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It  is shown that the experimental results on negative magnetoresistance of germanium doped with 
antimony at densities (2.7-52)X 10'' cm-3 can be described by a new theory of this phenomenon, 
involving the influence of the magnetic field on the quantum corrections to the conductivity. 
Three types of corrections are considered, connected with the following: localization of the nonin- 
teracting electrons, b) Coulomb repulsion of the electrons; c) allowance for spin splitting. The 
relaxation time of the phase of the electron wave function and the dependence of this time on the 
electron density and temperature are estimated. It is found that this time is determined by the 
damping time of the single-electron excitations at short mean free paths and by the frequency of 
the electron-phonon collisions. The diffusion anisotropy coefficient determined from the angular 
dependences of the magnetic conductivity in a weak magnetic field exceeds by two or three times 
the value for single-valley germanium at the same antimony density, and is close in value to the 
effective-mass anisotropy coefficient. 

PACS numbers: 72.20.My, 72.20.Dp, 72.80.C~ 

In connection with a new theory1" that takes into ac- 
count the quantum corrections to the kinetic coefficients, it 
became possible to explain exhaustively a number of experi- 
mental facts concerning, in particular, the dependence of the 
galvanomagnetic coefficients on the temperature, magnetic 
field, and electron density in strongly doped semiconductors 
at low temperatures. One of the most noticeable phenomena 
for which no satisfactory explanation was found for a long 
time is the anomalous negative magnetoresistance in semi- 
conductors. In Refs. 2-4 is proposed a new theoretical expla- 
nation of the negative magnetoresistance, involving 
allowance for the influence of the magnetic field on the quan- 
tum corrections to the conduction. 

In Ref. 6 are cited experimental data (see Figs. 1 and 3 of 
Ref. 6) on negative magnetoresistance of germanium doped 
with antimony, with electron density n = (3.7-52) X 10" 
~ m - ~ ,  as well as preliminary results of their analysis on the 
basis of the theory of quantum corrections (ibid., Figs. 2a 
and 2b). In the present paper we discuss in greater detail the 
analysis procedure used in Ref. 6, and present results of an 
investigation of the anisotropy of the negative magnetoresis- 
tance and new conclusions concerning the contribution 
made to the magnetoconductance by the interaction. The 
figures of Ref. 6 will hereafter be accompanied by the letter A 
(Fig. Al ,  etc.). The basic characteristics of the samples are 
listed in the table. The planes of the samples were perpendi- 
cular to the ( 11 1) crystallographic direction, and the cur- 
rent direction is indicated in the table. The experimental 
change A# (H) of the conductivity in a magnetic field was 
calculated from measurements of the magnetoresistance and 
of the Hall emf in the following manner: 

HIIJ, A O , , ~ ( H )  =l /pnH-l /po,  
pnH=E, ( H )  /I,, pxVH=Ey(H) /Ix, p 0 = p 2  (H=O),  

(1) 

where J x ,  E, ,  and Ex are the components of the vectors of 
the current density J and of the measured electric field E 
along the laboratory frame. Relations of the type (1) between 
the conductivity tensor a, and the resistivity tensor p, are 
valid in the general case only for a spherical equal-energy 
surface in cubic crystals. In the particular cases HlJ and 
HI1 J for the orientations of J indicated in the table, however, 
the relations (1) are also valid. 

The experimental data were analyzed under the as- 
sumption that 

where the first term is the classical magnetoconductivity, 
and the second is the sum of the different quantum correc- 
tions (the symbol q designates the type of correction). The 
theoretical functions AaC(H ) and A@(H) were calculated 
using the experimental values ofp, and of the Hall mobility 

( p l y H / H p 2 )  x-0. 

The condition for the applicability of the theory is 

TABLE I. Basic characteristics of the investigated samples at T = 4.2 K. 

Note: R, is the Hall coefficient 

smple 

1 
2 
3 
4 
5 
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112 
1I0 
112 
130 
112 - 

5S.5 
74.1 
67.9 
200 
954 

57 
4.3 
5.5 
11 
52 I 

32.4 
38.4 
45.6 
72.9 
203 

5.5 
6.6 
7.3 
13 
37 

--- 
2 
- 
1.8 
1 

1.5 - 
1.6 
2.3 

U.5 , 3.3 



where I is the mean free path and k . is the wave vector of an 
electron with a Fermi energy E ,. The parameter k ,I can be 
expressed in terms of the diffusion coefficient D or the con- 
ductivity u as follows: 

kpl=3Dm*/fr-a/zo/Gok~, 

where Go = e2/2dfi = 1.23-10-5 0 -' . Here and elsewhere 
the condition E ,>kT is assumed satisfied. It can be seen 
from the table that the criterion (2) is satisfied for all the 
samples. 

We took into account the following types of quantum 
correction: the conductivity change Ad- > 0 due to the weak 
localization of the  electron^^.^; the contribution A d  con- 
nected with the electron interaction3; the magnetoconducti- 
vity A 3  < 0 due to the spin interaction of the  electron^.^ 

Using a common symbol q in place of the indices L, I 
andS that identify the type of correction, we can write down 
the theoretical dependences of the corresponding magneto- 
conductivities in the general f ~ r m ~ . ~ . ~ :  

where I ,  = (tic/eH)'lZ is the magnetic length, a,, b, and F, 
are respectively coefficients and a function that depend on 
the type of quantum correction: 

aL=I-p ( A ) ,  F L ( x L )  SF ( 1 / 6 )  = f s ( x ) ,  

bLH=xL=4lL2/lH2. (4) 
ar=-A, F r ( ~ r )  =(p3(xr) /2n ,  

brH=~r=41,~/ZH~, (44  
a s = - R ( z ) ,  F s ( x s )  = g 3 ( x s ) / 2 ( n x r ) ' " ,  

bsH=~s=gpBH/kT.  (4b) 

The coefficients a, and a, are connected via the electron 
interaction constant A. For Coulomb repulsion of the elec- 
trons /i > 0 and A d  < 0. The functions F (1/6), p3(x), 0 (A ) 
are cited respectively in Refs. 2, 3, and 4; 
l / S x , ,  g,(x) = G (x) - G (0); the function G ( x )  was intro- 
duced in Ref. 5; 

where z = 4k :r$ = ?ra,k,, r, is the screening radius, a, is 
the electron Bohr radius, and 1, and 1, are the diffusion 
lengths: 

rP is the relaxation time of the electron wave-function 
phase3; p, is the Bohr magneton, and g is the spin splitting 
factor for the electrons. The coefficient 2 7 ~  in (4a) accounts 
for the errata in Ref. 3. I '  

It is shown in Refs. 2 and 3 that Ad-  (H) and Ad(H) 
have an asymptotic value --H ' I2 in the strong fields. For a 
comparison of theory with experiment it turned out to be 
quite useful to know also the second term of the expansion in 
H + a,, as is evidenced, e.g., by analysis of the measured 
negative magnetoresistance in the inversion channel of a sili- 
con field-effect transistor.' 

The asymptotic relations (7) are valid at valuesx 2 100 (accu- 
rate to 6%), whereas the first term of the expansions (7), 
corresponding to Au-H ' I 2 ,  is valid only at x 2 3 X lo3 (with 
the same accuracy). Thus, for all three types ofcorrection we 
have as H 

where I, and I, are determined by (6), 1, = I,, the coefficients 
are 

and mo is the mass of the free electrons. 
Consequently, at x > 100 the functions A&(H ' I 2 )  are 

described by lines whose slopes in the case of the corrections 
A+ and A d  are determined by the coefficients a, and a,, 
i.e., by the interaction constant A (4), (4a). The intercepts of 
the lines with the ordinate axis are the conductivities, which 
differ only by a numerical coefficient from the correspond- 
ing temperature correction 

Aoq ( T )  = o  ( T )  -0 ( 0 ) .  

-aLGo/lL= [ I - p  ( A ) ]  Go/lL=AaL ( T ) ,  
-arGo/21r=4/J.Go0 (kT/2Dh)  '"=2Aor ( T )  3), 

(-asGoilr) (B/41/n) =V2R (z) GOB ( k T / 2 D f i ) ' h = - 3 / , A ~ S  ( T )  . 

In multivalley semiconductors (if intervalley hopping 
of electrons can be neglected) it is necessary to sum the mag- 
netoconductivity for the different valleys, with allowance for 
the orientation of the axes of the ellipsoid axes of the equal- 
energy surface ~ ( k ) . ' . ~  Let the unit vectors v, r, p, and h de- 
note the following directions in the crystal: v-along the sin- 
gled-out axis of the ellipsoid ~ ( k ) ,  r-the direction of the 
current J; p-the direction of the measured electric field E; 
h-the direction of the magnetic field H, and let r,, h,, r,, 
h,, etc. be the cosines of the angles between the correspond- 
ing vectors. We can then write for one of the valleys labeled 
by the index (v):  

where D ',;I' are the components of the diffusion current, D 
is the effective value of the diffusion coefficient in the mag- 
netic field H (Ref. 3) and depends on the direction of H and 
on the ratio K = D,/D, =p,/p, in the same manner as the 
cyclotron frequency &I, with K replaced by K, = m:/mF: 

The indices 1 and t denote the principal components of the 
tensors along (r,, h, = 1) and across (r,, h, = - 0) the sin- 
gled-out axis v of the ellipsoid; x = g,/g,; p , ,  p, are the drift 
mobilities; m: and my are the effective masses. Using these 
symbols and summing the magnetoconductivities of N val- 
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leys, we obtain for the classical magnetoconductivity 

where 

For the quantum corrections we obtain on the basis of Refs. 
2, 3, and 4 and expressions (4)-(4b) 

for the corrections A& and Aui and 

for the correction A g .  The quantities a,, x,, and F, in (10)- 
(lob) are the same as in (4)-(6), but with D = D, and g = g,. 

In antimony-doped germanium, the relaxation time of 
the interalley scattering r, is large (T, z4.10-" sec, Ref. 9) 
and, as shown by estimates of the ratio D?)T,/I &, expres- 
sions (10)-(lob) can be used for the entire magnetic-field 
range used in the experiments. In a weak magnetic field 

where the numerical coefficient c: is determined by the 
asymptotic form of the functions F,(x,) as x, -+ 0.2,3,5 The 
last factor in (1 1) determines the anisotropy of the magneto- 
conductivity in a weak magnetic field. Since in the case of 
repulsion between electrons (A > 0) we have A d  < 0, just as 
A6r, and both types of correction have similar dependences 
on the magnetic field, it is precisely the investigation of the 
anisotropy which could identify the type of correction that 
appears in each particular case. For example, for one of the 
valleys in a multivalley semiconductor we have as H -+ 0 

in the case when the magnetoconductivity is determined by 
the Coulomb interaction, and 

for the spin interaction. 
For the current orientations indicated in the table, the 

coefficients o$" and ag in (9) take on the values 

( i )-  
I ,  ='/0(1+8/K), 

~ l l ( i 1 1 ) ~ J  4 (124 
= 1, C a:" =i /3  ( 5 + 4 / K ) .  

(v)-Z 

Figure A 1 shows plots of A#(H ) - A uC(H ) for sever- 
al samples with different antimony densities (HII(111), 
T = 4.2 K ). At H 5 30 kG we have Ap/p, < 0, and conse- 
quently the correction due to the weak localization of the 
electrons (A+ > 0) makes the main contribution to the 
change of the conductivity, i.e., in a weak magnetic field we 
have 

Aos-AoC=AoL. (13) 

The functions A& (H ) in (lo), (10a) and (14a), calculated for 
different samples, are shown in the same figure. The values 
of T~ obtained from the condition (1 3) are shown in Fig. A2a. 

It can be seen from (10) that the values of the magneto- 
conductivity for different samples, normalized to the value 
Go/, ' (0 -' . cm-I) = 1.52(H [kG])Ii2 and plotted as func- 
tions of A# - Auc should form, if (13) is satisfied and the 
values of T~ are correctly determined, a family of parallel 
curves shifted along the ordinate axis by the value of the 
coefficient a, = 1 - f l  (A ). Figure 1 shows plots of 
AuE(H) - AuC(H), reduced by this method. The solid line 
in the same figure represents the function FtX(x,), [Eq. 
(10a)l multiplied by 0.5, at values a:) and a';;' corresponding 
to (12a). As seen from the figure, the function (10a) with a 
coefficient a, = 0.5 describes well the experimental results 
for all the samples with exception of the region of strong 

FIG. 1. Plots of (Afl -  AuC)IH/G,, vsx, at T = 4.2 K, HII(111) for the 
following samples: A-1, - 3,O - 4, V - 5, Solid and dashed lines- 
calculation of the function (0.5 +. 0.05)Fxx , (x, ) ( 10a). The values of x, at 
H = 1 kG are shown by the arrows with the symbols. The arrows at the 
curves correspond to the magnetoconductivity when condition (14) is sat- 
isfied. 
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magnetic fields. We are unable to estimate the electron inter- 
action constant A on the basis of the value 
/3(A ) = 1 - a, = 0.5, since there is no calculation of the 
function /3 (A ) for positive values of A and /3 > 0.01 7 (Ref. 4). 

As seen from Fig. 1, the experimentally observable 
magnetoconductivity in strong magnetic fields deviates 
from the theoretical A&(H) dependence. We have pro- 
posed6 that this discrepancy may be due to the need to take 
into account the contribution A d ( H )  < 0 (Ref. 3) connected 
with the Coulomb repulsion of the electrons. Indeed, the 
difference between the experimental and calculated curves 
in Fig. 1 is well described by the ratio Ad(H)/GoI, '(4a), 
(lo), (lOa), (12a) with the interaction-constant values listed in 
the table (these values of2 are 27~ times larger than assumed 
in Ref. 7 in view of the errata in Ref. 3). The decrease of /2 
from 2 to 0.5 with increasing density is in qualitative agree- 
ment with the relation3: 

where 2 is the nonrenormalized interaction constant and 
In y = 0.577. However, the quantitative estimates of the 
constant 1 - ' = R - ' - C at the values 0.5 <A < 2 and at 
the values of C indicated in the table lead to negative values 
of 2, and this contradicts the initial electron-repulsion as- 
sumption. We assume as a result that the contribution 
A d ( H )  must be taken into account in a strong magnetic 
field, but it is insufficient to explain all the discrepancies 
between the calculated and experimental relations in Fig. 1. 

The decrease of the magnetoconductivity in strong 
magnetic fields may be connected also with the correction 
A d  (Ref. 5). Indeed, when the arguments of the functions 
FL(xL) [Eqs. (4), (6)] and Fs(x,) [Eq. (4b)l are compared, it 
can be seen that the contribution of Adr increases in com- 
parison with A d  with decreasing conductivity o,(H = 0), in 
qualitative agreement with the results shown in Fig. 1. To 
estimate A d  we used the values g, = 0.9, g, = 1.9, 
a, = 42 A, z = ra,k,/N and the approximation 
g3(x,)=0.053xS2 (Ref. 5), which undoubtedly overestimates 
g3(x,) at x, > 0.5. The calculations made for sample 1 on the 
basis of relations (4b), (5), and (1 1) have shown that Addoes 
not exceed 10% of the contribution A d i n  the entire magnet- 
ic-field range (ifR--, 1). Consequently, in our case the correc- 
tion Adr can be disregarded, since the relative contribution 
of A d  for the remaining samples is even smaller. 

The discrepancy between theory and experiment in 
strong magnetic fields is possibly due to the fact that in sam- 
ples 1-4 at H ~ 2 0 - 3 0  kG the condition 

is satisfied for one of the valleys (v(111) IIH), and the theory 
developed in Refs. 2, 3, and 5 is not applicable. 

In Figs. A2a, b the experimental values of T, are com- 
pared with the theoretical phase-relaxation time values cal- 
culated in Refs. 10 and 3: 

1) with the damping time T$' of the quasistatic excita- 
tions'' in the presence of a large number of defects that limit 
the mean free path: 

where E Z  k T  is the electron energy reckoned from F and is 
the momentum relaxation time; 

2) with the relaxation time r: of the phase of the wave 
function under conditions of quasi-elastic electron-phonon 
intera~tion.~ In our case (SE,.T~,/~~V, > 1 (S is the speed of 
sound, v, is the Fermi velocity, T; ' is the frequency of the 
electron-phonon collisions), therefore T; -T,, (Ref. 3). The 
values of rph were estimated in the following manner: 

where (T:,)-' is the frequency of the electron-phonon colli- 
sions in a nondegenerate semiconductor. (The measured T:, 
in germanium at a carrier density n < 10'' cmP3 are given in 
Ref. 11 for the temperature range of interest to us.) 

Figure A2,a shows the values of fi.rE1(l5) and fi/rPh (16) 
calculated for the investigated samples. It can be seen that 
the experimental values of T, at low electron densities are 
close to the values of di', and at a density n -- 5 X 10" cm-3 
they are close to the value of T,, . The dashed line in Fig. A2a 
is the sum N.r;' + fi/rph, which describes well the experi- 
mental fi/r,(&,) dependence. The theoretical plot of A/T, 
X (T) [Eq. (151 shown in Fig. A2b and calculated for sample 
3 is also in good agreement with the experimental ~ T , ( T )  
obtained for this sample on the basis of the Ap/po(H ') depen- 
dence as H -+ 0 (Fig. A3). 

It must be noted that in all the calculations we used an 
anisotropy coefficient K = K, = mF/m:(K, = 19.3 for n- 
Ge), whereas it is known that the ratio K = D,/D, =p,/p, is 
much less than K,,, in strongly doped semiconductors, owing 
to the anisotropy of the relaxation time T,/T, (Ref. 12). This 
value K = 19.3 was assumed by us on the basis of an analysis 
of the experimental results of an investigation of the anisot- 
ropy of the negative magnetoresistance. In a weak magnetic 
field, the ratio of the transverse Aof(H1J) and longitudinal 
Aafi(HI1 J) magnetoresistances depends only on the anisotro- 
py coefficient K. In our case we have in accord with (1 1) and 
( 12a, b) 

H, kG 

FIG. 2. Plotsof: 1 - W,(K ) (17), calculation; 2  - W ( H  ) ( l a ) ,  experiment, 
sample 2, T = 4.2 K ,  dark circles-from the angular dependences, H in 
the ( 1  12) plane, light circles-from the field dependences 
(A#-AaC),, ,, ( H ) .  The dashed line joins the values of 
W ( H + O ) =  W , ( K ) .  
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W ,  ( K )  = ( A O , ~ / A O , , ~ )  R-+O='/3 (8KZ+11K+8) / ( K Z + 7 K + 1 ) .  

(17) 
The Wo(k ) dependence is shown in Fig. 2, which shows also 
the experimental dependence 

on the magnetic field for sample 2, obtained from measure- 
ments of the angular dependences of the magnetoresistance 
and of the Hall constant. I t  can be seen from the figure that 
as H -t 0 the value of W(H ) tends to the value Wo(K ) =: 2.1 
corresponding to K z  20. Kawabata2 also used K = 20 for a 
comparison of the theory with experiment, and obtained 
good agreement. The question why the negative magneto 
resistance has a stronger anisotropy than proposed by the 
theory3 remains unclear. 

On the other hand, the ratios of the longitudinal Apll'' 
and transverse ApY' negative magnetoresistance at 
H z  1 kG, which follow from the experimental data of Refs. 
13 and 14 for "single-valley" germanium (elastically de- 
formed along the (111) axis) with antimony density 
n - - 4 ~ 1 0 "  cmP3 are close to  Kz5.5  (Ref. 13) and K z 7 . 6  
(Ref. 14), and are thus closer to the universally assumed val- 
ues of the anisotropy coefficient at this electron density.12 If 
account is taken of the possible influence of the correction 
A g o n  the anisotropy of the negative magnetoresistance in a 
weak magnetic field, then the values of K in single-valley 
germanium should be even lower. Indeed, taking into ac- 
count the quantum corrections of all three types, we obtain 

where for the case A > 0 (electron repulsion) 

. . 

Aalls v P O .  
Aollr a+o 

If v = 0, then A = 1 and WA of Eq. (19) yields the values of 
K cited above. Since v =0.5/A for the samples of Refs. 13 and 
14, and Kx2%1 for n-Ge, we have 

and the values of K determined from (19) can be even 
smaller. Thus, when the spin interaction of the electrons is 
taken into account, the discrepancy between the values of K 
in single-valley and four-valley germanium at the same elec- 
tron density becomes even larger. 
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