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The effect of the nonlinearity of gas bubble oscillations on the damping of a quasimonochromatic 
wave in the absence of dissipative effects (viscosity, thermal conductivity, etc.) is considered. The 
temporal problem of the nonlinear damping of sufficiently large amplitude waves is solved, and 
the magnitude of its energy change is measured. It is shown that a wave packet localized in space 
always decays completely. The penetration of a sound perturbation that is excited by a harmonic 
source at the liquid boundary into a gas-liquid medium is also considered. 

PACS numbers: 43.25.Yw, 43.25.Ed 

1. INTRODUCTION 

The addition to a liquid of a small number of randomly 
distributed gas bubbles changes significantly the dispersion 
properties of the sound oscillations that propagate in such a 
medium. Obviously the most interesting characteristic of the 
gas-liquid mixture is the appearance of sound damping even 
upon neglect of dissipative processes in the liquid (viscosity, 
and thermal conductivity). The physical mechanism of such 
damping is similar to the Landau damping in the physics of 
plasma and consists in the fact that the wave transfers its 
energy to resonant bubbles whose characteristic oscillation 
frequency is the same as the frequency of the wave. The lin- 
ear theory of the nondissipative damping of sound in a liquid 
with bubbles was developed in Ref. 1. 

So far as nonlinear effects in the propagation of sound in 
a gas-liquid mixture are concerned, they were studied earlier 
with neglect of the interaction of the resonant bubbles with 
the wave. This assumption is valid if, for example, there are 
only bubbles of one (nonresonant) radius.',' A number of 
important results have been established within the frame- 
work of such a model. A Burgers-Korteweg-de Vries equa- 
tion is derived and solutions are obtained in the form of sta- 
tionary waves and acoustic solitons.' The results of the 
theory have been confirmed by experimental  investigation^.^ 

In the present work we consider the effect of the nonlin- 
earity of oscillations of resonant bubbles on the propagation 
of sound perturbations. Our approach is based on the as- 
sumption that the wavelength A of the sound disturbance is 
large in comparison with the distance between the bubbles. 
This allows us to describe the oscillations in the continuous 
medium approximation, using microscopic equations aver- 
aged over volumes whose linear dimensions are much less 
than the wavelength but much greater than the distance 
between particles. Furthermore, we limit ourselves to the 
study of the case in which the volume content of the bubbles 
a is small in comparison with the parameter ~ = p , , / ~ c '  that 
characterizes the compressibility of the pure liquid" @,, is 
the equilibrium pressure, cis the speed of sound in the liquid, 
p is its density). The linear theory' predicts in this case that a 
monochromatic wave decays exponentially with decrement 
Yltn : 

y,, = n Z Z  Jag (a)  6 (o,, ( a )  -a) do, (1.1) 

where o, (a) denotes the frequency of the linear oscillations 
of a bubble of radius a and the distribution function g(a) for 
the bubble radii g(a) is normalized so that g(a)da gives the 
number of bubbles with radii in the range from a toa  + da in 
a unit volume. If the scatter of bubbles in radius, Aa, is com- 
parable with the characteristic radius a,  then y,,, - w a / ~ ( o  
in order of magnitude. 

The study of nonlinear effects is carried out in the pres- 
ent work for almost monochromatic waves, when the pertur- 
bation of the pressure has the form 

6 p  (r, t )  = 6 p ,  (r, t )  cos (kr-o)t+0 (r, t )  ), (1.2) 

where Sp,,(r,t ) and 0 (r,t ) are the amplitude and phase, which 
are changing slowly in space and time. In Sec. 2, equations 
are derived by averaging over the rapid oscillations of the 
frequency w.  They describe the smooth changes of the oscil- 
lation amplitude of the resonant bubbles and of the envelope 
and phase of the wave. The nonlinear damping of a sinusoi- 
dal wave (6p0 and 0 do not depend on r) is analyzed in the 
third section with the help of these equations. This damping 
is generated in the medium at the time t = 0 (such a setup 
corresponds to the problem solved in Refs. 6 and 7, that of 
the nonlinear damping of a strong Langmuir wave in a plas- 
ma). It is possible to calculate analytically the energy lost to 
the bubbles in the limit of high values of 6p,, (for the exact 
criterion, see Sec. 3), when the amplitude of the wave 
changes insignificantly in the course of the damping. The 
transition from the nonlinear stage of damping to the linear 
one with decreasing 6p,, is illustrated by a numerical calcula- 
tion. 

In the fourth section is considered the evolution of the 
envelope of a wave packet. In contrast to a sinusoidal pertur- 
bation, a localized packet is found to be damped to the end 
even in the nonlinear regime. 

The fifth section is devoted to study of penetration, into 
a liquid with gas bubbles, of an acoustic perturbation excited 
on the boundary of the medium by a harmonic source. A 
feature of this problem is that even at an arbitrarily small 
amplitude 6p,, the nonlinear effects play a decisive role. We 
obtain here the penetration rate and the width of the wave 
front. 

The influence of dissipative effects (viscosity, heat con- 
duction) are neglected throughout the paper. The conditions 
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for such an approximation are discussed in the concluding 
sixth section. 

2. BASIC EQUATIONS 

For the description of wave propagation in a liquid with 
gas bubbles, we use a set of equations from Ref. 2. 

-- "" A6p=0, 6p=6p/c2-4np I a'g g ( a )  do, (2.1) 
atz 

where Sp denotes the perturbation of the density of the mix- 
ture, Sp the perturbation of the pcesure, 6 = R - a is the 
departure of the actual radius R of the bubble from its equi- 
librium value a. 

The first of Eqs. (2.1) is a consequence of the linearized 
equations of the hydrodynamics of an ideal liquid, while the 
second takes into account the fact that the perturbation of 
the density of the mixture arises both as a consequence of the 
compressibility of the liquid and from the change in the vol- 
ume of the bubble. Here and elsewhere it is assumed that the 
perturbation of the pressure is small in comparison with the 
equilibrium pressure p, and, and as a consequence, the am- 
plitude of the oscillations of the bubbles is also small, g(a. 

The system (2.1) should be supplemented by an equa- 
tion connecting the deviation 6 with the pressure in the wave 
Sp. Under neglect of dissipative processes, this equation has 
the following form:' 

wherep, is the gas pressure inside the bubble. For definite- 
ness, we shall assume the oscillations to be adiabatic; then p, 
=p,(a/R ) 3 Y ,  where y is the adiabatic coefficient of the gas. 

Expanding in (2.2) in terms of the small parameter { /a with 
accuracy to terms (6 /a)', we obtain 

(2.3) 
where o, = (3yp,Jpa2)"* is the frequency of linear oscilla- 
tions. Account of nonlinear terms in the right side of Eq. 
(2.3) leads to a nonlinear frequency shift do, which depends 
on the amplitude of the linear oscillations 6,. With the help 
of standard techniques (see, for example, Ref. 9), it is not 
difficult to find that, in the first nonvanishing approxima- 
tion, 

In the problems considered below on the evolution of 
quasimonochromatic waves, the dependence of Sp on the 
time has the form (1.2) and the basic role in the interaction 
with the wave is played by the resonant bubbles, whose char- 
acteristic frequency of oscillation is close to a. Under the 
action of the pressure Sp, the amplitude of the oscillations of 
such bubbles changes slowly in comparison with w; ',which 
enables us to average Eq. (2.3) over the rapid oscillations 
with frequency a,. This is most simply done if we introduce 

the Hamiltonian of a bubble located in the field of the wave: 

where 2Yo is the Hamiltonian of the free bubble, q denotes 
the momentum canonically conjugate to the coordinate 6, 
and the vector r gives the position of the considered bubble. 
It is convenient to transform from the variables q and6 to the 
action variables--the angle I and @ of the unperturbed Ha- 
miltonian A?,, at the same time, expressing { in terms of I 
and @in the second term in (2.5), it suffices to use an approxi- 
mate relation valid for the linear oscillator: 

E =  (21 /moo)  '" cos (@+oat), (2.6) 

the role of the mass m for the gas bubble is played by the 
quantity 47rpa3. In the new variables, 

%=ao ( I )  - o o I + 4 n a ~ 2 1 / m o o )  "6p0 cos (k r -o t f  0 )  

X cos (oat+@). 

The procedure of averaging now consists in the discarding of 
the radially oscillating term, which is proportional to cos 
((w + w,)t - kr + @ - 8 ).lOSimultaneously, using the small 
nonlinearity of the oscillator, we can expand 2Yo in a series 
in I, keeping only the first two terms; 

2%'o(I) =ooI-  (6y2-3y-2) (16maz)-'IZ. 

It is convenient to introduce the dimensionless variables 

where Sp, is some characteristic value of the perturbation. 
Then the Hamiltonian 

2&'=BJ--I+P (2J)'" cos (cp+0) (2.8) 

and the equations of motion 

dJ/dt=-8%'/drp=P(2J) '" sin (cp+0), 
(2.9) 

look especially simple. We emphasize here that the Hamil- 
tonian (2.8) is not equal to the bubble energy e which (with 
sufficient accuracy in the linear approximation) is propor- 
tional to the action I: 

We shall express the total energy of the gas bubbles per unit 
volume, E, in terms of the energy of a single bubble, intro- 
ducing the distribution function f on the phase plane J, p: 

The function f satisfies the normalization condition 
w In 

j j drpf=g(a).  (2.12) 
0 0 

For what follows, it is convenient to introduce the mean 
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value of the action for bubbles of a given radius: 

Here the energy density (2.11) is obtained by integration of - 
Jg(a) over the variable a. If, instead of a we use 0 as the 
variable of integration, then the connection between E and J 
takes the following form: 

At theend of this section we carry out an averaging of 
the wave equation, assuming that the scale and time of 
changeoftheenvelopeof6p,(r,t )and phase 8 (r,t ) arelarge in 
comparison with k - ' and w- '. After substitution of (1.2) in 
(2.1) and discarding of small seco~d derivatives of Sp,, and 6, 
the wave equation takes the following form: 

I a e 
a a 6 p > k ~ b p o  sin(kr-at+@) =4npj dag (a) a'-. 

at2 

(2.15) 

Taking (2.6) into account, and multiplying (2.15) first by cos 
(k-r - wt + 6 )and then by sin (k-r - o t  + 6 )and averaging, 
we obtain 

a 
= - (a -kc )  &pa-2xp J dog ( a )  a20Z 

c2 

(2.17) 

After simple transformations, with account of (2.9), 
(2.1 I), the law of conservation of energy is obtained from 
(2.16). This law connects the change in the energy density of 
the bubbles and the mean energy density of the wave 
W = (Spo)2/2pc2 with the energy flux cnW in the wave 
(n = k/k is the unit vector in the direction of propagation of 
the wave): 

a - (W+E) +c div (nW) 1 0 .  (2.1 8) 
a t  

So far as Eq. (2.17) (the equation describing the change in 
phase of the wave) is concerned, we must remark that the 
choice of phase 8 and frequency of the wave w is not unique. 
This manifests itself, in particular, in the invariance of Eqs. 
(2.9), (2.16), and (2.17) relative to the substitutions 
w--tw + Sw, 8-8 + Swt, p-xp - Sot. (Of course, o must be 
close to the sound frequency in the pure liquid, kc; in the 
opposite case the averaging procedure based on the slowness 
of the change of Sp, and 8, loses meaning). The quantity w is 
assumed hereafter to be equal to the sound frequency in the 
liquid with gas bubbles, which is found in linear approxima- 
tion:' 

With such a choice of w in the integrals in Eqs. (2.16) and 
(2.171, we can isolate the contribution of the resonance re- 
gion and, assuming that the distribution function g ( ~ )  
changes slightly over the interval of resonant radii of the 
bubbles, take it outside the integral sign. Then (2.16) and 
(2.17) take the following form in dimensionless coordinates: 

3. RELAXATION OF AN INITIAL FINITE-AMPLITUDE 
PERTURBATION 

As was noted in the Introduction, according to the lin- 
ear theory the monochromatic wave is damped out comple- 
tely, transferring all its energy to resonant bubbles whose 
vibrational frequency lies in an interval of width y,, near the 
wave frequency w. Allowance for the nonlinear frequency 
shift (2.4) leads to the result that the frequency of the reso- 
nant bubbles changes with increase in the energy of the oscil- 
lation and, if the amplitude of the wave is sufficiently great, 
Awn can exceed y,,, . The bubbles then go off resonance, the 
exchange of energy between them and the wave ceases be- 
cause of phase mixing, while the amplitude of the wave set- 
tles at some level and no longer changes with time. The 
qualitative effect is completely analogous to the nonlinear 
Mazitov-O'Neil damping of a Langmuir wave in a 

Before proceeding to a description of nonlinear damp- 
ing, we first find the limits of applicability of the linear the- 
ory. If the wave is completely damped, all its energy per unit 
volume (Spo)2/p~2 transforms into energy of vibration of the 
resonant bubbles, the number of which per unit volume is 
(a/a3)(y,,, /a,) -a2/&a3 in order of magnitude. Finding the 
energy per bubble, and calculating the corresponding non- 
linear frequency shift with the help of (2.4) and (2. lo), we find 
that Awn -o(Spdpo)2'3. It follows then that the condition of 
applicability of the linear theory Awn (y,,, has the form 

In the opposite limiting case, the amplitude of the monoch- 
romatic wave will change insignificantly in the damping pro- 
cess. 

It is not difficult to estimate the energy E which the 
bubbles absorb at (6pdpo)2'3~a/&. The amplitude of their 
steady-state oscillations, lo ,  is now determined from the con- 
dition of nonlinear re~onance:~ 

o o A o , ~ o - 6 p o l p a ,  
which, together with (2.4) gives ~o-a(Sp,/po)113. Multiply- 
ing the energy of a single resonant bubble by the number per 
unit volume, which is equal to (a/a3)(Awn /w), we find 

a 6po --Is 

E --; (p,) W - r , ,  TW. 
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FIG. 1 .  Shape of the trajectories on the J, q, plane for different values of 
detuning O [see (2.811: a-O <O, b--O = 3(p/2)'I3, c - 3 ( ~ / 2 ) ~ / '  
< O < 3P213/21/3,d-0 > 3 ~ ~ / ' / 2 ~ ' ~ .  The heavy linesindicate trajectories 
corresponding to the value &" = 0. The numbers 1,2, and 3 designate the 
stationary points. 

The presence of bubbles in the liquid leads to dispersion 
of the sound velocity; therefore, the phase 0 of the wave 
changes along with its amplitude, i.e., the instantaneous fre- 
quency of the sound is w + a0 /at. The change of phase 0 due 
to the nonlinearity of the oscillations of the resonant bubbles 
can be estimated with the help of the second of Eqs. (2.20): 

In the nonlinear regime, the frequency shift (3.2) is sig- 
nificantly less than the resonance width Aw, . We can then 
assume the phase 0 of the wave to be constant and set it equal 
to zero for definiteness. Then the evolution of the wave is 
completely described by the law of energy conservation 
(2.18). 

We proceed to an accurate calculation of the energy E. 
In the solution of the equation of bubble oscillations, we can 
assume the amplitude of the wave Spo to be constant. In such 
a case, the Hamiltonian (2.8) is an integral of the motion. 

We choose the quantity (6f - 3y - 2)-lap, as the nor- 
malizing fact Sp, in (2.7). Then the motion of the bubbles is 
described by Eq. (2.9) with P = 1. The qualitative form of the 
phase trajectories on the J ,  e, plane for different values of the 
dimensionless detuning R is shown in Fig. 1. At the initial 
instant, all the bubbles lie in a narrow band near the axis 
J = 0, which corresponds to the small (noise) amplitude of 
the initial oscillation and to a random phase distribution. 
Since the Hamiltonian (2.8) is equal to zero, in what follows 
the motion will take place along trajectories that are deter- 
mined by the equation &" = 0 (in Fig. 1, these are delineated 
by the heavy lines). The period of the motion over the phase 
trajectories depends on the radius a of the bubble or, in other 
words, on the magnitude of the detuning a .  This leads to the 
result that the smooth distribution function f (J,p,a) be- 
comes strongly ragged as a function of a even after several 
periods of the phase oscillations. Averaging over small inter- 
vals Sa allows us to regard the function f ergodic, 

f = f @?,a). It is easy to write down the explicit form forf, 
taking into account the normalization (2.12): 

f-6 ( a f ) g ( a )  [ J s (l ')dldrp]-I . (3.3) 

Using this formula, we need only keep it in mind that at 
D > 3/2'13, when there are two X' = 0 curves separated by 
the separatrix (the dashed line in Fig. I), the dissipation func- 
tion differs from zero only on the one that touches the axis 
J = 0 (see Fig. Id). 

The sought energy E is now calculated by Eq. (2.1 1) 
which, after changing the integration variable 

d c p = w ' ( a x i a r p ) - l = - m l ( d ~ / d + c )  -! 

and taking into account (3.3), takes the following form: 
0. 

E = da g (a) [ 9 dle (1, a) (dl/&)-' / $ d l  (dl/dr)-'1. J 
Assuming that the scale ofchange of the functiong(a) is large 
in comparison with range Aa -a(Aw, /w) of the values of the 
radius at which the second factor in the integrand of (3.4) is 
appreciably different from zero, we can take g(a) outside the 
integral sign, setting the value of a in g(a) to correspond to 
the resonance value wo(a) = w. As a result we get 

where the function F ( R  ) is given by the equation 

[y-'"[f-y (y-Q)2/2]-'' dy, 

while y,  is determined from the condition of vanishing of 
the expression under the radical. The graph of the function 
F(n ) is given in Fig. 2. Numerical integration of (3.6) yields 

j P(Q)dQ=3.56. 

Equation (3.5) solves the stated problem-it allows us to find 
the energy transferred to wave by the bubbles as a result of 
nonlinear damping. 

With the help of (3.5) and the energy conservation law, 

FIG. 2. Plot of F (O ). At the point O = 3/2'I3(P = 1) .  thearbitrary 
functionF(0 )becomes infinite. 
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FIG. 3. Dependence of the amplitude of a monoch- 
romatic wave on time. The curve 1 corresponds to 
the value y,,, T =  0.157; 2-y,,, T = 0.47; 3- yIi, T =  0.94 

we can easily calculate how much the amplitude of the wave 
is changed by phase mixing: 

44.7pc2a4g ( a )  ( 6 p 0 )  -" 3.56 
AP (T= m) = -- - 71in T .  (3.7) 

(6r2-3r-2)"(3yp,)" n 

The P(T) dependence is itself of interest. It describes 
how the wave amplitude changes during the damping pro- 
cess. The corresponding curves, obtained as a result of nu- 
merical solution of Eqs. (2.9) and (2.20) (in which it was as- 
sumed that P and 8 do not depend on x) are given in Fig. 3. 
Since the time of phase oscillations T (2.7) is identical in 
order of magnitude with the reciprocal of the nonlinear cor- 
rection to the frequency Aw; I ,  the value y,,, T = 0.157 rep- 
resents the nonlinear regime with excellent accuracy; the 
limit towards which A P  tends with large T agrees to within 
10% with the calculation according to Eq. (3.7) (we note that 
(3.7) gives the first term ofthe expansion ofAPin y,,, Tand is 
therefore accurate to within 10% at y,,, T-0.1). The curve 
y,,, T = 0.94 demonstrates the exponential linear damping 
of the wave. The value y,,, T = 0.47 illustrates the interme- 
diate case. 

To conclude this section we note that since the charac- 
teristic damping time in the linear regime is of the order of 
Am; ' - T, the assumed condition of sudden application of 
the wave actually means that the initial perturbation should 
be generated more rapidly than the time of phase mixing T. 

4. NONLINEAR EVOLUTION OF A WAVE PACKET 

In this section we consider the evolution of a quasiimon- 
ochromatic wave packet, the equation of which is given by 
Eq. (1.2). As will be shown, in contrast with the monochro- 
matic wave, the localized perturbation is always completely 
damped out, since, migrating in space at the group velocity, 
it sets up oscillations of new bubbles and transfers its energy 
to them. 

At low amplitude Sp,, when the inequality (3.1) is valid, 
the amplitude of the packet falls off, in correspondence with 
the linear theory, in proportion to exp ( - y,,, t ). We shall be 
interested here in the case in which an inequality inverse to 
(3.1) is satisfied. Moreover, we shall assume that the size of 
the leading edge of the packet L is sufficiently great that the 
time of its passage past the bubble, L /c, is much greater than 
the time of phase mixing2'Ao; ', and we limit ourselves only 
to the leading edge of the packet, where the amplitude Sp, is 
a monotonically decreasing function of x. 

The dependence of the dimensionless amplitude Pof the 
wave and the phase 8 on time leads to the result that the 
Hamiltonian (2.8) is no longer an integral of the motion, 
while the form of the phase trajectories (now defined at fixed 
T as the lines of constant P) changes with time. The slow- 
ness of the change of P and 8 allows us, however, to assume 
the distribution function at all time to be ergodic and use the 
conservation of a new adiabatic invariant K, equal to the 
area under the trajectories on the J, p plane 

Since the frequency shift of the wave is small d B /  
d t - y , ,  (Aw, [see Eq. (3.2)] and, moveover, as is shown, 
does not depend on time, its account leads simply to a small 
shift in the resonance as a whole relative to the wave frequen- 
cy w. In view of this, the phase 8, as also in the previous 
section, can be assumed to be equal to zero. 

Since all the bubbles are quiescent prior to the arrival of 
the wave, it follows that J, and with it K, is equal to zero. The 
equality K = 0 in the succeeding instants of time, when 
P # 0, means that the state of the oscillator corresponds to a 
stationary point Jc,  pC whose coordinates are determined 
from the conditions 

The dependence of J, on R,  which is computed with the help 
of (2.9), coincides with the resonance curve of the nonlinear 
o~cillator:~ 

and is shown in Fig. 4 by the solid line. 
It is obvious that at small amplitudes of the wave, P a ,  

the bubbles fall on branch 1 (at R < 0) and 3 (at R > 0) of the 
resonance curve, to which correspond the centers 1 on Fig. 
l a  and 3 on Fig. Id. With increase in P, Jc increases and these 
centers move upwards on the phase plane. For oscillators 

FIG. 4. Dependence  of>(^, 1 ) .  The numbered branches (1 ,2  and 3) corre- 
spond to designation of stationary points on Fig. 1 (the portions2 and 3 are 
separated by a point with a vertical tangent). 
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with 0 > 0  a rearrangement of the structure of the phase 
plane occurs at P = PC = 2 ( 0  /3)3'2: the center 3 merges with 
the saddle point 2, to form a complex singular point (Fig. lb) 
which vanishes upon further increase in P together with the 
separatrix. Upon approach of the singular points to one an- 
other, the period of small oscillations around the center 3 
tends to infinity (in proportion to (P - PC)-'I4); therefore, in 
the course of the interval in which it becomes equal to and 
then greater than the characteristic time of growth of the 
pressure L /c, the adiabatic invariant K ceases to be con- 
served. In order of magnitude, this interval turns out to be 
equal to 

therefore, the Hamiltonian &a' of the bubble changes insig- 
nificantly during this interval and can be assumed to be 
equal to its value at the separatrix 

8'=aC---Q,2(P)/12, where Qc(P)=3(P/2)"s. 

Next, after passage of the separatrix, the invariant K again 
becomes a conserved quantity, but now it is equal not to zero 
but to the area under the separatrix, when bifurcation oc- 
curs: K = Ksep. 

We now turn to the calculation of the energy of the 
bubbles as a function of P. It is clear from what was said 
above that at a given P the distribution function of bubbles 
with R < 0 and 0 > R,(P) is given by the equation 

where at R > R,(P), the branch 3 in Fig. 4 corresponds to the 
values J,, p,. For bubbles from the interval 0 < 0 < 0, (P ) 
for which the adiabatic invariant is violated, the distribution 
function can be regarded as ergodic: 

The phase trajectory on which f #O, i.e., R *  as a function of 
R and P, is given by the value of the invariant 
K(&P, ,R,P) = K,, . It is easy to see from (2.8) that the form 
of the integral line J ( p ; P , O , P )  is a homogeneous function 

therefore the equation of the separatrix for the bubble R 
(corresponding to values of the parameters &a' = - R 2/12, 
P = 2(R /3)3'2 can be written down as 

and,consequently, K,,, (0 ) = OR. The constanto was found 
by numerical integration and is equal to 6.16. 

Next, the known value of KSep(R) at fixed amplitude 
P = 1 was used to find numerically the corresponding value 
of%,, , and consequently also the distribution function (4.5). 
The result of calculation with the help of this distribution 
function of the averaged ac t ionT(R,~  = 1) (2.13) is shown in 
Fig. 4. At R < 0 and R > R,(l) this function obviously coin- 
cides with the sections 1 and 3 of the resonance curve; it is 
shown by the dashed line at 0 < R < R,(l). At an arbitrary 
pressure P, the averaged action 5 (R,P ) is connected with the 
known ](R,l) dependence by the simple relation 

which follows from (4.6). 
Now, using the Eq. (2.14) and (4.7), we can easily find 

the energy density of the bubbles as a function of the ampli- 
tude Sp, on the wavefront 

m 

E=4ng(a)a4 (6p0)"3(612-3y-2)-'(3yp.) -''J f ( y ,  1)dy. 
- co 

(4.8) 
As in (3.5), the value of the radius a corresponds to the reso- 
nance frequency w, (a) = w. Numerical integration of the 
function 5 yields 

In order to obtain an equation describing the evolution 
of the shape of the packet, we must transform in the energy 
conservation law (2.18) to a system of coordinates moving 
with the velocity c: r' = r - nct. Using Eq. (4.8) and intro- 
ducing the variable v = 3.32cylin TP -2'3r, we get 

It is then seen that each point of the envelope moves with a 
constant velocity v inversely proportional to ( 6 ~ ~ ) ~ ' ~ .  This 
means that a steepening of the wavefront takes place with 
time, up to the scale c/Aw,. After the width of the front 
becomes comparable with c/Aw, , the adiabatic approxima- 
tion is violated and further evolution of the envelope will no 
longer be described by Eq. (4.9). However, the picture is pre- 
served qualitatively; the discontinuity formed at the leading 
edge of the front, moving relative to the packet, will contin- 
ually erode it. This erosion of a packet of sound waves is 
analogous to the damping of a packet of Langmuir waves in a 
plasma. ' ' 

In conclusion, we consider the effect, on the evolution 
of the envelope, of dispersion effects which were not taken 
into account above. For this purpose, we equate the rate of 
dispersion spreading Aka20/ak to the calculated rate of 
deformation of the packet as a result of nonlinear damping 
cy,,, /Awn. Recognizing that the scatter of the wave vectors 
in the packet is A k-L - ' -Awn /c and using the expression 
for the dispersion increment in a liquid with gas bubbles 
(2.19), we find that Aka2w/ak 2-yl,nAwn/ck 2. Thus, as a 
consequence of the dispersion, the packet spreads out at least 
(w/Awn )2 times more slowly than it is deformed under the 
action of nonlinear effects, so that the dispersion spreading 
can actually be neglected. 

5. PENETRATION OFTHE WAVE INTO A LIQUID ACROSSTHE 
BOUNDARY 

We now consider the problem of the penetration, into a 
liquid containing gas bubbles, of a sound wave excited on the 
boundary by a harmonic source of frequency w. We shall 
assume that a source with pressure-oscillations amplitude 
6p0 is switched on at the instant oftime t = 0. For the quanti- 
ty 6p, in this section, we choose Sp0(6y2 - 3y - 2)-'. 

We first assume that the amplitude SpO is so small that it 
satisfies the condition of applicability of the linear theory 
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(3.1). The frequency of the wave is set by the source, and its 
wave vector should be found from the dispersion relation 
and will contain an imaginary part k = o/c + iy,,, /c. This 
means that the wave decays exponentially into the interior of 
the liquid, and its energy is absorbed by the bubbles in a 
surface layer of thickness c/y,,, . It is obvious that within a 
time interval -Awnp ', the amplitude of oscillations of these 
bubbles increases so that nonlinear effects come into play 
and, as described in Sec. 3, exchange of energy between the 
wave and the bubbles ceases. Then the perturbation of the 
pressure can still penetrate a distance c/y,,, and the entire 
process repeats itself. As a result, a wavefront of width -c/ 
y,,, travels inside the liquid with a speed V determined from 
the condition that the wave travel a distance c/y1,, within a 
time do; ': V-cAwn /y,,,. Behind the front, in the initially 
unperturbed liquid, oscillations of amplitude SpO are estab- 
lished. Thus we see that the penetration of the harmonic 
wave in the liquid, even of arbitrarily small amplitude, has a 
nonlinear character (and not only upon satisfaction of an 
inequality inverse to (3.1)). 

After the front moves away from the boundary to a dis- 
tance that is much greater than its width, the shape and ve- 
locity of the front remain practically unchanged. This means 
that the solution of the problem tends to become self-similar 
and dependent only on a single variable 6 = x/YT - r. 

For a quantitative description of the structure of the 
front, the adiabatic approximation, developed in the pre- 
vious section, is inapplicable, since the time of growth of the 
amplitude at the front is comparable with the period of phase 
oscillations T-Aw; '. For the same reason, it is necessary 
to take into account the change in phase 8 of the wave. 
Therefore we use the initial set of equations (2.9) and (2.20), 
which we rewrite by introducing the variable6 in the follow- 
ing form: 

d l  
-=- 

dE 
P (21) " sin (0+q), 

Ahead of the front the bubbles are at rest and the pressure is 
equal to its equilibrium value 

J=O, P=O at g=+w, (5.3) 

and behind the front the pressure perturbation tends to 6p0 
or, in dimensionless coordinates, 

Equations (5.3) and (5.4) are boundary conditions for the set 
(5.1) and (5.2), the solution of which should determine both 
the shape ofthe envelope P (f )and the value of the velocity V. 

The problem of the determination of the eigenvalue V 

can be reduced to an initial-condition problem. For this, we 
make the substitution 
P=YP', E=v-YaEf, Q=v+a laQf  J=V2;~Jf 

7 , rp=(pr, O=Of. 
(5.5) 

where Y = [ylin TV/?r(c - V) I3l2. Then Eqs. (5.1) remain 
without change, while in (5.2) the factors in front of the inte- 
gral on the right side vanish: 

dPf w 

-= -- (2P)" sin (Of+cp') dQf, 
4' - m  

The substitution (5.5) preserves the boundary condition (5.3) 
and in place of (5.4), we obtain 

PI(-") = [ye,, TV/n (c-V) I-". 15-71 

Thus, if we solve the set (5.1) and (5.6) with the initial condi- 
tions (5.3) and find the limit to which P tends as 6- - m ,  
then V is found 

V=c(l+Ay,,, T) -', (5.8) 

where A = [P '( - U J ) ] ~ / ~ / ? ~ .  The pressure in the wave is ex- 
pressed in terms of the solution of the boundary problem 
(5.1)-(5.4) in the following fashion: 

6 p  (x, t )  =6p0P (E) cos (kx-at+ 9 (g) ) , E=x/VT-z. (5.9) 

Since the function P (6 ) increases from zero to a value of the 
order of unity in the interval Ag- 1, the width of the front L 
is equal to VT apart from an insignificant numerical factor. 
We can easily obtain the asymptote of the solution at f>1, 
where J,P+O, by neglecting the nonlinearity of the oscilla- 
tions of the bubbles: 

P(E) =exp ( - -y~h TV(E-Eo)/(c-V)), O(E)=const, 
l(E) ='/,PZ(E) [(ylinTV/ (C-V))~+Q~] (5.10) 

where f o  is a constant. 
In the regionf- 1, the solution is obtained as a result of 

numerical computer integration of the initial, non-self-simi- 
lar equations (2.9) and (2.20), in which we have made the 
transition to the set of coordinates moving with speed V: 
f = x/VT - T. The integration was carried out by a differ- 
ence scheme of second-order approximation" on the finite 
section O<f<l .  We specified arbitrary initial values (P,O,J,p ) 
inside this section at r = 0 the amplitude P (6 = 0 , ~ )  = 1 and 
the phase of the wave 8 (f = 0 , ~ )  = 0 at the left boundary. 
On the right we specified the bubble distribution function 
f (J,p,a), according to Eq. (5. lo), in which we must set f = I 
and choose the constant fo  such that P (f = I )( 1. The phase 6 
of the wave at f = I (unlike P (I ) )  could change in the bound- 
ary condition (5.10) and during each time step it was set 
equal to its value at f = I obtained in the preceding step. 
Within a timeseveral times longer than max [I /V, I /(c - V)], 
with accuracy to within 15%, the stationary form of the en- 
velope P (f ) and ofthe phase 6 (f ) ofthe wave was set. Here, of 
course, the pressure at 6 = I depends on the parameters V 
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FIG. 5. Amplitude of the pressure P ( g )  on the front of the wave. 

and ylin T and does not necessarily coincide with the value 
P ( I  ) used in the calculation of the bubble distribution func- 
tion (5.10) on the right boundary. The family of parameters V 
and y,, T, which assure this coincidence, give the desired 
solution of the boundary-value problem (5.1)-(5.4). A graph 
of the function P (c ) is given in Fig. 5. The constant A in (5.8) 
is approximately equal to 2.2. 

The described solution is valid if the inequalities a ( E  

and SpO+, are satisfied, while the parameter y,, T which 
usually characterizes the role of the nonlinearity of oscilla- 
tions of the bubbles can be either greater than or smaller than 
unity. 

6. CONCLUSION 

In conclusion, we discuss the conditions under which 
we can neglect the dissipative processes that were not taken 
into account above. The dissipation does not play a signifi- 
cant role if the time of the bubble oscillations damping due to 
dissipation (viscosity, thermal conductivity) and radiation 
losses (radiation of sound waves) is much greater than the 
characteristic time of the problem, such as the value of 
do; in the problem of the damping of a monochromatic 
wave, the time of complete erosion of the packet, in the prob- 
lem of the evolution of a packet, and so on. Under the as- 
sumptions made in this work, all these times are greater than 
the period of free oscillations 27ro; '. 

The decrement of dissipative damping increases with 
increase in frequency and for an air bubble in water at atmo- 
spheric pressure it becomes comparable with the frequency 
of linear oscillations at a,- lo6-10' s-' (a- loF4 cm).13 
Therefore we cannot neglect dissipation at the higher fre- 
quencies. In the range of low frequencies, the radiation 
losses (at w < lo3 s-') and the losses due to heat conduction 
(at o > lo3 s-') are dominant. The decrements ylin -woEf'* 
of the radiative and y, -(oa )'"/a of the thermal damping 

(X is the coefficient of thermal diffusivity of air) is significant- 
ly smaller than o,. Therefore at low frequencies, a range of 
parameters (a, Sp,) exists in which the dissipative effects are 
unimportant. 

In the damping process, by virtue of the law of momen- 
tum conservation, the momentum of the wave is transferred 
to the bubbles, which are therefore accelerated in the direc- 
tion of propagation of the wave. The velocity v to which the 
bubbles are accelerated can be estimated by dividing the mo- 
mentum lost by the wave ( W/c in the linear and y,,, TW/c in 
the nonlinear regimes) by the number of resonant bubbles 
((a/a3)(fin /oo) and (a/a3) (do, /o,)) respectively and by the 
effective mass of the bubble3 47rpa3'. It is easy to estimate 
that the Doppler shift of frequency ov/c turns out to be at 
least E - I  times smaller than the width of the resonance (y,,, 
in the linear and do, in the nonlinear regimes, respectively); 
therefore, the forward motion has no effect on the interac- 
tion of the bubble with the wave. 

In conclusion, the authors express their thanks to D. D. 
Ryutov for useful discussion. 

"For water at atmospheric pressure, E = 5X low5. 
"If L / c (Ao;  ', the packet decays linearly even upon satisfaction of the 

inequality (6pdp,)2'3>a/~. 
"Under the action of the sound perturbation, the bubble also executes 
oscillatory motion with a velocity 6p/pc lower than u. 
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