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The temperature dependence of the magnetization of ferromagnetic metallic glasses is analyzed in 
the model of band magnetism. It is shown that this approach can eliminate two observed anoma- 
lies: a) the disagreement between the spin-wave dispersion parameter A = w / k  * and the coeffi- 
cient D in the Bloch three-halves law; b) the softening of the spin wave (a significant decrease in the 
parameter A in comparison with the crystalline case). The disagreement between the parameters 
A and D is interpreted as resulting from neglect of the contribution of the Fermi excitations 
typical of band magnetism in the analysis of the experiment. The softening of the spin wave here is 
seen as a consequence of the fusion of the subbands of the 3d band in the electron energy distribu- 
tion of metallic glasses. The model could be checked by direct observation of the shape of the 3d 
band in metallic glasses. 

PACS numbers: 75.10.Lp, 75.30.Ds, 75.6Q.Ej 

1. METALLIC GLASSES AS BAND FERROMAGNETS 

The study of ferromagnetic glasses is currently of great 
interest both in connection with important technical appli- 
cations and also in regard to fundamental physical questions 
about the glassy state of matter. Despite the large number of 
studies devoted to noncrystalline ferromagnets (see the re- 
view in Ref. I ) ,  there is still much to be explained in the 
behavior of such materials. The unexplained anomalies of 
ferromagnetic glasses include the temperature dependence 
of their spontaneous magnetization. Let us recall first of all 
how the spontaneous magnetization of ferromagnets with 
localized magnetic electrons (dielectrics, 4f metals) depends 
on the temperature. In materials of this kind the principal 
mechanism for the decrease of the magnetization with in- 
creasing temperature is the excitation of thermal magnons. 
For T<T, (T, is the Curie temperature) the contribution of 
the thermal magnons to the magnetization M ( T )  contains 
terms proportional to T3I2, T5I2 ,..., and therefore 

The first term on the right-hand side of this relation gives the 
familiar Bloch three-halves law. Here the parameter D is 
related to the coefficient A in the spin-wave dispersion rela- 
tion by 

(y is the spectroscopic splitting factor, and ,uB is the Bohr 
magneton). 

In ferromagnets with collectivized magnetic electrons 
(band ferromagnets) there is another mechanism in addition 
to the excitation of thermal magnons that leads to the de- 
crease of the spontaneous magnetization with increasing 
temperature-the thermal excitation of the collectivized 
electrons. The contribution of these (so-called "Stoner") 
Fermi excitations leads to a decrease in M ( T )  according to 
the law2 

M (T) = M ( O )  (1-GTZ)'", 

where G is a constant characterizing the particular ferro- 
magnet. Thus the first terms in the expansion of M ( T )  in 
powers of Tin these materials are of the form 

M(T) =M(O) {I-DT*k-'/zGT2). (3) 

It is known3 that in crystalline 3d metals the Bloch term 
DT 'I' plays a role only at very low temperatures; over a wide 
range of temperatures (all the way up to T=0.5Tc ) the mag- 
netization behaves according to the law typicai of band fer- 
romagnets: 

M ( T )  =M (0) (1-GTZ) '". 

In other words, for crystalline 3d metals the tempera- 
ture dependence of the magnetization is described by for- 
mula (3) rather than formula (1). Up till now the analysis of 
the experimental data on the magnetization of glasses has 
been done only on the basis of the law (I), which is typical of 
nonband ferromagnets. In these studies the majority of auth- 
ors have noted the following contradiction: The experimen- 
tal of the coefficient D do not agree with the values 
of the parameter A found by neutron diffraction studies., As 
a rule, the values of D calculated by formula (2) are about 
30% smaller than the observed values. This is true at least 
for iron-rich amorphous alloys (Fe,oB,O, Fe,,P ,,BI C,, 
Fe,, , B,, ,Silo, ); the only exception we know of is the nick- 
el-rich alloy Fe,oNi,oPl,B,), in which, according to Kaul,, 
the experimental values of the parameters D and A are mutu- 
ally consistent. 

In view of what we have said about crystalline 3d met- 
als, it is natural to attempt an interpretation of the experi- 
mental data on amorphous 3d alloys using formula (3). By 
assuming here that the coefficient D is related to the param- 
eter A by equation (2), we automatically remove the contra- 
diction between the neutron diffraction experiments and the 
magnetization measurements. The coefficient Gin (3) is cho- 
sen according to the requirement that curve (3) be closest (in 
the least-squares sense) to the empirical curve 
M ( T )  = M (1 - BT3'7, where M r M  (0). If a magnetiza- 
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TABLE I .  The magnetic properties of typical glasses. 

tion is observed in the experiment in the temperature inter- 
val (O,T,), then we have for G 

G=2.4(B-D) T,-". (4) 

Unfortunately, we do not have available a complete set 
of the necessary experimental data (A,B,M) for a single 
amorphous ferromagnet. In the case where both B and A are 
known from experiment (see Refs. 1,6), it turns out that 
D-0.7B; we therefore reconstruct the value of A from the 
known value of B under the assumption that D = 0.78. The 
empirical values of the parameters for two typical ferromag- 
netic glasses are given in Table I. As a reference material we 
have chosen bcc crystalline iron; the parameters of this ma- 
terial are indicated by the subscript zero. The data for iron 
are: Tc = 1042 K, M, = 1719 G, B, = D,, = 3.4.10-" 
~ - 3 / / 2  , A, = 280 mev.A2, G, = 0.44T; '. 

Let us give the relations we shall need from the theory of 
band magnetism. For the magnetization M and coefficient G 
we have2 

p=pBgA, G=EtA-', ( 5 )  

and the dispersion parameter A isX 

A==E2A-1~2, (6) 

where A is the energy of the exchange splitting of the spec- 
trum of the magnetic electrons at T = 0, g is the density of 
levels at the Fermi surface, v is the Fermi velocity, and c$, and 
f ,  are numerical factors of order unity, which are specified 
by the dispersion relation of the magnetic electrons. Rela- 
tions (5) and (6) enable one to use the data on A, G, and M to 
reconstruct the characteristics of the magnetic electrons: 

A/Ao=(Go/G)", g / g o = ~ ~ ' l a / ~ o ~ : ,  v t /vo2=~~: /A0G~.  

(7) 
The numerical values of these quantities are given in Table 
11. The Curie temperature, we might note, differs from A 
only by a coefficient of unit order, i.e., Tc = 6,A.  

2. SPECTRA OF MAGNETIC ELECTRONS IN METALLIC 
GLASSES 

According to Table 11, the density of states for magnetic 
electrons in noncrystalline metals is approximately the same 
as in crystalline metals, and the quantities A, M, and Tc are 
approximately proportional to one another. What seems un- 
expected at first glance is the significant (approximately two- 
fold) decrease in the Fermi velocity. 

TABLE XI. Parameters of the mag- 
netic electrons in typical glasses. 

Turning now to an analysis of these facts, we note that a 
noncrystalline metal differs from a crystalline one in two 
closely related aspects. First, because of the significant (in 
comparison with the crystalline case) fluctuations in the 
shape and dimensions of the Wigner-Seitz cell, significant 
fluctuations arise in the interatomic distance. Second, for the 
same reason, glasses have a higher microscopic symmetry 
than crystals. Let us first estimate the role of the fluctuations 
in the interatomic distance. The energy bands that arise in 
the electron distribution of condensed matter result from the 
overlap of the electron shells of the individual atoms; there- 
fore, in order of magnitude 

ri=ei exp {-lo[ai), 

where E~ is the energy level of an isolated atom, ai is the 
radius of the corresponding electron shell, Ti is the width of 
the band, and I,, is the interatomic distance. In a noncrystal- 
line metal the interatomic distance 1 = 1, + 61 will be a sto- 
chastic variable. Since there is a finite (let us assume small) 
probability of very large values of I61 I, the electronic density 
of states g ( ~ )  does not go to zero even far from the center of 
the band. Therefore, the electron energy distribution of 
amorphous solids does not break up into distinct allowed 
and forbidden bands (see Ref. 9): g ( ~ )  is a continuous (though 
not monotonic) function of E, having sharp peaks which can 
somewhat conditionally be called energy bands. 

The smearing of the i-th band due to fluctuations is pro- 
portional to 

ei exp {ai-' ( (612))  '"1 
(the angle brackets denote an average). The minimum (61 ') 
is realized in well-annealed samples and is governed by ther- 
modynamic fluctuations that are frozen-in at the melting 
temperature T,, . In this case 

where n,, is the density and Y is the Young's modulus. Usual- 
ly T,, - 1000 K, and therefore ((61 ' ) ) ' ' L O .  1-0.151,,. Since 
the radii of the 3d shells is a,  -0.51,,, the smearing of the 3d 
bands should amount to -0.2-0.3r,, . This value, though 
small in comparison with r , ,  is not small in comparison 
with the widths and separations of the individual 3d sub- 
bands. Fluctuations of the interatomic distances therefore 
promote the total or partial fusion of the subbands. 

Let us now analyze the change of the microscopic sym- 
metry upon amorphization. The collectivized electrons feel 
the shape and orientation of the Wigner-Seitz cell not of one, 
but of a number of atoms of the material. As a result of the 
averaging over the orientation of these cells, the actual mo- 
lecular field on the electrons is more symmetric than the 
crystal field in the corresponding crystal. 

It is known that in crystals of cubic symmetry the crys- 
tal field lifts the 5-fold degeneracy of the d band, splitting it 
into a doubly degenerate subband e, and a triply degenerate 
subband t ,, (we are speaking of the degeneracies in addition 
to the spin degeneracy). In an amorphous material the split- 
ting of the d band should be significantly diminished, and 
can perhaps become smaller than the width of each of the 
subbands. This tendency is enhanced by the broadening of 
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the individual subbands due to fluctuations of the interato- 
mic distance, which we mentioned earlier. As a result, the 
subbands of the 3d band may overlap, and we return to the 5- 
fold degenerate energy band associated with the case of 
spherical symmetry (see Ref. 10 in this regard). If g, is the 
density of states at the Fermi surface before fusion of the 
subbands, the density of states of the d electrons after the 
fusion turns out to be g = vg,, where Y = 5/2 or v = 3/2 
depending on which of the subbands the Fermi level fell in 
prior to their fusion (in view of the semiqualitative nature of 
the discussion we shall not distinguish these cases, but take 
v = 2). We now make use of the empirical fact that g/go- 1; 
this fact stems from the rough proportionality that is ob- 
served among the values of M, G, and T, . Let us suppose for 
simplicity that the effective mass m = (d~/ap)-$ does not 
depend on E; then g is proportional to u. Thus, from the 
relation 2g,-go we immediately find that v2/v;-0.25, 
which is close to the empirical value (see Table 11). The de- 
crease in the Fermi velocity of the 3d electrons may thus be a 
consequence of the fusion of the 3d subbands in the electron 
energy distribution of metallic glasses. 

It should be noted that the decrease in the Fermi veloc- 
ity of the 3d electrons upon amorphization leads, according 
to (6),  to a decrease in the coefficient A in the spin-wave 
dispersion relation-to a softening of the spin wave. This 
softening of the spin wave is well known in experiment (see 
Ref. 1) but, in our view, has never before been convincingly 
explained. 

CONCLUSIONS 

1. By interpreting the experimental temperature depen- 
dence of the magnetization of ferromagnetic glasses in ac- 

cordance with the theory of band magnetism [formula (3)], 
one can eliminate the contradiction between the experimen- 
tal values ofthe magnon dispersion parameterA = w / k  and 
the coefficient D in the Bloch three-halves law. 

2. The experimentally observed softening of the spin 
wave (the significant decrease in the parameter A in compari- 
son with the crystalline case) is now seen to be a consequence 
of the fusion of the subbands of the 3d band in the electron 
spectrum of glasses. 

3. The model could be checked by direct observation of 
the shape of the 3d band in metallic glasses. 
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