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A new method is proposed for the direct computation, in three-dimensional space, of the dynami- 
cal exponent that characterizes the anomalous relaxation time of a thermodynamic system near a 
second-order phase transition point. The renormalized Green functions and the Ward identity 
are used to derive a relation between the vertex function and the dynamical exponent for a system 
with nonconserved order parameter and energy. The correctness of the dynamic scaling hypothe- 
sis in the three-dimensional case is confirmed by direct calculation. The obtained numerical result 
is also compared with the experimental data on critical ultrasound absorption. 
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I. INTRODUCTION 

A large number of papers have recently been published 
on the critical dynamics of slightly nonequilibrium systems 
undergoing a second-order phase transition. The main atten- 
tion in these papers is given to the computation of the dyna- 
mica1 exponent that describes the character of the singulari- 
ties of all the kinetic coefficients. In Ref. 1 the dynamical 
exponent is obtained with the aid of Wilson's &-expansion 
procedure. The same problem has been solved2 with the aid 
of the parquet-diagram summation method, used in con- 
junction with the &-expansion procedure. A field-theoretic 
approach based on the Callan-Symanzik equation is pro- 
posed in Ref. 3. The dynamical problem can be reduced with 
the aid of the Fokker-Planck equation and path integration 
to a static problem in which the recursion method is directly 
appli~able.~ The discrete renormalization group, which has 
had great success in the static theory, finds further applica- 
tion in the dynamical theory.' Furthermore, many authors 
now apply numerical methods to the problem in question. 

Although the approaches mentioned here are different, 
all of them are direct generalizations of the corresponding 
static approaches, and the &-expansion is used in all the con- 
tinuous-renormalization-group procedures. It  would there- 
fore be desirable to construct a dynamical theory directly in 
three-dimensional space, i.e., without the use of the &-expan- 
sion method. 

As is well known, even in the case of critical statics, the 
solution of the phase-transition problem directly in three- 
dimensional space requires special  procedure^."^ This ne- 
cessity is due to the loss of the invariance property that is 
inherent in the four-dimensional problem, and makes the 
analysis significantly easier. For example, in contrast to the 
four-dimensional case, here the invariant charge explicitly 
depends on the distance to the phase-transition line (see be- 
low). 

tion and the dynamical exponent for a system with noncon- 
served order parameter and energy (other models require 
special treatment). The correctness of the dynamic scaling 
hypothesis is confirmed by direct calculation. We also carry 
out a comparison of the numerical result with the experi- 
mental data on critical ultrasonic absorption. Our approach 
is, in a sense, a generalization of the static approach pro- 
posed in Ref. 8 by Ginzburg. 

Let us note that the method proposed by us here allows 
us to study the effect of the terms that are insignificant in (4- 
&)-dimensional space (i.e., of the interaction of order higher 
than the fourth in the Ginzburg-Landau Hamiltonian) on 
the dynamics of a system in the critical state. 

2. THE RENORMALIZED GREEN FUNCTIONS 

We shall consider a system with nonconserved real or- 
der parameter and nonconserved energy. The dynamics of 
such a system is described by the following kinetic equation': 

where r,, is the kinetic coefficient and the 77,(r, t ) are extran- 
eous random forces normalized by the condition 

(qa(r, t)qs(r', t') )=21'06as6 (r-r') 6 ( t - t ' ) .  (2) 

The Ginzburg-Landau Hamiltonian figuring in (1) has the 
well-known form 

It follows from the foregoing that the analysis of the where n is the number of order-parameter components. 
dynamical problem directly in three-dimensional space is of It is not difficult to see that Eqs. (1)-(3) are not suitable 
interest in its own right not only in the computational, but for our purpose, since we want to compute the dynamical 
also in the methodological, respect. exponent on the basis of the renormalized Green functions 

In the present paper, using the renormalized Green and the Ward identity. Because of this, we shall use the re- 
functions and the Ward identity, we derive directly in the sults of Ref. 9, where it is shown that, in the classical limit, 
three-dimensional case a relation between the vertex func- the description of the critical dynamics by Eqs. (1)-(3) is 
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equivalent to the description with the aid of the following 
standard Lagrangian: 

o n  sign om + x:+p2) v'(P, on) 
n P 

(4) 
where on takes on the discrete values 

and q5 (p, w ,  ) and q5 (r, on ) are the order parameters in the 
momentum-frequency and frequency representations. 

Let us define the Green functions: 

where the averaging is performed with the weight exp(L [q5 I). 
The complete Green function is equal to 

9 (p, on) =[on sign onlI'o+~02+p2-Z(p, on)] -', (7) 

where E (p,  w, ) is the self-energy part. Let us note that the 
diagrammatic procedure for computing the corrections to 
the Green function (7) is similar to the procedure expounded 
in Ref. 10 for the Matsubara function. 

Let us now use the following idea, first stated by Polya- 
kov: the dynamical properties of a system are determined by 
the retarded Green function G"' (p,  w), which is analytic in 
the upper complex half-plane, and possesses the following 
property1 I: 

G"' (p, o) =9 (p, icon), on>O. (8) 

TO wmpute G"' (p ,  o) or 8"' (p ,  o) ,  which is given by the 
formula3 
G(') (p, a )  = [-iolI'o+~02+p2-Z(r) (p, a )  I-', Im o>O, (9) 

we must continue the diagrams for E ( p, on ) into the upper 
half-plane. In this case the separation of the most singular 
terms should be carried out only after the analytic continu- 
ation of the whole sum. 

The dynamical exponent p is determined in our ap- 
proach from the asymptotic form of the function G"' ( p, o) 
for T =  T,,p = 0, ando-4 :  

G(') (0, O) I TinTG, I + O ~ l / ~ ' - P .  (lo) 

Thus, the analysis reduces to the study of the asymptotic 
behavior of the retarded Green function G'" (p ,  w). 

As is well known, the construction of the perturbation 
theory yields a series in the parameter u/xo, and such an 
expansion is totally inapplicable when u/xo) 1. A way out of 
this situation is to renormalize u and xo, a procedure which 
is similar to the renormalization of charge and mass in field 
theory. After such a procedure, the entire dependence on the 
large parameter u/xo becomes a dependence on the renor- 
malized coupling constant u, , which we shall call the invar- 
iant charge, and the renormalized chemical potential x. 

As in the static theory, it is expedient to construct the 
theory, using the real, and not the bare, pole of the Green 

function as the zeroth approximation. But the situation is 
somewhat different in the dynamical case. It is well known 
that the most important contribution to the singularities of 
thermodynamic quantities is made by the small-momentum 
and low-frequency regions.12.13 Therefore, in separating out 
the singularities of the static quantities, we set on = 0, and 
use the pole of the Green function in the momentum ( p )  
representation. Strictly speaking, such a procedure is equi- 
valent to the neglect of the dynamical exponent. But in our 
case, being interested in the frequency dependence of the 
Green function, we shall consider the true pole of the func- 
tion in the frequency representation at p = 0. 

Let atp = 0 the retarded Green function G (0, o) have 
a pole at i o / ro  = x2 in the lower half-plane, x2 being given 
by the root of the following equation: 

Notice that xZ is positive and must be real, since we are con- 
sidering a continuous transition; otherwise we shall have an 
isolated point to deal with. With allowance for ( l l ) ,  the 
expression (9) can be written in the following form: 

G('1 (p, o )  = [-io/I',+xZ+p2-X(') (p, o )  +Z(') (0, -ir0x"] -'. 
(12) 

After the introduction of the notation 

xi[') (P, @) =x(" (p, o )  -2"' (0, -irox2) (13) 

the function G''' (p ,  w) assumes the form 

G(') (p, o )  =ZG~(" (~ ,  0 ) ,  (14) 

where the renormalized retarded Green function is equal to 

~ d "  (p, o )  = [ - i o ~ ~ ~ - i - ~ ~ + ~ ~ - ~ ~ '  (p, 0 )  I-', (15) 

We see that Z depends not only on x2, but also onp. We can, 
neglecting the Fisher parameter 7, set p = 0 in the formula 
( 17). Below we shall assume 

Let us emphasize once again that the approximation adopt- 
ed here is, in fact, equivalent to the above-mentioned ap- 
proximation in the static theory, where the frequency depen- 
dence is neglected (i.e., in which wn = 0). Since G (r)  is a real 
function of the argument 0 (Ref. 3), Z will be a real function 
of the variable x2. The renormalized Green function 9, ( p ,  
w, ) can easily be obtained from the renormalized retarded 
Green function G $) (p ,  w) with the aid of the Lehmann re- 
presentation9.10: 

1 -lrn G~"'  (p, x) dx 
$R(P, on)=;J l--ion (20) 

-- 
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In the subsequent application of perturbation theory, we 
shall be in need of not the complete renormalized Green 
function, but its unperturbed value 

( 0 )  Im G,"'~' (p ,  x )  dx 
31; ( I ) ,  G l r L )  = - t P I 1  

- m 

which compares with the internal lines of the Matrsubara 
diagrams. It can be seen from (15) that 

G;~"' (p ,  o) = [-io)/1',,+x'+p2] - I ,  (22) 
and, consequently, 

The substitution of (23) into (21) yields 
( 0 )  9, (p ,  on)  = [on sign o , l T o + ~ ~ + p ~ ] - ' .  (24) 

Notice that the function Y $' ( p, w,, ) coincides with the tem- 
perature Green function chosen in Ref. 2. The formulas (2 1) 
and (23) will be used in the summation over the frequencies 
(see the Appendix). 

In renormalizing the fourth-order vertex, we shall set 

We can introduce the invariant charge 

UR'Z~~B, (26) 

and expand all the quantities of interest to us in powers of it. 
For example, in second-order perturbation theory, the re- 
normalization of the diagram in Fig. 1 yields the following 
correction to the renormalized mass operator: 

where % denotes the operation of analytic continuation into 
the upper half-plane. An expression of the type (27) corre- 
sponds to the subtraction procedure in field theory.I4 

3. THE WARD IDENTITY AND THE COMPUTATlONAL 
SCHEME FOR THE EXPONENTp 

Let x,, be the value of x,, i.e., the value at which the 
phase transition occurs. Let us set 

FIG. 1. 

FIG. 2. 

Then the Ward identity for the Green function has the fol- 
lowing form1*: 

@ - I ( P ,  on)laE=T(p, o * ) ,  (30) 

where T (p ,  w,) is the sum of diagrams, some which are 
shown in Fig. 2 (a wavy line denotes differentiation). 

Setting 

T ( 0 ,  0 )  =tR, (31) 

we can renormalize the function T ( p, w, ), i.e., expand it in a 
power series in u, and t ,  . Below we shall work not with 
T ( p ,  w, ), but with its analytic continuation into the upper 
half-plane, which we denote by TIr' ( p, w). Then the formula 
(30) goes over into 

a [G(" ( p ,  o )  ] - ' / ~ E = T ( "  (p ,  o )  . (32) 
Let us renormalize for T''' the diagrams in Fig. 2 for exam- 
ple. This yields 

The second diagram in Fig. 2 gives zero when the subtrac- 
tion procedure is carried out. It should be emphasized that 
the subtraction must be carried out here in order to ensure 
the correctness of (31) in any order of perturbation theory. 

From (33) and the analysis of more complicated dia- 
grams we find that 

T'" ( p ,  o )  =tRa (pZIxZ,  - ~ O / ~ ~ X ~ ) .  (34) 
The dependence of a on the ratiosp2/x2 and - iw/I'fi2 is a 
consequance of the fact that, as will be shown below, u, -x. 
The function a will play a special role below. 

Solving (32) near iw/ro = x2 and p = 0, we have 

ax2;ag=zt,(x) a ( 0 ,  -1). (35) 

It immediately follows from (32) and (35) that 

z a [G") (0 ,  o )  ] - I  - a (0 ,  - i o / ron2 )  - 
a x2 

(36) 
a @ ,  -1) 

Let us introduce the function 

g = X 2 ~ R ( r )  (0 ,  a) -- ( x2 /Z )  G(') (0, a) , (37) 

which depends only on - iw/r,,x2. Let us differentiate the 
last relation with respect to In x2: 
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wherep is simply a separation parameter for the variables, 
since the left-hand side depends only on x ,  while the right- 
hand side depends only on - iw/I'dr2. From the left-hand 
side of (38) we have 

z-xap; (39) 

from the right-hand side, 

FIG. 3. 

x = - i ~ / I ' ~ x ~ .  (41) 

Let us first consider the expression (40) for lx 1 %  1. It is easy to 
show that the product g(x)a(x)-+0 as Ixl-ta,. Then 

This is the only possible solution, since the function G''' (0, 
o) cannot depend on x when w/r,%x2. Comparing (10) and 
(1 2), we see thep is the exponent of interest to us. 

In order to find the equation with the aid of which we 
can determinep, we must consider (40) for small x. Since for 
o/r,-x2 we find that up to terms of the order ofp 

it is evident that the following relations are valid for 1x1 - I: 
Ia iO,x)- I I~p,  ( ~ ( . Z ) - I ~ ( X + I ) ( - ~ .  (43) 

The last expressions make it possible for us to linearize (40). 
Using the condition that g(x) is finite at lxl+O, we find from 
(40) that 

g(O)=(l-p)a(O, -1 ) .  (44) 

Further, let us set 

Substituting (45) into (40), and linearizing the equation, we 
obtain 

x(x-t-I) 5'(x) -5 ( x )  =a(O, x) +PI-l. (46) 
This equation has two singular points: x = 0 and x = 1. Its 
solution is regular at these points only when 

p=-a'(0, 0 ) .  (47) 

The last equation allows us to computep directly in three- 
dimensional space in terms of the vertex function. 

4. THE INVARIANT CHARGE u, 

Let us now proceed to determine u, . For this purpose, 
let us again use the Ward identity. Let us compute the quan- 
tity ayR /a(. In lowest-order perturbation theory we have 

-- a'" -tRlR2(n+8) J *g3 ( F ,  o m )  a E 
m 

(2n) ' 

(see Fig. 3). From (26) and (35) we obtain 

Since 

aZldxL-p, 1 a (0, -1) -1 1 -p, 

we find in second-order perturbation theory that 

We must, in summing over the frequencies in the last for- 
mula, make the classical approximation (see Sec. A of the 
Appendix). Finally we have 

This equation coincides with the well-known equation for 
the invariant charge in the static case.' Therefore, the dyna- 
mica1 value coincides with the static value 

ua=l6nx/ (n+8). (52) 

The fact that the invariant charge is the same in both cases, 
once more confirms the correctness of the dynamic scaling 
hypothesis. l 5  

5. COMPUTATION OF THE EXPONENTp 

Let us find the exponent p, using the formula (47). We 
shall, in computing a ,  limit outselves to the lowest order in 
u, . From (33) and (34) we have 

The details of the summation over the o, and w, are con- 
tained in Sec. B of the Appendix. In the classical approxima- 
tion the function a is split into a static and a dynamic part: 

a=as+ad, (54) 

where 
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3 ( 1 ~ + 2 )  
a,=l+ ----- I If we express p in terms of the Fisher parameter 

2 q ~ 8  (n+2) 127 (n+8) 

1 found in Ref. 8, and roughly estimate all the terms in (59), 
(55) then we find 

~ ~ 0 . 8 2 1 .  
3 (124-2) d3p,d"pz --on sign o,/r, (60) 

aL= -- u,:~% { I .I (p?+x2) (p;+a2) Knowingp, we can find the often used exponent z,' which is 
2 

given by the following formula: 

x [ (p,+p2+p)2f x21 - I  z= (2-,,)/(I-p) =2+cq. 

From (60) we easily find that ~ ~ 0 . 6 4 .  Let us recall that the E- 
X [plztpzZ+ (pi+p2+p) 2 + 3 ~ Z +  on sign on/ro l-'[ (Pi2+xZ) -' expansion method in second-order perturbation theory 

yields' ~ ~ 0 . 7 3 ,  i.e., a value not very different from our val- 

+ (p12+p:+ (pl+pz+p)2+3x2+o. sign ~ . ir . )  -l] }. (56) ue. 

With allowance for the expression (8), the analytic continu- 
ation in the last formula can be carried out without diffi- 
culty, i.e., we need to make the substitution ion 4, where 
on > 0, Imw > 0. Going over to new dimensionless integra- 
tion variables, p,-p,/x andp2-+p2/x, and taking (52) illto 
account, we have 

We see that the function a, vanishes at w = 0, leaving only 
the static part (55). This verifies the correctness of our calcu- 
lations, since the dynamical theory should yield the results 
of the static theory on passing to the limit o 4 .  It can be 
seen from (57) that the function a ,  like the self-energy part 
H "I, can have singularities only in the lower half-plane. 

Naturally, we can obtain the explicit - iw/rdc2 depen- 
dence for a(0, - iw/T&'), and then, using the formula (47), 
compute p. But let us, for the purpose of simplifying the 
calculations, differentiate right away with respect to the 
variable - io/T,-,x2 the expression under the integral sign in 
(57) and then set - iw/I',x2 = 0. As a result, we have 

6. COMPARISON WITH EXPERIMENT 

Suzuki16 has measured the coefficient of ultrasound ab- 
sorption near the structural phase transition point for the 
KMnF, crystal. In the temperature region Tc < T <  T,, 
where Tc = 186.2 K and T,, = 187.9 K ,  the absorption coef- 
ficient a, a t - '.I3, with t = (T - Tc )/T, . On the other 
hand, it follows from theory that a, a t -", where the expo- 
nent x = vz, v being the correlation length exponent. 
Further, according to Sok~ lov , ' ~  the KMnF, crystal can be 
considered to be an Ising system (n = 1) in the above-indicat- 
ed temperature range. Taking the values a = 8/729 and 
v = 0.6 from Ref. 8, and setting c ~ 0 . 6 4 ,  we obtain x =: 1.20. 
This value of the exponent x is quite close to the experimen- 
tal value. Let us note that the &-expansion method yields 
x z 1.17 and x z 1.25 respectively in second- and third-order 
perturbation theories,I7 i.e., values that are alsoclose to 1.13. 
Of course, it is difficult to draw any definite conclusion on 
the basis of these numerical x values only, since there are 
quite large uncertainties in both the experimental and the 
theoretical values. Nevertheless, it may be hoped that the 
method proposed in the present paper gives a reasonable 
result. 

The author expresses his profound gratitude to Profes- 
sor Wu Din Ky for constant attention to the work and a 
useful discussion of its results. 

APPENDIX 

A. Let us, in summing over the frequencies in the for- 
mula (50) of the main text, use the Lehmann representation 
(21): 

OI 

x [ ( p l + p 2 ) 2 + ~ ~ - ~ x ~ ~ l Z + ~ z 2 +  ( P ~ + P ~ ) ~ + ~ I - ~  Z[S:"' (p, om)  13- 1 j JJ axI axz ax3 1m do"' (P. 21) 
n 

x[ (ptZ+1)-1+(pt2+pzZ+ (pt+~Z)~+3)-']. (58) rn--- 
(A.1) 

After a tedious computation of the integrals, we obtain ~ I r n  G?'" ( p ,  I,) Im G:'" (p, xs) S, 

p - 4 { l ~ n [ l + 4  3n ( ( 1  +f ) '12- ( l  - ~ ) " ' ) ]  S- 2 1 (xi-ioS (r-io.)(x,-io,) 1 -I .  

2 (124-713) .=-OD 
-7n-  

(7+413)" The summation over m in (A. 1) can be carried out with the 
aid of the following formula"? 

X arctg (7+4l3) -Ih+ 

n+2 2(L2-7Y3) arctg (7-4fi) -5 - e 

(7-4l2J"' (n+8)2' z f ( n ) = - n t  RasIf(z)ctgnzlz-.,. 
n--00 h-I 

(A.2) 
(59) 
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wherea,, . . . ,a,  are the poles ofthe function f (z), which do 
not coincide with any of the points z = 0, 1,2, . . . , and f (z) 
itself satisfies all the necessary conditions (see Ref. 18). A 
simple calculation of the residues yields 

The passage to the classical limit in (A.3) is accomplished by 
means of the substitution 

cth ( x i / 2 )  +2 /x i ,  i = l ,  2,3. (A.4) 

Evidently, this substitution is equivalent to the replacement 
of the Planck function by the Rayleigh-Jeans distribu- 
t i ~ n . ~ , "  Taking (A.3) and (A.4) into account, we obtain 

After substituting the formula (23) into this expression, 
and performing the trivial integration overx, we arrive at the 
required result (5 1). 

B. In summing over the w, and w ,  in the formula (53) 
we again use the Lehmann representation (2 1): 

X Im ~ d ' . ' '  (p , ,  x,) Im GZsr' (p ,+p,+p,  x4 )  

(A.6) 
The summation over m with allowance for (A.2) yields 

We can make here right away a classical approximation of 
the type (A.4); all the frequencies in the argument of the 
hyperbolic tangent function are then set equal to zero.* 
Thus, in the approximation in question 

Substituting (A.8) into (A.6), and carrying out a similar sum- 
mation over 1, we have 

)I, J', [s:" ( p i ,  01) 1'9:" ( P . . U ~ )  

1 ' dx. i o ,  21 
= - j I-J 2 {I +-- [i - z 4 - ~ 3 - x 2 - i w n  

n4 x4-xS-~ i - i0n  
1-1 

 XI^ ~ k " )  (P, ,  x,) I~ GP" (pl+p,+p, x , ) .  (A.9) 

The remaining integration over xi is easily performed, and 
we obtain as a result the formulas (54)-(56) of the main text. 
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