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Equations of first order in time are obtained for the trajectories of liquid particles in three- 
dimensional vortical flows. These equations are used to derive a system of ordinary differential 
equations, which describes the dynamics of three-dimensional vortical singularities (vortons). An 
analytic solution of the problem of the interaction of two vortons has made it possible to visualize 
lucidly the physical mechanism of self-amplification of a three-dimensional vortex field. The 
collapse of vortons and discrete analogs of vortex filaments and rings are also considered analyti- 
cally. 

PACS numbers: 47.30. + s 

The main difficulty in the investigation of three-dimen- virtue of the incompressibility, the Jacobian of the transfor- 
sional vortical flows is the effect of stretching of the vortex mation is equal to unity). Using (1. I), we obtain the sought 
filaments. This effect can give rise to singularities in the vor- equation of first order in time for the trajectories of the liquid 
tex field. Such a possibility is indicated by the experimental- particles: 
ly observed strongly pronouned intermittency of vortex 
flows.'s2 The results of numerical ~ imu la t ion~ .~  offer evi- l 2,-x; ax,' x = - -  &tj!+j -- ,Qm0'd2a'. 
dence that the mean squared field of a vortex in three-dimen- 4n Ix-x'IJ a a ,  

(1.2) 

sional flow of an idealliquid increases in time without limit. 
The associated possible existence of a finite limit on the rate 
of energy dissipation as the viscosity tends to zero corre- 
sponds to extension of the Kolmogorov-Obukhov "3/2 
1 ~ ~ ~ 6 . 7  to include the region of arbitrarily small scales. In 

analogy with energy dissipation in shock waves, the energy 
of three-dimensional vortex flow of an ideal liquid can go off 
into singularities. 

It is very difficult to guess beforehand the character of 
the singularities that can arise in three-dimensional flow. It 
is therefore useful to introduce elementary "priming" singu- 
larities and a corresponding generalized dynamics, to be able 
to investigate analytically three-dimensional effects. This 
calls for a special form of the equations of hydrodynamics. 

81. LAGRANGlAN DESCRIPTION OF VORTEX FLOWS 

The equations of an ideal liquid constitute Newton's 
equations for the coordinates x(t, a) of the liquid particles (a 
is the initial position). The potential of the forces (pressure) 
in an incompressible liquid is expressed in terms of a qua- 
dratic functional of the spatial derivatives of the velocity 
field. Let us lower the temporal order of these equations, 
using the theorem on the conservation of the velocity circu- 
lation along a liquid contour in differential form7: 

Q~ ( t ,  X) = B , ~  (a) axJah.  (1.1) 

Here n(t,  x) is the field of the vortex, zero marks the initial 
motion, and we sum from 1 to 3 over the repeated indices. 
Differentiation of (1.1) with respect to time yields the Helm- 
holtz equation for the vortex field. 

We express the velocity field in terms of an integral of 
the vortex field in unbounded space, replacing the integra- 
tion with respect to x by integration with respect to a (by 

A dot denotes here a derivative with respect to time, E ~ ,  is a 
unit antisymmetric tensor, and primes denote quantities tak- 
en at the point a'. 

In two-dimensional flows there is only one vortex com- 
ponent, and Eq. (1.1) takes the form R (t, x) = R,(a). The 
equations for the liquid-particle trajectories are Hamilton- 
ian: 

Q ~ & = E I , ~ H / ~ x ~ ,  

where the indices i andj  now run through the values 1 and 2, 
and 6 /ax, is a variational derivative. The expression for the 
Hamiltonian can be written down directly in the presence, 
alongside the continuous field of the vortex, of bsingulari- 
ties having intensities x, and located at the points x'")(t ): 

Account is taken here of the fact that a discrete vortex does 
not act on itself; raB is the distance between vortices. For the 
trajectories of the discrete vortices we have the equations 

~ a i z ( ~ ) = ~ i ~ a ~ / i ? ~ j ' ~ ) .  

From the invariance o fH  to shifts and rotations of the coor- 
dinate frames we obtain the integrals of motion 

If the vortex field has no continuous component, we 
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return to the usual system of equations for discrete vortices 
(an exposition of the latest results on the interaction between 
straight vortex filaments can be found in Ref. 8). The situa- 
tion is just as simple with introduction of vortical singulari- 
ties in two-dimensional flows when there is no stretching of 
the vortex filaments. 

92. VORTON SYSTEM 

It is desirable to choose the three-dimensional vortex 
singularities such that they do not change their structure 
upon interaction and that it be possible to use them to ap- 
proximate sufficiently general vortex fields. Vortex rings, for 
example, are not very suitable for this purpose. They are 
characterized by two scales, have intrinsic velocities, and 
their shapes become distorted by short-range interaction. In 
addition, only vortex fields of very special kind can be 
formed out of small vortex rings. 

The simplext elementary singularity that might have 
the properties indicated above is a three-dimensional 6-sin- 
gularity of the vortex field. At the point where this singular- 
ity is located the vortex field is no longer solenoidal, making 
it no longer a hydrodynamic object. In the classical hydrody- 
namic description, by virtue of (1.1) and of the incompress- 
ibility, this violation of the solenoidal behavior of the vortex 
field persists at all instants of time. Precisely such a three- 
dimensional 6-singularity, for which the vortex field is non- 
solenoidal at all time, was introduced in a recent paper,9 
where the name "vorton"was proposed and it was noted spe- 
cially that so far there are no results whatever. 

It is possible, however, to introduce three-dimensional 
vortex singularities and still deal with hydrodynamic ob- 
jects. Equation (1.2) presents a closed description of vortex 
flows in which the vortex field is reconstructed from the 
velocity field (1.2) and is always solenoidal for any field 
&(a). If no is solenoidal everywhere and has no singulari- 
ties, the solution of (1.2) coincides with the solution of the 
hydrodynamics equation in classical form. If 42, ceases to be 
solenoidal even in one point, the use of classical hydrodyna- 
mics equations is generally speaking not valid. We note that 
the vortex field can cease indeed to be solenoidal at a definite 
instant of time as a result of external action or under the 
influence of internal physical factors (e.g., in a superfluid 
liquid). 

We shall use the term "vorton" hereafter for a vortical 
singularity corresponding to a three-dimensional S-singular- 
ity of the field a,. For a vorton located at the origin, the 
fields of the velocity and of the vortex take according to (1.2) 
the form 

where y is the vorton intensity. In this case the liquid rotates 
at an angular velocity y(4?rx3)-'. The vortex field is now 
solenoidal everywhere (including at the origin). With the aid 
of vortons it is easy to construct discrete analogs of vortex 
filaments and rings (44), whose behavior conforms to the 
classical solutions. We proceed now to study the dynamics of 
vortons. 

Substituting in (1.2) 

we obtain for the velocity field an expression which is also an 
equation for the trajectories x(t, a)  of the liquid particles: 

This includes the coordinates and intensities of the vortons: 

xia) ( t )  z xi ( t  , a(a)), ?(iOL) ( t )  = - 

The equation for xy' is obtained by substituting a = a'") in 
(2.1). It must be taken into account here that the vorton itself 
does not move, since the velocity it induces at its location has 
no direction (in analogy with the two dimensional) case in 
$1). We obtain 

where the prime at the summation sign means omission of 
the term withp = a. We obtain an equation for yja)by differ- 
entiating (2.1) with respect to a, and then substituting 
a = a(a): 

It is likewise recognized here that the vorton does not act on 
itself, since it produces neither tension nor compression 
along the rotation axis. 

We have thus obtained a closed system (2.2), (2.3) of 
ordinary differential equations, which describes the evolu- 
tion of three-dimensional singular flows of an ideal liquid. 
This system allows to investigate analytically and numeri- 
cally various three-dimensional effects and, in particular, il- 
lustrate clearly the physical mechanism of self-amplification 
of a three-dimensional vortex field. We present below exam- 
ples of analytic solutions. 

93. INTERACTION OF TWO VORTONS 

Following the method developed in Ref. 10 for linear 
vortices, we consider the dynamics of the relative configura- 
tion of two vortons (N = 2). From (2.2) we have 

+,=eihogj,, ri=rr ('"), oi=oil'+o~", a?'-= (4~9) -1:j~:~). 

(3.1) 
The vector r thus rotates without changing its modulus, 

r = const. 
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We write the equations for the intensities (2.3) in a refer- 
ence frame that rotates together with r at an angular velcoty 
a: 

(a+fi) ( a )  d 0 , ( ~ ) / d t = 3 0 , ( ~ ) e , ~ ~ n ~ o ~  , n,=r-'r,, o(3'=o(1) ,  010) =nioi . 

(3.2) 
Here d /dt is a derivative with respect to time in the rotating 
frame. Since r does not change in the rotating frame, dp) are 
according to (3.2) integrals of the motion. Equations (3.2) 
have to additional integrals: 

Differentating (3.2) with respect to time we obtain 

Depending on the vorton configuration (Fig. l), Eq. (3.3) 
offers three possibilities: At s r 9 4 )  and a':' = 0 the time- 
independent component of d"' is the one for which a',")#O. 
At s <O we have sinusoidal oscillations with frequency 
o = dl2.  At s < 0 we obtain an exponential growth with ex- 
ponent A = ( - s).'I2 

Thus, within the framework of the generalized dynam- 
ics, the vorticity in three-dimensional Aow can increase 
without limit even in the case of two vortons. The physical 
meaning of the condition for exponential growth of the vorti- 
city (s <O) consists of a suitable orientation of vortons at 
which they amplify each other on account of the deforma- 
tion of the liquid elements in which they are situated. That 
the vorticity in three-dimensional flows of an ideal liquid 
increases without limit is attested by numerical experi- 
m e n t ~ . ~  

We consider now absolute motion of two vortons. As 
&"kO the vortons are immobile. This applies also to a sys- 
tem with an arbitrary number of vortons if all lie on one 
straight line. The drift of the center of gravity of two vortons 
is determined from (2.2): 

A "pair" of vortons (iY(!'" = - c%(~', d,%O) moves with con- 
stant velocity (3.4) perpendicular to the line that joins them. 
At o'," = a'!' = ur/2, as can be easily shown, the vector 6, 
precesses around the vector pi = 3urni/2 with an angular 
velcotity determined by the magnitude of this vector. The 
vectorp,, in turn, rotates (together with ui and n,) around the 
vector q, = a, + 3urn,/2, which is an integral of the motion. 
The two identical vortons rotates with an angular-velocity 
vector q, around the immobile center of gravity. 

54. COLLAPSE OF VORTONS, VORTON FILAMENTS AND 
RINGS 

We consider a system of vortons located at the initial 
instant of time in a single plane (x, = const). If the initial 
intensities of the vortons are perpendicular to this plane, the 
vortons remain according to (2.2) and (2.3) the vortons re- 
main in the same plane, and the intensities do not change. 
Equations (2.1) are written in Hamiltonian form: 

A similar system is obtained also in a description of localized 
vortices in a rapidly rotating stratified liquid (the atmo- 
sphere of a planet). Such a problem was recently considered 
by V. M. Gryanik. From the invariance of H to shifts and 
rotations in the plane x,  = const follow integrals of motion 
of the same type as in two-dimensional flow: 

The last integral is a combination of the first two. When the 
conditions 

are satisfied, homogeneous collapse of the vortons is possi- 
ble: 

Here t ,  is the collapse time, and the case t .  < 0 corresponds 
to the vortons moving apart. The value oft,  at an arbitrary 
number of vortons is expressed in terms of the intensities and 
the initial distances, in analogy with the procedure used for 
two-dimensional flows. '' Equation (4.3), as well as a corre- 
spondingformula with replaced by & in the two-dimen- 
sional is a consequence of the scale invariance of 
the equations. Conditions (4.2) are necessary and sufficient 
for uniform collapse (dispersal) in the case of three vortons or 
of symmetrical configurations of four or five vortons (see 
Ref. 11). This can be verified by direct substitution of (4.3) in 
the equations written in terms of the relative motion (for r,). 
At an arbitrary number of vortons, the necessary and suffi- 
cient collapse conditions are expressed in terms of a Hamil- 
tonian in analogy with the two-dimensional case." 

The transition to two-dimensional hydrodynamics is ef- 

FIG. 1. Configuration of two vortons. FIG. 2. Vorton filament and vorton ring. 
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fected with the aid of vorton filaments. A vorton filament is 
an infinite sequence of single vortons (Fig. 2) having intensi- 
ties y and placed along a straight line with equal spacing d. 
Several such parallel filaments will drift mutually, according 
to (2.2) and (2.3), in a plane perpendicular to them without 
changing the vorton intensities. One filament rotates the 
other, located at a distance r, with velocity v = (x/2.rrr) f (d / 
r), where x = yd -' is the specific intensity of the filament. 
Without writing down here the expressions forf, we indicate 
that f (0) = 1. This corresponds to the classical Helmholtz 
formula for interacting vortex filaments. 

A discrete analog of a vortex ring is a vorton ring: a 
system of identical vortons placed tangent to a circle at the 
vertices of a regular polygon (see Fig. 2). In such a configura- 
tion the vorton intensities, according to (2.2) and (2.3), do not 
change, and the ring itself drifts perpendicular to its plane. 
Simple calculation yields an expression for the drift velocity: 

Here r is the radius of the ring, n is the number of vortons, 
and K is the specific intensity. In the case of a continuous 
toroidal vortex ring, when the cross-section radiusp is small 
compared with r, there is a known13 asymptotic formula 
n -(x/4~r)ln(r/p). From (4.4) as n--too we obtain c, =: In n. 
The vorton approximates a segment of a continuous vortex 
ring with volume of the order ofp3. For thick rings ( p - r) an 
analytic description is difficult. Equation (4.4) allows us to 
estimate the velocity of such rings. 

5. CONCLUSION 

The procedure proposed above of introducing three-di- 
mensional singularities, and the method of investigating 

their dynamics are sufficiently universal and can be used for 
other equations of physics. The direct observation of objects 
such as vortons (in an ordinary or superfluid liquid, in a 
plasma) is not excluded. In a stratified liquid, in particular, 
the vortex tubes can be broken up into pieces. 

On the other hand, vortons present a natural approxi- 
mation of continuous fields that substantially simplify the 
analysis of three-dimensional effects. It is of interest to inves- 
tigate configurations that consist of three and more vortons 
and lead to an unbounded growth of the vorticity within a 
finite time (we compare the results of the numerical experi- 
mental4). It can be shown that in this case the flow energy 
will go over into the vortex singularities in accordance with 
the remark made above. We can hope hereafter to construct 
configurations corresponding to the "3/2 law." 

I am grateful to V. I. Petviashvili for a useful discussion 
of the work. 
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