary to 
exactly diagonalize matrices of dimensionality 2 x 2 or 3 x 3. 
Second, the series expansion in k of several matrix elements 
which "mix" nearby modes of different representations be- 
gins with the first power of k. Therefore, in a significant part 
of the Brillouin zone these matrix elements cannot be taken 
into account by perturbation theory and one is obliged to 
make exact canonical transformations to eliminate, them. 
Only in this representation can one use perturbation theory. 
We have carried out this program and found the frequencies 
of the 20 spin-wave branches for the symmetric directions 
k11[100] and kll[l11]. Then, for arbitrary directions of k we 
study qualitatively the frequencies of the degenerate spin- 
wave branches, which have activation energies of no more 
than 300-400 K. Finally, in $6 we calculate the temperature 
dependence of the magnetization and specific heat of YIG in 
the approximation of noninteracting spin waves. By com- 
paring our results with the experimental data on M(T) ,  we 
refine the values of the exchange integrals. We find that for 

the experimental and theoretical functions M ( T )  agree to 
within the experimental accuracy ( -  10%) in the interval 
from 0 to 400 K. 

51. QUADRATIC HAMlLTONlAN AND DlAGONALlZATlON 
PROCEDURE 

We write the Heisenberg Hamiltonian for the spin sys- 
tem: 

20 XZ $ (Ri,,+dij) +Jdcf Si (R..) S, (Ri.+d,) 1. 
(1.1) 

Here n is the number of the primitive cell, i and j are the 
numbers of the sublattices: i = 1, ..., 8 for a ions, i = 9, ..., 20 
for d ions, S,(R,) are the spin and coordinate of the i-th 
sublattice in the n-th cell, and d,. is the distance between 
nearest neighbors of the i-th and j-th sublattices. 

Assuming the motion of the spins to be quasiclassical, 
we go over from the spin variables S at each lattice site to the 
complex canonical variables a and a* with the aid of the 
classical analog of the Holstein-Primakoff transformation. 
To determine the spectrum and eigenvectors of the oscilla- 
tions, in this paper we consider the quadratic part of the 
Hamiltonian (2?2') and transform into k space by the for- 
mula 

n, ( k )  = - ;,* a j n  @xp ( - ikRJn) ,  

where N is the number of cells in the crystal. Then 

20 

a,, a,= {Fijai'aj+ [GzJai' ( k )  %' ( - k )  +c.c. 1) 
k i - j - I  

-- 
= A~~ ( k )  ni* ( k )  aj ( k )  i- E D ~ ~  ( k )  a*' ( k )  aj ( k )  

Bij=2S0J,yi, (k) ,  yij(k) = exp ( ikdi j)  , Aji=Aij. ,  D j i = ~ i j . .  
dl1  

A similar form of the matrices A, B, and C is given in the 
paper by H a r r i ~ , ~  from which we have adopted the notation 
in (1.4). The appearance of blocks of zeros in the matrices Fu 
and GV is a consequence of the collinearity of the sublattices 
and the high degree of symmetry of the exchange interac- 
tion. 

As a result, the problem of finding the eigenfunctions 
and eigenvectors of the spin-wave oscillations reduces to the 
diagonalization of a 20 X 20 matrix 

by means of a transformation to the new variables b,(k): 
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ai(k)= CZL::"(~) b j ( k ) - z  uj;(k) b;(-k), i-1,. . . ,8, 
j= 1 1= 9 

8 20 

a,* (-k) =- C ujim (k) bj (k) + "" (1.5) 
uji (k) bj* (-k), 

in which the Hamiltonian assumes the form 

%.= ,,(k) b; (k) bj(k). 
j- 1 

The first eight eigenvaluesn here coincide with the eigenfre- 
quencies, while the remaining twelve differ in sign. 

In order to make concrete computer calculations, one 
must assign numerical values to the exchange integrals 
Jad,Jdd, and Jaa.  At the present time, only the "intersublat- 
tice" exchange in YIG is well enough known: Jad = - (33- 
36) K, according to the data of different  author^.^^' To make 
direct use of the experimental results on a 4  and d-d ex- 
change is difficult, however, since the values obtained for the 
constants J,, and Jdd depend strongly on the particular 
physical effects and data-processing methods used. The 
opinion that (Jaa 1 ( 1  Jdd I seems rather plausible to us, since 
the distance between nearest a positions (fia/4) is 0 times 
greater than the distance between d positions, and the ex- 
change interaction falls off exponentially with distance. The 
relation JJa,/J,, 141 is also confirmed by our analysis of the 
temperature dependence of the magnetization as a function 
of exchange constants [see (8)]. It must be said that some of 
the data obtained by the molecular-field method imply that 
Jaa is comparable in size to Jdd.  We attribute this disagree- 
ment to the inadequacy of the molecular-field approxima- 
tion (se Ref. 6), and we shall assume that J,, is negligibly 
small. 

To evaluate the magnon spectrum we need the values of 
the exchange integrals, and for this we shall use the experi- 
mental data on the spectrum of the long-wavelength spin 
waves of the ferromagnetic branch. The value of o,, has 
been accurately measured in experiment and is expressed 
quite simply in terms of the exchange integrals in (I), thereby 
yielding the relations between these integrals. 

Assuming in accordance with what was said above that 
Jad = - 35 K and J,, = 0, we obtain the desired set of val- 
ues 

Id*=-16 H, lad=-35 IC, J..=O. (1.7) 

We shall call these the "standard" values of the exchange 
integrals. As the "admissible" limits of their variation we 
adopt 
Jan=- (0-3) ldd=-  (16f3) lad=-  (35*3) (1.8) 
with the understanding that the combination o,, [Eq. (I)] 
remain equal to 41 K. 

52. SPIN-WAVE SPECTRUM AND THE NORMAL VARIABLES 
OF THE QUADRATIC HAMILTONIAN-THE RESULTS OF 
COMPUTER CALCULATIONS 

2.1. The magnon spectrum evaluated by computer for 
k11[100], [Ill], [110], and [113] with the standard values 
(1.7) of the exchange integrals is given in Figs. 1-3. The be- 
havior of the ferromagnetic mode od , (k) at small values of 

9 
FIG. 1 .  Spin-wave spectrum for the symmetric directions k(([100], [ I l l ]  
and for the standard values of the exchange integrals; g = ak /8. 

ak is, of course, described by formula (1). 
An interesting question is, to what values of ak does the 

dispersion relation remain quadratic to an accuracy of, say, 
lo%? The answer can be obtained by analyzing the next 
term of the expansion in (1). For the standard values of J [Eq. 
(1.7)] the coefficient of the ( ~ k ) ~  term is 8.5 K, and so the 
sought value is ak20.7. For such values of k, we find 
o,, = 25 K .  At larger values of the frequency ad ,  (k) the 
dispersion relation is not in any sense quadratic. It is of fun- 
damental importance that as ak increases the dispersion re- 
lation approaches a straight line. 

2.2. In an overview of the spectra it strikes one that the 

e 
FIG. 2. Low-frequency part of the spectrum for kll[l10]. 
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e 
FIG. 3. Low-frequency part of the spectrum for kll[l13]. 

antiferromagnetic branch runs almost parallel to the ferro- 
magnetic branch and is not noticeably perturbed in its multi- 
ple crossing of other branches. In the language of perturba- 
tion theory this means that the eigenvectors of the FM and 
AFM modes are practically unmixed with the other eigen- 
vectors. Neglecting such intermixing, we can obtain simple 
analytical expressions for the frequencies w,, (k) and w,, (k) 
of the FM and AFM branches over the entire Brillouin zone. 
To do this we assume that in (1.3) the oscillation amplitudes 
of all eight a and all twelve d spins are equal (a,  = ... = a,, 
a, = ... = a,,) and obtain 

Hence, we obtain for w,, (k) and o,, (k) the expressions (6)  
given in the Introduction. The notation used for the coeffi- 
cients is given in (7). 

Our assumption that the amplitudes of the oscillations 
of the spins of the a and d ions are equal is equivalent to the 
replacement of the 20-sublattice ferrite by a two-sublattice 
model. Here, however, we have assumed that the phases of 
the oscillations of spins a and d are not the same over the unit 
cell, but rather a(RJ, ) - exp(ik*RJ, ), in accordance with (1.2). 
The presence of a phase factor is a fundamental improve- 
ment over the naive two-sublattice model with identical 
phases of the oscillations within a unit cell. The two-sublat- 
tice approximation proposed here, as we shall show in $4, 
gives a good quantitative description of the ferromagnetic 
and "antiferromagnetic" magnons over almost the entire 
Brillouin zone. 

This success permitted us to suppose that the intermix- 
ing of all the remaining modes at values of ak that are not 
small is nevertheless in some sense small. To demonstrate 
this we determined in a numerical experiment the projec- 
tions of the 20 eigenvectors for k # 0 onto the eigenbasis for 
k = 0 and found that the transition matrix between these 
bases is nearly block diagonal, with the eigenvectors of the 
same representations intermixed in the blocks. 

83. QUADRATIC HAMlLTONlAN FOR SPIN WAVES IN 
QUASINORMAL VARIABLES 

Making use of the experience of previous investigators 
in regard to the application of group theory for analysis of 
the spectrum of homogeneous oscillations (k = 0) of the 
magnetic system of YIG,'-3 let us formulate an analytical 
theory for evaluating the frequencies wj(k) of all 20 types of 
spin waves. 

3.1. Our goal in this section, which is of a preparatory 
nature, is to write the quadratic Hamiltonian Xk (for any k) 
in the irreducible (for k = 0) representation [i.e., after the 
transformation to the new basis by formula (1.5)], in which 

The matrices U, and U, are given in Ref. 8. The quadratic 
Hamiltonian is specified by the matrices A ' I '  (k), D ' I '  (k), and 
B ' I '  (k) with the aid of the relations 

A"' (k) =UJ (k) U.-', D"' (k) =UdD (k) Ud-', 
B"' (k) =U.B(k) Ud-'. (3.2) 

In writing the results of the matrix multiplication, we shall 
assign double indices to the rows and co1umns:A :is,, , D :iTnl, 
and B The first indices m and n give the irreducible 
representations, and i andj  give the number of the basis func- 
tion within a single representation, if it is not one-dimension- 
al. Further, we shall separate out the diagonal terms in the 
matrices A "' and D "' and reduce the remaining terms to di- 
mensionless form 

In this normalization the maximum values of the ma- 
trix elements a, 6, and d which do not vanish as k 4  are 
equal to unity. The matrices we seek are expressed in terms 
of combinations of trigonometric functions. Some of these 
combinations, a, y, 7, K, p, and v were already defined by 
formulas (2) and (3) in the Introduction. The remaining com- 
binations are: 

Pijl=sin 2qi sin q j  sin q,, Gijl=sin 29, cos q j  cos q,, 
E ~ ~ I = C O S  24; sin qj  cos 91, ttjn=sin 2qi cos q j  sin q,, (3.4) 

eijl=cos 2qi sin qj,  pijl=sin 2qi cos qj. 

Here, as before, the indices i, j, and I take on the values 
x, y, and z, q = ak/8, and i#j#I  #i. Functions (3.4), like 
functions (2), are combined into symmetric combinations 
p,, 6 ,*,.. according to rule (3). In addition, a new type of 
symmetric combinations arises: i5 , , B,, y ,  , etc.-the 
sums over the even and odd permutations ofx, y, and z with 
weight factors of 1, A = exp (2 i~ /3) ,  and A *. For example, 

The remaining definitions ( 8,. , y  * , etc.) differ only by re- 
placement of the Greek letter. 

To describe the Hamiltonian matrix in the irreducible 
basis we begin with the most awkward matrix D. Its diagonal 
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blocks with respect to the irreducible representations are of 
the form 

dl1 = - dra = 2a (k) ,  
-2y T* 5 

des=-d55= 

- - (3.6) 
d,,=dr,'=Zip, d,,=-d,, = (a*, a ) ,  a,,=-d,,=i(p*, p) ,  

(3.7) 
The blocks which intermix the three-diagonal represen- 

tations with one- and two-dimensional representations have 
the most complicated appearance. They can be written in the 
form 

d,,=d,,+-&,-, m=1, 4 ,  5, 6 ,  n=8, 9, 

The matrix B, which describes the interaction of the a 
ions with the d ions, has the following form: 

bi,=b,a=bia=bs,=b,,=bJg=0, 

blt='/z(q++.rl-) =q, b;J=1/2 (G++G-, ;;+*+<a), (3.9) 

The matrices b,, can be obtained from b,, by changing the - 
signs in front of the terms g - ,  @-, 8 - ,  and 8-. In precisely 
the same way, the matrices b,, and b,, differ by the sign in - 
front of the combinations having the index " - ": tc-, x - ,  
8 - ,  etc. We shall therfore give only the blocks of b,,: 

One should not be frightened by the cumbersome form of the 
matrix b,, . At k = 0 it simplifies to the utmost, with all of its 
blocks vanishing except b,, and b b',:, which intermix identi- 
cal representations. The diagonal elements of these blocks 
will be taken into account exactly. Next in importance are 
the blocks which are linear in k. These are b,,, b,,, b,,, 
b c ,  by;, b g ,  b$, b g ,  a n d b g .  Theexpansionofthe ma- 
trix elements of the remaining blocks in a series in k begins at 
the second order in k or higher. As a rule, it is sufficient to 
take them into account in the lowest order of perturbation 
theory over the entire Brillouin zone. 

The A matrix, of dimension 8 x 8, is constructed rather 
simply: 

ali=-aJJ=2v (k), nirn=O for m Z 1 ,  a,,=O for m#3, 

-2p P 
a,, = - a,,= (3.11) 

Here only a , ,  and a,, are large at small k. The expansion of 
the remaining coefficients begins with terms of at least sec- 
ond order and, as a rule, can be taken into account by pertur- 
bation theory. 

3.2 Quasinormal basis. We recall that in the "irreduci- 
ble" basis of the Hamiltonian matrix, four pairs of off-diag- 
onal elements remained in the matrix B at k = 0. These were 
b, ,(O) = 1 and b,,,,, = -  IS,,,/^"^. These elements can easily 
be eliminated with the aid of four independent u-v transfor- 
mations, each of which involves only a single pair of eigen- 
vectors. The coefficients of these transformations can be 
written in the form 

Here B, =B !; is a nonzero element of the matrix B ' I '  

(p=l ,p=9.1 ;9 .2 ;  9.3),Ap4~;(k),andDp=D!;(k).  In 
the new basis the Hamiltonian matrix is diagonal at k = 0 
and is nearly diagonal in a significant portion of the Brillouin 
zone. It is natural to call such a basis "quasinormal." The 
diagonal elements of the Hamiltonian matrix in this basis 
give the approximate expressions for the spin-wave frequen- 
cies given in formulas (4)-(7) of the Introduction. 
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54. PERTURBATION THEORY FOR NONDEGENERATE 
MODES 

4.1 Ferromagnetic mode. The dispersion relation of the 
ferromagnetic mode in the "quasinormal" approximation is 
given by expressions (6), which were obtained in 52 from 
simple considerations. This expression gives a good approxi- 
mation for the frequency wO,, (k) of the ferromagnons over 
the entire Brillouin zone. Expanding w:, as k-+O, we find 
that the coefficient of the (ak)2 term agrees with the exact 
expression, while the coefficient of (ak ), is understated by 
2%. At the edge of the Brillouin zone the "approximate" 
formula (6) gives the frequency to within an error of 5%. Of 
course, in discussing the degree of accuracy we are compar- 
ing the approximate expressions not with the true values of 
the spin-wave frequencies in YIG but with the values that 
can be obtained by exactly solving the equations of motion 
(by computer, for instance). With this same accuracy one can 
expand the trigonometric functions in (2) to order q4 and 
obtain a "practical" formula for the frequency from which 
the small terms have been dropped: 

o P l ( k )  =5 1 Jd1{[1+40(1-K/2-2L) q2 
- (28-2f , (n))  q4]'"-1-2(K-4L) q", 

q=ak/8, n=k/k, K=JdJd,  L=l,lJ=d, 
(4.1) 

f 4  ( n )  =3(n,2n,2+n,2n,2+n,"n,Z). 

In this formula one can readily see the linear part of the k 
dependence and the low degree of crystallographic anisotro- 
py that appear in the numerical calculation. We note that the 
linear part of the spectrum is due to the circumstance that 
YIG is almost an antiferromagnet: For every three d spins 
there are two a spins with the opposite equilibrium orienta- 
tion. 

In the second order of perturbation theory the correc- 
tion to the frequency is 

Here the matrix elements D '$,, and B If), are obtained after 
a u-v transformation (3.12) of the original matrices (3.3). The 
first group of terms, proportional to ID 1 2, arises as a result of 
the mixing in of the d modes; the second group, proportional 
to IB 12, from the mixing in of the a modes. All of these terms 
are nonzero, but the main correction to the frequency oj: , is 
from the matrix elements proportional to k 2  at small k, 
namely D '$, ( j  = 1,2) and B 9, ( I  = 1, 2, 3). Taking only 
these modes into account, we obtain from (4.2) 

The next largest matrix elements areD,,,,. ( j  = 1,2,3), whose 
expansion begins with terms cubic in k. Their contribution 
to a$', is proportional to (ak )6 and falls off rapidly with de- 
creasing k. Furthermore, their contribution goes to zero for 

kll[lll] or [loo] and, hence, has an additional, angular 
smallness. Estimates show that this contribution does not 
exceed 1 %, and we shall not even write it out. 

4.2 Antiferromagnetic mode. The frequency o:, (k) of 
the antiferromagnetic mode in the quasinormal approxima- 
tion is given by the second of expressions (6). The accuracy of 
this formula is not worse than 15% at the edge of the Bril- 
louin zone. In the second order of perturbation theory 

[/, ,u, ( k )  -1ddvt (k) 1' 
o::' ( k )  = O ) ! , ~ O ( ~ )  -5 I 1 - f r b )  In4. 

a d 5  ( 0 )  f wo1° ( 0 )  

(4.4) 
4.3. The soft d mode od4 has a minimal gap - 100 K for 

the standard choice of exchange integrals. The formula for 
the correction to the frequency of this mode is obtained from 
(4.2) by replacing the index 1 with 4. The largest contribution 
to the correction is due to the interaction with the w,, mode: 

IB,t,cIZ+2IB,z,tI2 
o',',' ( k )  = a d 1 0  ( k )  - ' 

o.,O (k) + a d i  ( k )  

= a d h 0  ( k )  -10 J..a2qZ 
0.,0+0d40 (k) 

It is seen that the correction to the frequency amounts 
to 30% of the dispersion of the mode; allowance for this 
correction reduces the disagreement between the analytical 
expression for w$k and the numerical results to 10%. 

We note that thew,, (k) branch crosses the ferromagne- 
tic branch a,, (k) at ak-2. The matrix element ID &!, I for 
the interaction of these oscillations at such values of k is 
approximately equal to 3 K. The behavior of the functions 
w, , (k) and w,, (k) near the crossing is described by the usual 
formula (see, for example, $39 in Ref. 9). The splitting 
210 I of the spectra is small, and this effect may, as a rule, 
be neglected. 

4.4. The last of the nondegenerate modes, w,, , has an 
energy of the order of 1000 K and is never excited at tem- 
peratures T <  T, = 560 K. We shall therefore not write out 
the correction to the frequency of this mode. 

55. APPROXIMATE CALCULATION OF THE SPECTRA 

The procedure described in the previous section for ap- 
proximate calculations of the spectra is efficient if the off- 
diagonal matrix elements are small in comparison with the 
difference (or sum) of the corresponding frequencies. For the 
majority of matrix elements this condition does in fact hold. 
However, for frequencies which are close together or degen- 
erate this condition can be violated, and simple perturbation 
theory is inapplicable. Since the "large" matrix elements are 
not too great in number, one can use an approximate proce- 
dure for diagonalizing the matrices by a sequence of two- 
dimensional rotations. 

To do this we associate with each off-diagonal matrix 
element through formula (3.12) a coefficient upp. which char- 
acterizes the size of the elementary "rotation" that would 
cause this element to vanish. We then do the "rotation" cor- 
responding to the maximum Jv,,,. 1 and again analyze the re- 
sulting Hamiltonian matrix in the same way as before. Then 
we can again perform the next "largest" rotation. After sev- 
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era1 rotations the Hamiltonian matrix is almost diagonal and 
then one may use standard perturbation theory. Such a pro- 
gram of analytical calculations will be constructive if the 
number of large rotations is not too large, so that the expres- 
sions obtained for the frequencies are not too unwieldy. 

1. We have carried out this program for the symmetric 
wave-vector directions kll[lOO] and [ l  1 11. Here we shall only 
describe the sequence of two-dimensional rotations, as the 
reader may find detailed results for the evaluated spectra in 
our blueprint., 

For the direction kll[lll] the Hamiltonian matrix de- 
composes into two 4 X 4 and two 6 X 6 blocks. One of the 
small blocks couples the oscillations of the ferromagnetic, 
antiferromagnetic, and soft d (r,,) modes and also the a 
mode 7a71, which is triply degenerate at k = 0. This block 
becomes almost diagonal after a rotation that defines the 
ferro- and antiferromagnetic oscillations in terms of the vec- 
tors T,, and rd . The other small block couples the vectors 
ra3, rdl , Tdg1, and . With the aid ofa rotation that inter- 
mixes rdl and rdgI and a second rotation that intermixes 
rd8, with the new a d  oscillation r d l ,  this block is reduced 
to an almost diagonal form. 

The 6 X 6 blocks are complex conjugates, so it is suffi- 
cient to consider one of them, say, that which mixes the vec- 
tors r,,, ,ra9,, rd51 ,T,,~, rd8,, and rd,, . To diagonalize this 
block one must perform four exact rotations. The first of 
these intermixes the vectors of identical representations r,,, 
and r,,, and gives a pair of a-d modes. The next rotation 
mixes the vectors T,,, and Td9,. Finally, the last two rota- 
tions intermix the pairs of vectors Td5, and rd9, and r,,, and 

rd 82 . 
After these transformations, all of the frequencies ex- 

cept w,,, are given to within 10% over the entire Brillouin 
zone. To evaluate a,, to the same accuracy one must obtain 
corrections using perturbation theory. 

For the direction k11[100] it is more convenient to use a 
different choice of bases for the two-dimensional and three- 
dimensional representations. After transforming to the new 
basis the Hamiltonian matrix decomposes into four 3 x 3 
and two 4 X 4 blocks. 

In the first of the 3 X 3 blocks, which couples vectors 
r,, , rd , and T,,, , it is sufficient to do a rotation between the 
vectors T,, and T, of the same representation. As a result, 
the FM and AFM oscillations will be weakly coupled with 
rd 51. In the second block, which mixes the vectors T,, , T, ,, , 
and rdS1, it is necessary to rotate the vectors rd5, and r,,, . 
The third block couples the vectors , and Td6,. The 
first rotation is done in the (T,,~, rd9, ) plane, and the second 
rotation in the Td6,) plane. 

The last 3 x 3 block couples the vectors r,,, ,r,,, and 
rd6,. Here it is sufficient to rotate the vectors ra7, and Td6,. 

The first 4 x 4 block couples the vectors r,,, , r,, , r,,, , 

2. Of particular interest are the three a-d branches of 
thed type with activation energy 180 K, which lie next above 
the soft d mode w,, . These magnons contributz significantly 
to the thermodynamics of YIG and to the kinetics of the spin 
waves of the ferromagnetic branch with k-0. Unfortunate- 
ly, one is unable to calculate the spectrum of these three 
branches for an arbitrary direction of k with reasonable ac- 
curacy and simplicity. The analytical formulas which arise 
are even more unwieldy than in the case of the symmetric 
direction [I l l ] .  For quantitative treatment we therefore 
consider only two particular cases. The first-for any value 
of k but with k11[100] or [I 111-was considered above. The 
second-for any direction of k but with a k 5  1-we shall 
consider now. Here we may drop terms higher than second 
order in k from the expressions for the frequencies. Because 
of the degeneracy the eigenvectors and wj(k) will not, of 
course, be analytic functions of k. Detailed calculations of 
the frequencies wd9,(k) are given in our ~ r e p r i n t . ~  Here we 
give only the final expressions for the frequencies: 

ad,=od,(0)+q2 tX-2Zfr(n) l ,  
adDy=ad9(0)+q2{Y+Z[f4(n)-(f~(n)-f6 (n))'hl 1 7  

o d 9 z = a d @  ( 0 )  f q 2 { Y f  Z [ f &  (n) + ( f & 2 ( n )  - f 6  (n) ) '"1 ), 
o d g  ( 0 )  =5 1 l a d  1 [ (5-2K)z-8)'"-1-2K],  

X=f -2r,, Y=2b-rs, Z= (Ef  2r8-3r,)/3, 
f =20Jad2R-', E= [20]adz-Jdd(301ad-0ds ( 0 )  ) ] R-I, 

f 6  ( n )  =271z2ny2n,2. 

Comparison with the numerical calculation shows that 
expressions (5.1) have an accuracy not worse than 5% of the 
dispersion up to ak? 1.2. This is a small part of the Brillouin 
zone, but it is important in applications. 

96. THE TEMPERATURE DEPENDENCE OF THE 
MAGNETIZATION AND THE EXCHANGE INTEGRALS 

With the spectrum of the spin waves and the corre- 
sponding eigenvectors, one can determine all the thermody- 
namic properties of the magnetic subsystem of YIG for tem- 
peratures not too close to the Curie temperature, i.e., when 
the interaction between magnons is small. The temperature 
dependence of the magnetization is the property which has 
been the most thoroughly studied in e~periment ,~ so that a 
"first-principles" calculation (in the theory of magnetism) of 
this characteristic is of greater interest. 

The magnetization M is proportional to the average val- 
ues of the density of the z component S, of the spin: 

M=2pB(S,>, (6-1) 

and rdg3. In this block one should perform a rotation in the wherep, is the Bohr magneton, and 
plane (rd3 , rd9, ) of the vectors of the same representation 1 

20 8 

and a rotation of the vectors rdg3 and r,,, . The second 4 x 4  ( S z )  = -z { ( ~ ~ - ( a , , , + a ; , , ) )  -g (So-(al,,+aln)) 
N u  

block couples the vectors r,,, , r,,, , r,,, , and r,,, and is the n j-9 2-1 

complex conjugate of the first. 6-21 
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here w, -5ml J,, 1/4, in accordance with (4.1). 

FIG. 4. Temperature dependence of the magnetization for the values of 
the exchange integrals given in (8). The dashed curve shows the experi- 
mental results. 

Here v is the volume of the primitive cell, n is the number of 
the cell, and Nis the number of such cells in the crystal. After 
a Fourier transformation (1.2) we have 

One is readily convinced that the canonical transformations 
(1.12) leave invariant the form of 

Therefore 

where (S,), is the value of ( S , )  at T = 0 ,  and 

I Z , ~ - (  b , ~ + b , ~ ) =  [esp ( o , ( k ) / T )  - I ]  -I .  (6.6) 

At low temperatures, only the magnons of the lowest, 
"ferromagnetic" branch are excited. At very low tempera- 
tures T <  25 K the dispersion relation for these magnons is 
quadratic, and obviously, AS, a T ~ " :  

For temperatures in the region 25 K 5 T 5  20(I Jad 1 - 2 1 Jdd 1 )  
2 8 0  K only magnons of the lowest branch are excited, but 
most of them are concentrated in the linear region of the 
dispersion relation, w,  = w,(ak ), and so AS, a T 3 ,  in ana- 
logy with the temperature dependence of the number of 
phonons: 

To determine the temperature dependence of AS, at 
higher temperatures we used a computer. Starting from the 
approximate analytical expressions for the frequencies as 
obtained in the previous sections, the computer performed 
calculations for any specified set of exchange integrals 
Jad, Jdd, and Jaa . Despite the fact that the values of the ex- 
change integrals are poorly known, their combination we, in 
(1) is determined to fair accuracy." It was therefore appro- 
priate to vary only two parameters (Jad and Ja, , for example) 
at fixed we,.  Changing the parameters in steps 
A Jad = A Ja, = 0.1 K, the computer compared the values of 
the calculated magnetization with the experimental values 
at T = 300 K and T = 150 K and, when the difference was 
less than I%, put out the values of the exchange integrals. 
The calculated function M ( T )  is extremely sensitive to the 
values of the exchange integrals and at the limits of the inter- 
val of admissible values (1.8) had little in common with the 
experimental curve. It should be pointed out that the magne- 
tization calculated with the values (8) found for the exchange 
integrals (see Fig. 4)  agrees with the experimentally mea- 
sured value to within 2% at T = 400 K ,  but gives a Curie 
temperature Tc = 840 K that differs from the actual value 
by 50%. This evidently means that the spin-wave approxi- 
mation is valid for YIG in the temperature region 
O c T 5 +  Tc .  
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